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Abstract
Recent studies have reported novel cancer risk associations with incidentally tested genes on cancer risk panels using
clinically ascertained cohorts. Clinically ascertained pedigrees may have unknown ascertainment biases for both patients and
relatives. We used a method to assess gene and variant risk and ascertainment bias based on comparing the number of
observed disease instances in a pedigree given the sex and ages of individuals with those expected given established
population incidence. We assessed the performance characteristics of the method by simulating families with varying genetic
risk and proportion of individuals genotyped. We implemented this method using SEER cancer incidence data to assess
clinical ascertainment bias in a set of 42 pedigrees with clinical testing ordered for either breast/ovarian cancer or colorectal/
endometrial cancer at the University of Washington and negative sequencing results. In addition to expected biases
consistent with the stated testing purpose, there were trends suggesting increased colorectal and endometrial cancer in
pedigrees tested for breast cancer risk and trends suggesting increased breast cancer in families tested for colon cancer risk.
There was no observed selection bias for prostate cancer in this set of families. This analysis illustrates that clinically
ascertained data sets may have subtle biases. In the future, researchers seeking to explore risk associations with clinical data
sets could assess potential ascertainment bias by comparing incidence of disease in families that test negative under given
ordering criteria to expected population disease frequencies. Failure to assess for ascertainment bias increases the risk of
false genetic associations.

Introduction

As clinical sequence information becomes more available, a
more-detailed understanding of genetic risk conferred by
clinically tested genes and individual variants observed will
become more important and more feasible to obtain [1].
Several recent studies have found novel cancer associations
using cohorts of clinically ascertained patients who have
had cancer panel testing [2–8]. In addition, penetrance
estimates have often been obtained from families selected
for having a high disease burden [9–15]. Each of these

situations has potential to lead to biased overestimates of
specific disease risk. When dealing with bias inherent in
proband ascertainment, one can simply omit probands who
were selected for both genotype and phenotype. This leads
to calculating risk from analysis of relatives, who are
typically assumed to be ascertained with less bias. However,
for research studies that ascertain families based on multiple
affected individuals, this assumption is not true. Similarly,
in clinically ascertained pedigrees with specific genotype
findings there may be an unknown ascertainment bias for
both patients and relatives with both disease-specific and
non-specific phenotypes being overrepresented because
ordering providers may justify diagnostic testing based on
either expected or intriguing patterns of familial disease. A
system to compare incidence in ascertained families to
expected population incidence could help identify unex-
pected biases.

Similarly, analysis attempting to classify individual var-
iants in genes with established effects may suffer from
clinical ascertainment bias. Large clinical data sets may be
ideal for defining hypomorphic or low-risk variants, as large
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samples sizes are needed to prove low level risk. However,
in the clinical variant classification scenario, all variants in a
gene are typically assumed to either have a known
“pathogenic” effect or have no effect [16]. Assumed
“pathogenic” variant penetrance may be determined from
variants initially used to map or identify the gene. When
these family data sets are used to generate risk estimates for
genes implicated in hereditary disease risk, all variants
thought to have the same functional effect have typically
been pooled to have a large enough sample to generate risk
estimates with confidence intervals consistent with sig-
nificant risk [17–19]. Comparing clinical risk with estab-
lished risk estimated for variant classification may be
problematic for several reasons if there are differences
between clinical and research sampling criteria. Research
work regarding variant classification may be biased based
on family selection criteria used to discover risk genes and
clinical samples may have different bias based on less-
clearly defined clinical selection. Because of both of these
biases, variants with low-to-moderate risk relative to the
assumed risk profile may never be correctly classified
regardless of the amount of data. On the other hand, benign
variants may be incorrectly classified as “pathogenic” if
ascertainment enriches for specific phenotypes relative to
population risk as ascertained by other studies.

As a way to identify the existence and magnitude of
clinical ascertainment bias, we used ascertained pedigrees to
evaluate cancer risk using cumulative population incidence
of disease, which for cancer is publicly available from the
SEER database (seer.cancer.gov) [20]. Applying these
standardized incidence ratios (SIR), or relative risk over
SEER, to pedigrees can detect potential ascertainment bias
by using a control data set of patients/participant pedigrees
with negative panel results from the same cohort where case
testing was performed. Although we focus on identifying
ascertainment bias, in a cohort without ascertainment bias,
the method might also be used to assess a priori variant
affect without prior knowledge of penetrance by providing
an estimate of the SIR. When used for variant classification,
this method is conceptually similar in some ways to the
family history weighting algorithm presented by Pruss and
colleagues [21, 22]. A major difference is that the pedigree
SIR approach does not rely on matching large numbers of
case and control pedigrees, as hypothetical “SEER” control
pedigrees are created using the same family structure as
actual case pedigrees. This approach may be simpler than
the family history weighting algorithm and will certainly be
easier for others to implement, as we have made all our code
publicly available.

To illustrate the need to assess ascertainment bias in
clinical samples and to demonstrate the performance char-
acteristics of the pedigree SIR method, we simulated
families with varying risks and varying number of

individuals genotyped, and use the method to classify them.
We also assessed clinically ascertained families from her-
editary cancer risk testing at the University of Washington
and show clinical ascertainment is likely to have unexpected
bias that may explain published associations from genetic
risk analysis in clinical data sets [2–5].

Methods

Overview

Given a set of probands carrying a particular variant and
their associated pedigree, we can determine variant effect in
relation to cancer by comparing the number of relevant
cancers to the theoretical distribution of cancers assuming
the pedigrees follow SEER incidence rates. Define X as the
number of individuals with the desired phenotype, in this
case a specific type of cancer. The probability that an
individual has cancer assuming a benign variant would be a
Bernoulli random variable with probability, p, equal to the
SEER probability that the specific individual has cancer
based on their sex and age. This single person distribution
would have the following mean and variance.

μ ¼ p

σ2 ¼ p 1� pð Þ

When more individuals are included into the analysis,
and an independence assumption is added, this distribution
changes into a Poisson binomial distribution with mean and
variance listed below.

μ ¼
X

i

pi

σ2 ¼
X

i

pið1� piÞ

Here pi represents the probability that person i has cancer
given their sex and age. By comparing the observed number
of affected individuals in a test group (e.g., clinically
ascertained families with negative results or specific variant
carriers), X, to the Poisson binomial distribution with mean
and variance assumed to follow SEER incidence, we can
determine the probability that X came from that distribution.
If it is different than expected, or has a small p-value, then
the test group is unlikely to come from the same population
as the population defined in the incidence curves (e.g.,
There is ascertainment bias or the variant of uncertain sig-
nificance (VUS) has an effect on the phenotype). To per-
form this comparison, we rely on the R package “poibin”,
which generates the Poisson binomial distribution [23].
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Alternatively, we can classify a variant by estimating its
standard incidence ratios, or similarly relative risk over
SEER. A standard incidence ratio greater than one would
mean that the variant affects function. Standard incidence
ratio is defined as the observed rate of a particular disease to
the age adjusted expected rate in the general population. For
the Poisson binomial model this becomes

α ¼ XP
i pi

:

Here, α is our estimate of the SIR, X is the observed
number of cancers, and pi is the individual’s probability of
getting cancer based on SEER data. Furthermore, the con-
fidence interval for α can be found by determining the
values of α which do not yield significant probabilities,
when comparing X to the Poisson binomial with αp in place
of each success probability, for the given level of con-
fidence. In other words, the confidence interval would be
the values of α that the data does not reject at the given
confidence level. Note that a variant which affects function
according to the first method will have a SIR with con-
fidence interval greater than 1 in the second as the two
methods are related.

SEER incidence

SEER incidence values were taken from seer.cancer.gov
[20]. As these were given in 5-year increments, we obtained
intermediate, yearly, values using a linear interpolation of
the adjacent points. These were done assuming the values
given in the table were for the right end points of each
interval with the right end point of “85+” set to 120. Bias
estimates for different cancers and sites were calculated
separately.

Probability of having cancer by sex and age

The probability, p, of having cancer is based on age, sex,
and affection status. For an unaffected person, p is equal to
the probability that the individual did not get cancer for
their sex up to their current age or age at death. For an
affected person, p is equal to the product of the probability
that the individual did not get cancer for their sex up to the
age they became affected. In other words, if k is the indi-
vidual’s current age, age at death, or age of affection (if
affected and Ri is the gender specific yearly incidence rates
from SEER for the individual, then p ¼ 1�Qk

i¼1 ð1� RiÞ.

Weighting individuals by probability of having a
genotype for variant classification

In the case of variant classification, in which many indivi-
duals will have unknown genotypes, it would be

advantageous to count only individuals with the variant or
with some chance of having the variant. This can be done
by weighting individuals based on the probability they have
the variant given individuals with known variant status and
familial relationships. In this case we would first find all
obligate carriers and then find the probability that the
individuals with unknown genotypes have the variant and
weight them accordingly. An R script to calculate these
weights is included in the Supplementary File.

Evaluating potential bias

To determine if a data set may be biased we can use the
method above to compare the number of cancers ascertained
in “negative” families to the number theoretically expected
in these families, assuming they follow the SEER dis-
tributions. Appropriate negative families are those that have
the same enrollment criteria and genetic testing performed
as case samples that will be used for a proposed analysis,
but that have no genetic cause of cancer identified. Sig-
nificant enrichment in the number of cancers in the data set
of control families would indicate ascertainment bias.

Simulations

Using the CoSeg R package, we simulated pedigrees using
published United States of America demographics. These
demographics included age at marriage, age at death, and
number of offspring surviving to adulthood for males and
females during each decade since 1900. Our goal was to
generate pedigrees that would be similar in size and shape
to those of individuals receiving genetic testing for her-
editary breast, ovarian, or colon cancer at the clinic. In brief,
we began with a seeded age that is sampled from a skewed
normal distribution derived from the age distribution of
individuals receiving hereditary cancer testing at the Uni-
versity of Washington [24], extended up three generations
to create a founder with the variant in question and then
expanded the pedigree down with each descendant having
0.5 probability of inheriting the variant of interest from a
parent with the variant. We used published population
demographic measures for average marriage age, number of
offspring living to adulthood, and mortality [25, 26]. Phe-
notypes were sampled based on age and genotype status
using the published MLH1 penetrance [27, 28] and
various SIR’s.

We simulated 1000 sets of three-generation families
ranging in size from 1 to 15 with relative risk (RR) of 1, 5,
10, and 15 times the SEER incidence and calculated the
probability we would see a greater number of cancers
than seen in each set using the CoSeg R program [29, 30].
To give some perspective, we also compared these
with families simulated with literature-reported MLH1
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penetrance [27, 28]. Next, we simulated 1000 sets of five
families of varying RR and varied the proportion of rela-
tives with known genotype from 100 to 0% (the proband
always had known genotype, of course). We again calcu-
lated the probability we would see the number of cancers
seen given that we were sampling from the SEER values
and plotted them as box and whisker plots. To demonstrate
the effect of ascertainment bias, we simulated sets of five
families of varying RR and selected 1000 that had more
than one affected individual. We again calculated the
probability we would see the number of cancers given the
SEER distribution and plotted the results.

Clinical sample

The BROCA panel is a pan-cancer risk panel that is opti-
mized for individuals with hereditary breast and ovarian
cancer. We evaluated 21 sequential families with BROCA
panel and billing codes indicating ordering for breast and
ovarian cancer evaluation. The ColoSeq panel is a similar
panel designed for evaluating colorectal cancer risk. We
evaluated an additional 21 sequential families had ColoSeq
panel testing or pan-cancer panel testing where billing codes
indicated ordering for colorectal cancer risk. For all families
selected in both groups the results of clinical testing were
negative (no cancer risk variants or VUS identified in any
tested gene). These pedigrees were coded and deidentified
for subsequent analysis. Without any pre-existing estimates
of potential bias, we coded an arbitrary number, 21, in each
group for our initial analysis. None of these families had
identified hereditary cancer risk variants. Testing was
referred from patients across the country, with a pre-
ponderance of orders coming from Washington State. The
study was approved by the University of Washington IRB
(#00005392).

For cancers not predicted to be part of clinically expected
risk profiles, observed cancers should follow the SEER
distribution, if there is no bias present. Using the pedigree
structure and reported or estimated ages of individuals in
these families, we ran 100,000 simulations to generate
expected cancer count for breast, colorectal, endometrial,
ovarian, pancreatic, and prostate cancer using published
SEER age-specific cancer incidence [20]. We excluded
probands from actual and expected cancer counts so that
data would illustrate bias in relative selection, rather than
bias in proband selection. We then created a histogram of
the expected cancer count values and compared them to the
actual number of cancers seen in the families.

Software availability and timing

All code used for this manuscript is publicly available as a
supplementary R file to be used with the freely available R

program. Each analysis takes less than a minute to run
using 100,000 simulations to create an expected SEER
distribution.

Results

Simulated sample performance characteristics:
variant effect without ascertainment bias

To demonstrate the performance characteristics of the
method in the absence of bias, we used 1000 sets of
simulated 3-generation pedigrees with variants which affect
function that conferred 1, 5, 10, and 15 times the SEER
incidence of colorectal cancer. For these plots, we assumed
a 30% genotyping rate apart from the proband and weighted
individuals based on the probability they carry the variant.
With a single family, it is unlikely that a correct classifi-
cation will be made for any relative risk regardless of
ascertainment bias. At seven families, we are able to cor-
rectly classify more than half of the relative risk 15 sets and
the MLH1 sets. At 13 families, we are able to correctly
classify more than half of the relative risk 10 sets as well.
Furthermore, only five families were incorrectly classified
as having an effect on risk when using families simulated
with relative risk 1, sets across all family sizes (8000
families total). Figure 1 shows a box and whisker plot of
these results.

We further explored the performance characteristics of
this method. To deal with incomplete genotyping, we
experimented with weighting ungenotyped individuals
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based on the probability that they have the variant.
Appendix Fig. 1 shows the results of unweighted, weighted,
and inverse-weighted (gives weight based on the probability
individuals do not have the variant) analysis for several
relative risks including MLH1. The number of individuals
genotyped in a pedigree can vary, depending on study
design. Having fully genotyped pedigrees naturally pro-
vides the most correct classifications, though classification
can still be made with proband-only genotypes, which is the
scenario that is most common for clinically ascertained
pedigrees. Increasing the number of genotyped individuals
provides non-linear increases in information as family
structure often allows imputation of genotype status of
ungenotyped individuals. Figure 2 shows the boxplots
obtained from varying the percent of genotyped individuals
in the pedigrees.

Simulated sample performance characteristics:
detecting ascertainment bias

To evaluate the power of this method to demonstrate bias,
we simulated pedigrees across a range of relative risks and
selected only those with at least two affected individuals for
analysis. We analyzed the data set and show that for known
benign data sets the pedigree SIR approach is able to detect
bias. Figure 3 shows the result for benign, relative risk 1,
variants along with other relative risks. Pedigrees with no
risk and biased ascertainment appeared like pedigrees with
relative risk of 5. For variants causing increased risk,
including bias leads to a p-value for variant effect that
would be expected with a higher actual risk. Pedigrees
simulated with 5-fold risk and ascertainment bias appeared
to have greater risk than pedigrees with 10-fold risk and no
ascertainment bias (Fig. 3).

Detecting ascertainment bias in a clinical sample

To assess whether we could use clinically ascertained
families to determine cancer risk associated with specific
variants, we analyzed 42 pedigrees from the University of
Washington. Half of these pedigrees (21) were sent in with
clinical orders suggesting either breast/ovarian and the other
half (21) with orders for colorectal/endometrial cancer risk
sequencing. No patient or relative in the pedigrees was
found to have variants that affect function or VUS in any
gene tested. The probability that these pedigrees are
unbiased for each cancer type is shown in Fig. 4.

The set of pedigrees where breast/ovarian cancer risk was
interrogated was significantly biased (P < 0.01) for breast,
ovarian, and pancreatic cancer, as expected. Unexpectedly,
these families also had trends suggesting selection for col-
orectal and endometrial cancer in relatives. There was no
observed bias for prostate cancer in this small set of
families. Had these sets not been biased, estimates of the
relative risk would be 4.25, 9.30, 3.91, 1.88, and 2.61 for
breast, ovarian, pancreatic, colorectal, and endometrial
cancer, respectively (Appendix Table 1).

The set of pedigrees with clinically ascertained for col-
orectal/endometrial cancer risk was significantly biased (P <
0.01) for colorectal and endometrial cancer, as expected.
There was a trend for bias towards breast cancer with no
apparent bias for ovarian and prostate cancer in pedigrees.
Had these sets not been biased, estimates of the relative risk
would be 2.47, 4.55, and 1.55 for colorectal, endometrial,
and breast cancer, respectively (Appendix Table 1).
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Discussion

Clinical pedigrees are increasingly used for variant classi-
fication, genetic association, and penetrance estimates, but
these may be biased owing to a higher likelihood of families
enriched for expected and unexpected phenotypes being
sent to the clinic [2–5]. We developed a relatively simple
method to assess this potential bias. Even a small number of
pedigrees showed trends suggesting unexpected bias pat-
terns for pedigrees from clinical testing performed by the
University of Washington Department of Laboratory Med-
icine. In addition to the bias expected based on stated
rationale for test orders, these small groups of pedigrees
showed trends towards enrichment for specific unrelated
phenotypes, with colorectal and endometrial cancer poten-
tially being overrepresented in families being tested for
breast cancer risk and breast cancer potentially being
overrepresented in families being tested for colorectal can-
cer risk. Neither group showed enrichment for prostate
cancer, indicating that assessments of prostate cancer risk in
patients found to have positive genetic findings during this
period are less likely to be biased. However, ordering pat-
terns may change in the future after as a result of manu-
scripts showing variants in BRCA2, which affects function
in patients with metastatic prostate cancer [31]. The exact
values for the amount of clinical ascertainment bias pre-
sented here should not be interpreted as definitive or gen-
eralizable. Bias in different samples may be different, so
studies of genetic effect should conduct independent eva-
luations of sample-specific bias.

We evaluated clinically ascertained families seeking to
evaluate novel associations of other clinical laboratories and

potentially using clinical pedigrees for individual variant
assessment. With only a small set of pedigrees we observed
a high probability for false positives, which diminished our
initial enthusiasm for using clinically ascertained pedigrees
to assess novel associations. It was intriguing to us that the
level of ascertainment bias observed in clinically ascer-
tained samples sent to the University of Washington might
explain recently reported associations of known colorectal
cancer risk genes MSH6 and PMS2 with breast cancer
[2, 4]. The observed bias is not surprising given national
guidelines for medical professionals about appropriate her-
editary cancer risk ordering [32]. The question of ascer-
tainment bias depends on what population the inference is
to be made. We assumed that risk relative to the general
population is ideal. Risk estimates using clinical samples
may produce correct comparisons with clinically ascer-
tained “controls”, even if they are not ideal estimates of risk
relative to the general population. If risk relative to the
general population is measured, larger studies that look for
low levels of risk will need larger control samples to check
for subtle sources of ascertainment bias.

In the absence of bias, using SEER data to estimate the
expected number of cancers in a family might help classify
variants of uncertain significance over a range of relative
risk factors, known genotypes, and number of families
without any prior estimates of penetrance. This method for
variant assessment may have some distinct benefits over
traditional methods. We developed this method to not rely
on previous estimates of penetrance, so it would be capable
of identifying variants that are less penetrant than those
identified in published literature. In addition, it incorporates
data from the entire pedigree. (Avoiding the proband, who
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is known to be ascertained for both phenotype and geno-
type, is already generally done.) The last feature, which has
turned out to be critically important in pre-study data
assessment, is that comparison of baseline pedigrees with
SEER incidence can highlight ascertainment bias. This bias
may be seen in research ascertainment for cohorts used to
define pathogenicity as well as clinical cohorts used to
classify VUS or identify new genotype–phenotype
correlations.

This method has two major assumptions. The first
assumption is that the underlying disease risk in the popu-
lation studied is well-defined (e.g., SEER incidence). The
second is that the individuals in the data set are indepen-
dent. With different assumptions more complex segregation
analysis using software, such as MENDEL, could be used
similarly with variant “negative” families to assess ascertain
bias. There are several limitations to this method. In
populations with different levels of underlying risk, this
method will generate skewed results. This could be cor-
rected by using population-based incidence estimates
instead of the general population estimates, if these are
known. Although we have been able to show there is likely
to be bias in one clinically ascertained data set, we have not
shown how to account or correct for it. Being able to
account for that bias might allow one to use and combine
variant data from a variety of ascertainment strategies.
Furthermore, the independence assumption is likely not
completely correct as individuals within families are cor-
related with each other. However, as many families are
needed for the analysis, the independence of families is
likely to outweigh the dependence within them, especially
with larger samples of families. Another minor limitation is
that for variant classification, whereas we have shown that
weighting counts by probability of having the variant gives
higher power (See Appendix Fig. 1), this leads to compar-
ing fractions to the discrete valued Poisson binomial dis-
tribution. We have taken a conservative approach to this
issue by rounding down, as there are clear gains in power by
incorporating genotype probability information from unge-
notyped individuals. It is worth noting that this method is
conceptually similar to the logistic regression approach by
Easton et al. [33].

Although convenient, clinically ascertained data sets may
have subtle biases. In the future, researchers seeking to
explore risk associations with clinical data sets should
perform more thorough evaluations of ascertainment bias in
their samples. The process of evaluating families that test
negative in parallel with those that test positive with the
same ordering criteria is simple and could be an important
standard for association studies that rely on clinical ascer-
tainment. Comparisons of clinical cases with population
controls from public databases that are ascertained using
very different criteria will lead to many false positives

without this or a similar check for ascertainment bias.
Although we have shown how one may effectively ascertain
clinical ascertainment bias relative to general population
risk, we are not aware of a method to correct for false
associations that may occur due to this bias. Appropriately
correcting for biased ascertainment will be an important
topic for future statistical genetics work.
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