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Abstract
Interpreting the susceptible loci documented by genome-wide association studies (GWASs) is of utmost importance in the
post-GWAS era. Since most complex traits are contributed by multiple tissues, analyzing tissue-specific effects of expression
quantitative trait loci (eQTLs) is a promising approach. Here we describe “opposite eQTL effects”, i.e., gene expression
effects of eQTLs that are in the opposite direction between different tissues, as the biologically meaningful annotations of
genes and genetic variants for understanding the GWAS loci. The genes and single-nucleotide polymorphisms (SNPs)
associated with the opposite eQTL effects (opp-multi-eQTL-Genes and opp-multi-eQTL-SNPs) were extracted from the
largest eQTL database provided by the Genotype-Tissue Expression (GTEx) project (release version 7). The opposite eQTL
effects were detected even between closely related tissues such as cerebellum and brain cortex, and a significant proportion
of the genes having eQTLs were annotated as the opp-multi-eQTL-Genes (2,323 out of 31,212; 7.4%). The opp-multi-eQTL-
SNPs showed locational enrichment at the transcription start site and also possible involvement of epigenetic regulation. The
biological importance of the opposite eQTL effects was also assessed using the SNPs reported in GWASs (GWAS-SNPs),
which demonstrated that a high proportion of the opp-multi-eQTL-SNPs are in linkage disequilibrium with the GWAS-SNPs
(2,498 out of 9,290; 26.9%). Based on the results, the opposite eQTL effects can be a common phenomenon in the tissue-
specific gene regulation with a possible contribution to the development of complex traits.

Introduction

Genome-wide association studies (GWASs) have docu-
mented thousands of susceptible loci, mostly single-
nucleotide polymorphisms (SNPs), that may have causal
effects on the complex traits such as height, body mass
index, and disease prevalence [1]. However, most of the
susceptible loci were found in non-coding regions of the

genome, and the biological mechanisms underlying the
associations are poorly understood [2]. Therefore, in this so-
called post-GWAS era, collecting biologically meaningful
annotations of genes and genetic variants is essential for
interpreting the results of GWASs [3].

Building functional annotation database started as the
large-scale projects in 2000s, represented by FANTOM [4],
ENCODE [5], and Roadmap Epigenomics [6] projects.
Collecting higher-order functional information, e.g., 4D-
Nucleome project [7], is also undergoing. The Genotype-
Tissue Expression (GTEx) project was launched in 2010 as
one of those large-scale functional annotation projects, and
it is focused on mapping expression quantitative trait loci
(eQTLs) for various tissues to elucidate the genetic variants
underlying altered gene expression [8, 9]. The change of
gene expression levels is such a fundamental trait influen-
cing the functions of cells and tissues that the large eQTL
catalog obtained by the GTEx project would be a strong
basis for interpreting the GWAS loci [10]. Most impor-
tantly, revealing the tissue-specific pattern of gene regula-
tion would give a clue to understand the biological causes of
complex traits involved by multiple tissues [11]. Since the
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GTEx project produced the largest eQTL database by ana-
lyzing 48 tissues from 620 donors (release version 7), it
gives us a valuable opportunity to explore tissue-specific
effects of eQTLs as the biologically meaningful annotations
of genes and genetic variants.

In the context of the tissue-specific eQTL effects, it is
interesting to focus on the phenomenon that the direction of
eQTL effects on a given gene is discordant depending on the
tissue type, because those eQTL effects could be the factors
distinguishing characteristics of the tissues [12]. The char-
acteristic difference would be larger and hence be relevant to
the development of biological traits, when the discordance is
detected as “opposite eQTL effects”, i.e., the gene expres-
sion effects of eQTLs are in the opposite direction between
different tissues. Discovery of SNPs with such opposite
eQTL effects was previously reported in GWASs in con-
junction with eQTL studies [13, 14], indicating their possi-
ble contribution to the complex traits including disease
prevalence.

However, due to the significant limitation of the number of
tissue types and sample size available for the eQTL analysis,
reports on the opposite eQTL effects are still rare compared to
the enormous number of eQTL studies, and their statistical
aspects are poorly documented despite their possible impor-
tance in understanding the results of GWASs. Moreover,
analyzing the opposite eQTL effects based on the primary, or
most significant, eQTL signals with the linkage dis-
equilibrium (LD) relationship taken into account has not been
performed. The most significant eQTL variants are enriched
at the transcription start site (TSS) to be the most likely
functional variants [15]. Therefore, for the accurate assess-
ment of the discordance of the eQTL effects on a given gene
between different tissues, it is necessary to compare the
direction of the primary eQTL signals of SNPs in LD.

We here report the statistics of the genes and SNPs
associated with the opposite eQTL effects in the latest
version of the GTEx database via full evaluation of the LD
relationship between SNPs with the most significant eQTL
signal in each tissue. Biological properties of the opposite
eQTL effects were assessed by enrichment analysis on the
distance from TSS and epigenetic annotations. Their bio-
logical importance was also investigated by LD analysis
against SNPs reported in the GWAS catalog [16].

Materials and methods

Extraction of gene/SNP pairs with the most
significant eQTL signal in each tissue from the GTEx
database

The significant variant-gene association results of the single-
tissue cis-eQTL analysis for 48 tissues were downloaded

from the GTEx portal website (release version 7, file name:
GTEx_Analysis_v7_eQTL.tar.gz; https://www.gtexportal.org/).
The significance level threshold for eQTL effects was
reported in the original paper of the GTEx project [9].
dbSNP-based rsID was used for description of SNPs. For
the rsIDs that appeared in this article, their corresponding
description based on the human genome reference sequence
(GRCh37) is summarized in Supplementary Table S1. From
the downloaded GTEx data, indel variants, multi-allelic
SNPs, and SNPs not included in the 1000 genomes project
results (phase 3, version 5; http://www.internationa
lgenome.org/) [17] were removed. Genes that have at
least one SNP with an eQTL signal in one or more tissues,
denoted by eQTL-Genes, were extracted as eQTL-Gene and
SNP pairs, resulting in 6,895,474 pairs (31,212 genes,
2,842,590 SNPs). From the eQTL-Gene and SNP pairs,
SNPs that showed the smallest p-value in each tissue,
denoted by top-eQTL-SNPs, were then extracted as eQTL-
Gene and top-eQTL-SNP pairs, resulting in 232,457 pairs
(31,212 genes, 210,878 SNPs). In the case that there were
more than one top-eQTL-SNPs in a single tissue, i.e.,
multiple SNPs showed the identical smallest p-value due to
the strong LD relationship, the lexicographically first rsID
was designated as the top-eQTL-SNP for the tissue.

Analysis of directional difference of eQTL effects
between different two tissues

Between different two tissues, the directional difference of
primary eQTL effects was assessed based on a 2 × 2 ana-
lysis table, as summarized in Supplementary Fig. S1. The
analysis table was made for each eQTL-Gene between each
tissue pair (35,207,136 analysis tables in total for 31,212
eQTL-Genes and 1128 tissue pairs from 48 tissues). Let
SNP-x be the top-eQTL-SNP of a given eQTL-Gene in tis-
sue-x, and βxy be the effect size of SNP-x in tissue-y (if SNP-
x is not significantly detected in tissue-y, βxy was set as 0).
Only the cases that the given eQTL-Gene has SNP(s) with a
significant eQTL signal in both tissues in the pair (i.e., βxx
≠ 0 ∩ βyy ≠ 0) were moved into the next analysis (3,540,453
analysis tables). When at least one of SNP-x and SNP-y is
significant in both tissues (i.e., βxy ≠ 0 ∪ βyx ≠ 0), the direc-
tional difference of the eQTL effects between the tissue pair
can be discussed. Therefore, the cases of (i) SNP-x and
SNP-y are identical (i.e., βxx= βyx and βxy= βyy) and (ii)
SNP-x and SNP-y are not identical but at least one of them
is significant in both tissues were selected (2,488,564 ana-
lysis tables). The directional difference of the eQTL effects
between the tissue pair was first determined by the sign of
βxx × βxy and βyx × βyy, and the cases of βxx × βxy ≤ 0 ∩ βyx ×
βyy ≤ 0 were considered as opposite direction. Next, the r2

coefficient of the LD between SNP-x and SNP-y were cal-
culated by PLINK software (version 1.9; https://www.cog-
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genomics.org/plink2) [18] using the 1000 genomes project
data as the reference panel (EUR population), and the
analysis tables were divided into four groups (1a, 1b, 2a,
and 2b shown in Fig. S1) based on r2 threshold of 0.8 (if
SNP-x and SNP-y are identical, r2 was set as 1). The eQTL-
Genes and top-eQTL-SNPs in group 1a or 2a (any direction,
r2 > 0.8) were designated as multi-eQTL-Genes and multi-
eQTL-SNPs (113,274 pairs consisting of 17,192 genes and
101,621 SNPs), and those in group 1a (opposite direction,
r2 > 0.8) were designated as opp-multi-eQTL-Genes and
opp-multi-eQTL-SNPs (9541 pairs consisting of 2323 genes
and 9290 SNPs).

Clustering analysis of tissue types based on
opposite eQTL effect fractions

In each tissue pair from 48 tissues (1128 pairs in total),
β-values of all SNPs included in the significant eQTL
analysis result dataset were compared between the tissues,
and the proportion of the number of SNPs showing opposite
directional β-values was calculated. (Note: This analysis
was focused not only on top-eQTL-SNPs but on all SNPs
showing significant eQTL signals. SNPs that are not sig-
nificant in both tissues of the pair were omitted from the
analysis.) Clustering the tissue types based on the opposite
eQTL effect fractions was conducted by the R software
(version 3.3.0).

Distribution analysis of the distance from TSS

Distance from TSS was retrieved from the GTEx database
for all SNPs in each type of gene and SNP pairs (eQTL-Gene
and SNP with any eQTL signal, eQTL-Gene and top-eQTL-
SNP, multi-eQTL-Gene and multi-eQTL-SNP, opp-multi-
eQTL-Gene and opp-multi-eQTL-SNP). A subset of the
multi-eQTL-Gene and multi-eQTL-SNP pairs was randomly
sampled so that the null distribution of the number of tissues
in which a significant eQTL signal of the same gene and
SNP pair was detected (i.e., the number of sharing tissues)
was adjusted between the multi-eQTL-SNPs and the opp-
multi-eQTL-SNPs. The density distribution of the distance
from TSS for each type of SNPs was analyzed by the R
software (version 3.3.0). The significance level of the TSS
enrichment in the opp-multi-eQTL-SNPs compared to the
adjusted multi-eQTL-SNPs was evaluated based on kurtosis
of the density distribution by 10,000-time random sampling.

Epigenetic annotation analysis on histone
modification and DNase sensitivity

To adjust the distance from TSS, a subset of the multi-
eQTL-SNPs (TSS-distance-adjusted multi-eQTL-SNPs) was
generated by random sampling so that the null distribution

of the distance form TSS was matched with that of the
opp-multi-eQTL-SNPs. Specifically, the opp-multi-eQTL-
Gene and opp-multi-eQTL-SNP pairs in each 1-kbp window
from −1000 to +1000 kbp TSS distance were counted, and
the same number of pairs were randomly sampled from the
multi-eQTL-Gene and multi-eQTL-SNP pairs for each
window to generate the adjusted dataset of multi-eQTL-
SNPs. The SNP annotation dataset was downloaded
from the HaploReg v4.1 website (accessed 2019/02/01;
file name: haploreg_v4.0_20151021.vcf.gz; https://pubs.
broadinstitute.org/mammals/haploreg/data/) [19], which
includes epigenetic annotations from the Roadmap Epige-
nomics project on up to 127 cell lines [6]. The annotations
were histone modification states (H3K4me1, H3K4me3,
H3K9ac, and H3K27ac) and sensitivity to cleavage by
DNase. For enrichment analysis of these epigenetic anno-
tations, the fraction of SNPs with each epigenetic annota-
tion in each type of SNPs (multi-eQTL-SNPs, TSS-distance-
adjusted multi-eQTL-SNPs, or opp-multi-eQTL-SNPs) was
calculated for each of the cell lines in which the epigenetic
annotation data were available. The mean fraction across the
available cell lines was used as a surrogate to investigate the
enrichment. The random generation of the TSS-distance-
adjusted multi-eQTL-SNPs was repeated by 10,000 times to
provide 95% confidence interval.

Assessment of LD relationship with the SNPs
reported in the GWAS catalog

The summary information about SNPs reported in GWASs
(GWAS-SNPs) was downloaded from the GWAS catalog
website (accessed 2019/03/06; file name: gwas_cata-
log_v1.0.2-associations_e93_r2019-01-31.tsv; https://www.
ebi.ac.uk/gwas/) [16], and SNPs whose reported p-value is
less than 5 × 10−8 were extracted. For each type of SNPs in
the GTEx database (SNPs with any eQTL signals, top-
eQTL-SNPs, multi-eQTL-SNPs, TSS-distance-adjusted
multi-eQTL-SNPs, and opp-multi-eQTL-SNPs), the r2

coefficient of the LD with the GWAS-SNPs was calculated
by PLINK 1.9 using 1000 genomes project phase 3 data
version 5 (EUR population) as the reference. The number of
SNPs whose r2 coefficient was more than 0.8 with at least
one GWAS-SNP was counted. The significance level of the
percentage of SNPs in LD with the GWAS-SNPs in the opp-
multi-eQTL-SNPs was investigated by Fisher’s exact test
(compared to the multi-eQTL-SNPs) and 10,000-time ran-
dom sampling (compared to the TSS-distance-adjusted
multi-eQTL-SNPs). Some examples of the opp-multi-
eQTL-SNPs that showed the LD with the GWAS-SNP(s)
were chosen, and the distribution of the β-value and nega-
tive logarithm of p-value of all tested SNPs within 1Mbp
distance from TSS with respect to the position on
chromosome were plotted by the R software (version 3.3.0).
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The β-value and p-value of all tested SNPs including
SNPs that showed non-significant eQTL signals were
downloaded from the GTEx portal site (release version 7,
file name: GTEx_Analysis_v7_eQTL_all_associations.tar.
gz; https://www.gtexportal.org/). For clarification of the
directional difference of the eQTL effects between tissues,
reference and alternative alleles were reassigned so that the
signs of β-values of all tested SNPs are all positive in one of
the tissues of the pair. In the other tissue, the β-values were
plotted according to the reassigned reference and alternative
alleles.

Results

Grouping genes and SNPs for analysis of the
opposite eQTL effects

From the GTEx database (release version 7), genes and
SNPs relating to the opposite eQTL effects between dif-
ferent tissues were extracted stepwise, the graphical scheme
of which is depicted in Fig. 1 (see Materials and methods
for details). Briefly, when one or more SNPs showed an
eQTL signal on the expression of a gene in either tissue, the
affected gene was denoted as eQTL-Gene, and the SNP
showing the most significant eQTL signal was denoted as
top-eQTL-SNP. Focusing on an eQTL-Gene in a given

tissue pair (tissue X and tissue Y in Fig. 1), if the two
top-eQTL-SNPs are identical or in LD (r2 > 0.8), the
top-eQTL-SNPs and the eQTL-Gene were designated as
multi-eQTL-SNPs and multi-eQTL-Gene, respectively.
Subsequently, if the expression effects of the multi-eQTL-
SNPs on the multi-eQTL-Gene are in the opposite direction
between tissue X and tissue Y, the multi-eQTL-SNPs and
multi-eQTL-Gene were highlighted as opp-multi-eQTL-
SNPs and opp-multi-eQTL-Gene, respectively. If the
opposite direction of expression effects was detected in at
least one tissue pair, the genes and SNPs were considered to
be associated with the opposite eQTL effects.

Overall results of extracting each type of gene/SNP pairs
from 48 tissues in the GTEx database are summarized in
Table 1. The opp-multi-eQTL-Genes accounted for 7.4% of
the eQTL-Genes (2,323 out of 31,212 eQTL-Genes), and the
opp-multi-eQTL-SNPs accounted for 4.4% of the top-eQTL-
SNPs (9,290 out of 210,878 top-eQTL-SNPs). The propor-
tion of the opp-multi-eQTL-Genes was unexpectedly high
when compared to those in the previous eQTL studies, in
which a few proportions (approximately 1.4% of gene
probes) showed opposite effect sizes between blood and
four non-blood tissues [12]. This increase could be mainly
due to the large number of tissue types in the GTEx data-
base, which provided combinatorial increase of the tissue
pairs to assess the discordance of eQTL effects, giving high
chance to discover SNPs with the opposite eQTL effects.

SNPs with an eQTL signal
eQTL-Gene

SNPs with an eQTL signal
eQTL-Gene

top-eQTL-SNP

top-eQTL-SNP

if in LD (r2 > 0.8)

top-eQTL-SNPs
multi-eQTL-SNPs

eQTL-Gene
multi-eQTL-Gene

expression effect

expression effect

if in the opposite direction

multi-eQTL-SNPs
opp-multi-eQTL-SNPs

multi-eQTL-Gene
opp-multi-eQTL-Gene

tissue X

tissue Y

Fig. 1 Graphical scheme for extraction of the genes and SNPs asso-
ciated with opposite eQTL effects between different tissues. In each
tissue, genes that have at least one SNP with a significant eQTL signal
are denoted as eQTL-Genes, and for each eQTL-Gene, the SNP with
the most significant eQTL signal is designated as top-eQTL-SNP. In a
tissue pair (i.e., tissue X and tissue Y in the figure), if the linkage
disequilibrium (LD) coefficient (r2) between the top-eQTL-SNPs is
more than 0.8, the top-eQTL-SNPs and eQTL-Gene are denoted as

multi-eQTL-SNPs and multi-eQTL-Gene, respectively. Subsequently,
the direction of the effect sizes of the multi-eQTL-SNPs are compared
in the tissue pair, and if the effects are in the opposite direction, the
multi-eQTL-SNPs and multi-eQTL-Gene are highlighted as opp-multi-
eQTL-SNPs and opp-multi-eQTL-Gene, respectively. All tissue pairs
in the GTEx database release version 7 (1128 pairs from 48 tissues)
are examined to extract the opp-multi-eQTL-SNPs and opp-multi-
eQTL-Genes
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Based on this result, the existence of the opposite eQTL
effects might have been underestimated, and the more tissue
types are analyzed, the more opposite eQTL effects can be
discovered.

The distribution of significance levels of the opposite
eQTL effects were also investigated based on the p-values
in each tissue pair where multi-eQTL-SNPs or opp-multi-
eQTL-SNPs were detected. Since there are two p-values
from the two tissues of a pair, p-value_1 was designated as
the lower one, and p-value_2 was designated as the higher
one. The distribution of negative logarithm of p-value_1
and 2 is shown in Supplementary Fig. S2. The difference
between the 2D density maps of multi-eQTL-SNPs and opp-
multi-eQTL-SNPs is also shown. The density in the opp-
multi-eQTL-SNPs is high along the horizontal axis and low
in the diagonal area compared to the density in the multi-
eQTL-SNPs. Therefore, the significance levels of the top
eQTL effects tend to deviate more largely between the two
tissues of the pair that showed opposite eQTL effects. This
finding could be understandable based on the possibility
that the opposite eQTL effects resulted from altered gene
regulation patterns depending on tissue types, the statistical
detection level of which would largely vary across tissues.

Tissue-dependent characteristics of the opposite
eQTL effects

The number of eQTL-Genes, multi-eQTL-Genes, and opp-
multi-eQTL-Genes for each tissue are shown in Fig. 2A–C.
The tissues are shown by abbreviations and categorized by
the organ systems (Supplementary Table S2). The number
of each type of genes varied in different tissues (coefficient
of variation (CV)= 0.48–0.60). This variation was mainly
caused by the difference of the sample sizes obtained for
each tissue, because the number of identified eQTL-Genes
in a tissue increases linearly with its sample size [20]. To
remove the sample size bias, the proportion of the multi-
eQTL-Genes (=multi-eQTL-Genes/eQTL-Genes) and opp-
multi-eQTL-Genes (=opp-multi-eQTL-Genes/eQTL-Genes
and opp-multi-eQTL-Genes/multi-eQTL-Genes) were cal-
culated and shown in Fig. 2D–F. There was negative cor-
relation between the proportion of multi-eQTL-Genes and
that of opp-multi-eQTL-Genes (Pearson’s correlation

coefficient r=−0.54 between multi-eQTL-Genes/eQTL-
Genes (D) and opp-multi-eQTL-Genes/eQTL-Genes (E),
and r=−0.81 between multi-eQTL-Genes/eQTL-Genes
(D) and opp-multi-eQTL-Genes/multi-eQTL-Genes (F)).

Since the multi-eQTL-Genes are the genes whose most
significant eQTL is shared by multiple tissues, the index of
multi-eQTL-Genes/eQTL-Genes could be interpreted as the
similarity of the gene regulation pattern among the tissues.
Therefore, its negatively correlated index, opp-multi-eQTL-
Genes/(multi-)eQTL-Genes, could indicate the difference of
the gene regulation pattern compared to the other tissues. In
addition, the opp-multi-eQTL-Genes/(multi-)eQTL-Genes
can be used as a sensitive index to catch the gene regula-
tion uniqueness, because the CV of opp-multi-eQTL-Genes/
(multi-)eQTL-Genes (0.22 and 0.32) was larger than that of
multi-eQTL-Genes/eQTL-Genes (0.09). Testis showed the
smallest value of multi-eQTL-Genes/eQTL-Genes (38.1%)
and the highest value of opp-multi-eQTL-Genes/multi-
eQTL-Genes (13.7%), which would be reasonable because
testis clearly showed different gene expression pattern, e.g.,
testis expressed the largest number of genes and many of
them were uniquely expressed. Following to testis, high
value of opp-multi-eQTL-Genes/multi-eQTL-Genes was
detected for cerebellar tissues (BRNCHB; 8.1% and
BRNCHA; 8.3%), blood cells (LCL; 8.7% and WHLBLD;
10.8%), fibroblasts (FIBRBLS; 7.9%), skeletal muscle
(MSCLSK; 8.9%), and some gastrointestinal tissues
(ESPMCS; 7.5%, LIVER; 8.3%, and PNCREAS; 7.2%).

For each tissue pair in the 48 tissues (1128 pairs in total),
the SNPs that showed eQTL signals in both tissues of the
pair were plotted with respect to the β-value. The summary
of the proportion of the SNPs showing the opposite direc-
tional β-values in the tissue pair is shown by heatmap in
Fig. 3. Two representative plots are shown for (A) visceral
adipose (ADPVSC) vs. breast (BREAST), in which no
opposite eQTL effects were detected, and for (B) whole
blood (WHLBLD) vs. testis (TESTIS), in which the largest
proportion of the SNPs with opposite directional β-values
(10.7%) was detected. As expected, testis showed high
intensity of the opposite eQTL effects against almost all
other tissues. Based on the averaged proportions between
the organ system categories (Supplementary Table S3), the
tissues in the same organ system category had a tendency to

Table 1 Results of extracting each type of gene/SNP pairs from the GTEx database

Type of gene and SNP pair Number of pairs Number of genes Number of SNPs

eQTL-Gene and SNP with any eQTL signal 6,895,474 31,212 2,842,590

eQTL-Gene and top-eQTL-SNP 232,457 31,212 210,878

multi-eQTL-Gene and multi-eQTL-SNP (r2 > 0.8 in at least 1
tissue pair)

113,274 17,192 101,621

opp-multi-eQTL-Gene and opp-multi-eQTL-SNP (opposite in at
least 1 tissue pair)

9,541 2,323 (7.4% of eQTL-
Genes)

9,290 (4.4% of top-eQTL-
SNPs)
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show relatively low intensity of the opposite eQTL effects,
as remarkably shown in the brain tissues. In accordance
with the results in Fig. 2, the cerebellar tissues showed
clearly different intensity compared to the other brain tis-
sues, which might indicate the well-documented, different
gene expression pattern of cerebellum from other parts of
the brain [21, 22].

Based on the proportions of SNPs showing opposite
directional β-values, clustering analysis of the 48 tissue
types was further performed. The result was depicted by
heatmap in Supplementary Fig. S3. The brain tissues were
well clustered with the cerebellar tissues apart as expected
from Fig. 3. Although most of the organ system categories
that we assigned for this study were not reproduced as a
single cluster, some closely related tissue types were located
in close positions such as LCL-WHLBLD, UTERUS-
VAGINA, and LIVER-PNCREAS. Liver and pancreas both
arise from the foregut endoderm in the embryonic

development and possibly share a common progenitor
population [23], whose common gene regulation pattern
might be related to the similar opposite eQTL effect frac-
tions against other tissue types.

Biological properties of SNPs with the opposite
eQTL effects

The distribution of the distance from TSS in each type of
SNPs (SNPs with any eQTL signal, top-eQTL-SNPs, multi-
eQTL-SNPs, and opp-multi-eQTL-SNPs) is shown in Fig. 4.
The distribution of the top-eQTL-SNPs was enriched at the
TSS compared to all SNPs with any eQTL signal, which is
in accordance with the common knowledge of eQTLs that
the statistical significance of eQTLs becomes higher when it
is close to the TSS [24–26]. The distribution of the multi-
eQTL-SNPs was more enriched at the TSS than that of the
top-eQTL-SNPs. This is also in consistence with another
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Fig. 2 Counts and proportions of
eQTL-, multi-eQTL-, and opp-
multi-eQTL-Genes for 48 tissues
in the GTEx database (release
version 7). A Counts of eQTL-
Genes. B Counts of multi-eQTL-
Genes. C Counts of opp-multi-
eQTL-Genes. D Proportion (%)
of multi-eQTL-Genes in eQTL-
Genes. E Proportion (%) of
opp-multi-eQTL-Genes in
eQTL-Genes. F Proportion (%)
of opp-multi-eQTL-Genes in
multi-eQTL-Genes. CV stands
for coefficient of variation
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report on eQTLs using multiple types of tissues, in which
the eQTLs shared by multiple tissues were located closer to
the TSS than the eQTLs uniquely detected in a single tissue
[27]. Interestingly, even more enrichment at the TSS was
observed with the opp-multi-eQTL-SNPs (density ratio at
TSS= 1.4 between multi-eQTL-SNPs and opp-multi-eQTL-
SNPs). There could be a possibility that this enrichment at
the TSS was plausibly caused by the increase of the number
of sharing tissues rather than the opposite eQTL effects. To
reject this hypothesis, the multi-eQTL-SNPs were thus

randomly subsampled so that the number of sharing tissues
was adjusted with that of the opp-multi-eQTL-SNPs.
The distribution of the adjusted multi-eQTL-SNPs showed
significantly less enrichment at the TSS compared to the
opp-multi-eQTL-SNPs (p < 1.0 × 10−4), while it was not
significantly different from that of the multi-eQTL-SNPs.

The opposite eQTL effects could be caused by epigen-
etically altered gene regulation patterns between tissues. To
investigate a possible participation of epigenetic factors, we
referred to histone modification (H3K4me1, H3K4me3,

Fig. 3 Heatmap of the
proportion of SNPs showing
opposite directional β-values.
For each tissue pair, SNPs
showing significant eQTL
signals in both tissues were
extracted. Direction of the β-
values (effect sizes) of the SNPs
was compared in each tissue
pair, and proportion (%) of the
SNPs that showed opposite
directional β-values is shown by
heatmap with the color scale
shown on the top (blue to red).
Plots of β-values of the SNPs in
the two representative tissue
pairs are shown on the bottom:
A visceral adipose (ADPVSC)
vs. breast (BREAST) and B
whole blood (WHLBLD) vs.
testis (TESTIS). SNPs with the
same directional β-values are
indicated as blue points, and
SNPs with the opposite
directional β-values are
indicated as red points. There
were no opposite eQTL effects
found between ADPVSC and
BREAST, while the largest
proportion (10.7%) of the
opposite eQTL effects were
detected between WHLBLD
and TESTIS
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H3K9ac, and H3K27ac) and DNase sensitivity annotation
data from the Roadmap Epigenomics project on up to 127
different cell lines [6], which are included in the HaploReg
dataset [19]. For each cell line, the fractions of SNPs with
each epigenetic annotation were calculated for multi-eQTL-
SNPs and opp-multi-eQTL-SNPs. Since the enrichment at
TSS in the opp-multi-eQTL-SNPs can be a confounding
factor, the fractions were also calculated for a subset of the
multi-eQTL-SNPs (TSS-distance-adjusted multi-eQTL-
SNPs), which was generated by random subsampling so
that the null distribution of the TSS distance was matched
with that of the opp-multi-eQTL-SNPs. As shown in Sup-
plementary Table S4, the mean fractions across cell lines
were small in multi-eQTL-SNPs and large in opp-multi-
eQTL-SNPs in all of the epigenetic annotations, which were

statistically significant (p < 0.05) compared to the fractions
in the TSS-distance-adjusted multi-eQTL-SNPs. Therefore,
the epigenetic annotation enrichment can be related not only
to the locational enrichment at TSS, but also to the opposite
eQTL effects, which might be a molecular basis to regulate
gene expression in the opposite directions between tissues.

Association of opposite eQTL effects with complex
traits

Based on the above analyses, the opp-multi-eQTL-SNPs
showed relationship with the difference of the gene reg-
ulation pattern among tissues, according to the proximity in
the distance from TSS and the possible involvement of
epigenetic factors. To further evaluate the biological
importance of the opposite eQTL effects, the LD relation-
ship between each type of eQTL SNPs and the complex
trait-associated SNPs reported in the GWAS catalog
(GWAS-SNPs) was assessed. As summarized in Table 2, the
proportion of the eQTL SNPs in LD with the GWAS-SNPs
(r2 > 0.8) increased in the order of SNPs with any eQTL
signal, top-eQTL-SNPs, multi-eQTL-SNPs, and opp-multi-
eQTL-SNPs. Surprisingly, one out of four opp-multi-eQTL-
SNPs (2,498 out of 9,290; 26.9%) was in LD with the
GWAS-SNPs.

The enrichment with the GWAS-SNPs could be caused
because the location of the SNPs was enriched at the TSS as
reported in other studies [28, 29], rather than because the
SNPs showed the opposite eQTL effects. To reject this
possibility, the same analysis was conducted on the TSS-
distance-adjusted multi-eQTL-SNPs. As a result, the pro-
portion of the SNPs in LD with the GWAS-SNPs was not
significantly different between the adjusted and non-
adjusted multi-eQTL-SNPs (20.5% vs. 20.2%), while the
proportion in the opp-multi-eQTL-SNPs was significantly
higher than that in the adjusted multi-eQTL-SNPs (p < 1.0 ×
10−4). These support that the enrichment of the GWAS-
SNPs in the opp-multi-eQTL-SNPs was attributed to their

Table 2 Counts and proportions
of the SNPs in LD with GWAS-
SNPs

Type of SNPs Adjustment Total LD with GWAS-SNPs
(r2 > 0.8)

Proportion (%)

SNPs with any eQTL signal – 2,842,590 322,981 11.4

top-eQTL-SNPs – 210,878 27,054 12.8

multi-eQTL-SNPs – 101,621 20,548 20.2

TSS distancea – – 20.5 [19.8, 21.3]

opp-multi-eQTL-SNPs – 9,290 2,498 26.9b

aDistribution of TSS distance in multi-eQTL-SNPs was adjusted on that in opp-multi-eQTL-SNPs by random
sampling. The sampling was repeated by 10,000 times, and the mean is shown with 95% confidence interval
in parentheses
bSignificance levels of the proportion enrichment were p < 1.0 × 10−15 compared to the non-adjusted multi-
eQTL-SNPs (Fisher’s exact test) and p < 1.0 × 10−4 compared to the adjusted multi-eQTL-SNPs (random
sampling repeated by 10,000 times)

Fig. 4 Distribution of the distance from TSS in each type of SNPs. For
each type of SNPs (SNPs with any eQTL signal, top-eQTL-, multi-
eQTL-, and opp-multi-eQTL-SNPs), the distribution of the distance
from TSS is shown (in light blue, dark blue, green, and red, respec-
tively). To adjust the number of sharing tissues of multi-eQTL-SNPs to
that of opp-multi-eQTL-SNPs, subset of the multi-eQTL-SNPs was also
analyzed, which is shown in an orange line. The TSS enrichment was
evaluated on kurtosis of the density plot, and its significance level
in opp-multi-eQTL-SNPs compared to adjusted multi-eQTL-SNPs was
p < 1.0 × 10−4, which was determined by 10,000-time random
sampling
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own functional effects rather than the distance from the
TSS. Since replication tendency of SNPs could be another
confounding factor (i.e., opp-multi-eQTL-SNPs might be
more likely to replicate in eQTL studies), we investigated
the replication rates of TSS-distance-adjusted multi-eQTL-
SNPs and opp-multi-eQTL-SNPs in other 12 independent
eQTL datasets (Supplementary Table S5); however, there
was no clear replication difference, i.e., while six datasets
favored opp-multi-eQTL-SNPs, the other six ones favored
TSS-distance-adjusted multi-eQTL-SNPs. Although not all
confounding factors were excluded, the opposite eQTL
effects could be a factor underlying the development of
complex traits in GWASs.

Examples of the distribution of β-value and p-value of
the GWAS-related opp-multi-eQTL-SNPs with respect to

the position on chromosome are shown in Fig. 5. The
opposite eQTL effects on D-dopachrome tautomerase gene
(DDT [MIM: 602750]) between blood and liver tissues was
previously reported [12]. The same opposite eQTL effects
were recapitulated in this study, and also some other tissues
such as skeletal muscle (MSCLSK) showed the opposite
direction of eQTL effects as shown in Fig. 5A, in which the
opp-multi-eQTL-SNPs (rs5760120 and rs5760119) was in
LD with rs2739330, reported in the association study of the
liver enzyme level trait [30].

As discussed above, the cerebellar tissues showed more
opposite eQTL effects than other parts of the brain. Inter-
estingly, there were GWAS-related opposite eQTL effects
detected between the cerebellar tissues and other brain tis-
sues. An example of such cases is shown in Fig. 5B, in

Fig. 5 Distribution of the β-value and p-value of GWAS-related SNPs
with opposite eQTL effects. The opp-multi-eQTL-SNPs that are in LD
(r2 > 0.8) with the GWAS-SNPs were extracted, and examples of the
genes affected by such GWAS-related opp-multi-eQTL-SNPs were
selected. Distribution of β-value (y-axis) and negative logarithm of
p-value (color scale) of all tested SNPs within 1Mbp distance from
TSS of the selected gene is shown with respect to the position on

chromosome. A D-Dopachrome tautomerase gene (DDT [MIM:
602750]). Plots for skeletal muscle (MSCLSK) and liver (LIVER) are
shown in red and blue, respectively. B Pleckstrin homology and RUN
domain containing M1 gene (PLEKHM1 [MIM: 611466]). Plots for
cerebellum (BRNCHA) and brain cortex (BRNCTXA) are shown in
red and blue, respectively
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which the SNPs showed opposite eQTL effects on pleck-
strin homology and RUN domain containing M1
gene (PLEKHM1 [MIM: 611466]) between cerebellum
(BRNCHA) and brain cortex (BRNCTXA). The identified
opp-multi-eQTL-SNPs (rs1991556 and rs112411928) were
in LD with the SNPs reported in neurological diseases such
as Parkinson disease (PD [MIM: 168600]) [31–33], pro-
gressive supranuclear palsy ([MIM: 601104]) [34], and
corticobasal degeneration [35]. The susceptibility difference
between brain regions including cerebellum found in those
diseases could be related to the difference of the gene reg-
ulation pattern, which might have been detected as the
opposite eQTL effects in this study.

Discussion

The largest eQTL database from the GTEx project provided
an ideal dataset to analyze the opposite eQTL effects
between tissues, resulting in several findings to be noted.
First, the analysis of the diverse tissue pairs revealed that
the genes affected by the opposite eQTL effects (opp-multi-
eQTL-Genes) can be discovered more frequently than
expected from previous eQTL studies (Table 1). Second,
the statistics of the opposite eQTL effects suggested that the
indices relating to the opp-multi-eQTL-Genes and SNPs
(i.e., the proportion of opp-multi-eQTL-Genes in multi-
eQTL-Genes shown in Fig. 2, and the proportion of SNPs
with opposite directional β-values shown in Fig. 3) could be
used as an indicator of the different gene regulation pattern
compared to other tissues in a study. Finally, the enrichment
analysis of the opp-multi-eQTL-SNPs about the distance
from TSS, the epigenetic annotations, and the GWAS-SNPs
showed their possible involvement in altered gene regula-
tion depending on tissue types and association with the
complex traits in GWASs (Fig. 4, Table S4, and Table 2),
which supported the importance of the opposite eQTL
effects as the biologically meaningful annotations of genes
and genetic variants.

In this study, the summary statistics-based analysis
method evaluated the discordance of eQTL effects between
different tissues by comparing the direction of the primary,
or most significant, eQTL signals with the LD relationship
taken into account. Our method might have effectively
worked to remove less meaningful opposite eQTL effects.
As an example in Supplementary Fig. S4, the eQTL effects
on solute carrier family 37 member 1 gene (SLC37A1
[MIM: 608094]) can be considered to be in the opposite
direction between pituitary (PTTARY) and skeletal muscle
(MSCLSK), if the discordance is evaluated by all (including
secondary) eQTL signals or by the primary eQTL signals
without LD calculation. In this case, the top-eQTL-SNPs in
the two tissues (rs4919992 for PTTARY and rs228048 for

MSCLSK) are localized in the different LD blocks (i.e.,
r2 < 0.8). rs228048 was significant only in MSCLSK, while
rs4919992 showed significant eQTL signals in both tissues.
However, rs4919992 apparently composes the secondary
marginal eQTL signals in MSCLSK, which are independent
from the primary eQTL signals tagged by rs228048. This
kind of discordance would be less meaningful to describe
the gene regulation difference between the tissues, com-
pared to the discordance detected between the top-eQTL-
SNPs in LD. Consistently, rs4919992 and rs228048 did not
show the LD relationship with the GWAS-SNPs. The hit rate
of GWAS-SNPs in the opp-multi-eQTL-SNPs was 26.9%
(Table 2), but it significantly dropped to 20.7% when no LD
threshold was set to define the opp-multi-eQTL-SNPs,
which supports that the LD evaluation of the primary
eQTLs in this study was effective for assessing the dis-
cordance of eQTL effects between tissues.

In conclusion, as the tissue-dependent discordant eQTL
effects, the opposite eQTL effects were discovered for the
significant proportion of the eQTL-Genes in the GTEx
database (2,323 out of 31,212; 7.4%). Such opposite
eQTL effects were shown to be associated with the
complex traits in GWASs. Based on these analyses, it
appears that the frequency of the opposite eQTL effects
has been underestimated, and they would be a rather
common phenomenon, which possibly play an important
role in the tissue-specific gene regulation influencing the
development of complex traits. Therefore, the association
with the opposite eQTL effects can be a biologically
meaningful annotation of genes and genetic variants to
further understand the results of GWASs. Although the
GTEx database is currently the largest eQTL database, it
is not yet a complete dataset for all tissues in human, and
the diversity of the populations is also limited. Since this
study was based on the eQTL results analyzed for each
single tissue, meta-analysis of eQTL effects across tissue
types could be useful to discover true opposite eQTL
effects in the multi-tissue dataset [36]. As the future
perspective, incorporating other tissue types such as
immune cells and developing a meta-analysis method
suitable for multi-tissue eQTL studies will be important
for the purpose of revealing the whole image of the
opposite eQTL effects and their contribution to the
genetics of complex traits.

Web resources

GTEx Portal: https://www.gtexportal.org/
GWAS Catalog: https://www.ebi.ac.uk/gwas/
1000 Genomes Project: http://www.internationalgenome.
org/
PLINK 1.9: https://www.cog-genomics.org/plink2
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HaploReg v4.1: https://pubs.broadinstitute.org/mammals/ha
ploreg/haploreg.php
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