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Abstract
Selection and prioritization of phenotype-centric variants remains a challenging part of variant analysis and interpretation in
clinical exome sequencing. Phenotype-driven shortlisting of patient-specific gene lists can avoid missed diagnosis. Here, we
analyzed the relevance of using primary Human Phenotype Ontology identifiers (HPO IDs) in prioritizing Mendelian disease
genes across 30 in-house, 10 previously reported, and 10 recently published cases using three popular web-based gene
prioritization tools (OMIMExplorer, VarElect & Phenolyzer). We assessed partial HPO-based gene prioritization using
randomly chosen and top 10%, 30%, and 50% HPO IDs based on information content and found high variance within rank
ratios across the former vs the latter. This signified that randomly selected less-specific HPO IDs for a given disease
phenotype performed poorly by ranking probe gene farther away from the top rank. In contrast, the use of top 10%, 30%,
and 50% HPO IDs individually could rank the probe gene among the top 1% in the ranked list of genes that was equivalent
to the results when the full list of HPO IDs were used. Hence, we conclude that use of just the top 10% of HPO IDs chosen
based on information content is sufficient for ranking the probe gene at top position. Our findings provide practical guidance
for utilizing structured phenotype semantics and web-based gene-ranking tools to aid in identifying known as well unknown
candidate gene associations in Mendelian disorders.

Introduction

Whole-exome sequencing has resolved “diagnostic odys-
seys” for many patients [1, 2] and has changed the course of
disease management in some cases [3, 4]. With clinical
whole-exome sequencing being increasingly adopted as a
diagnostic and discovery tool for rare Mendelian disorders,
there still exists a gap in the computational tools bridging
variant analysis with clinical phenotyping to resolve cause
of the disease [5, 6]. Despite improvements in next-
generation sequencing and bioinformatics-based computa-
tional platforms, current diagnostic rate in identifying

genetic basis of disease in rare disorders has remained
between 25 and 40% [7–9]. This has partially been attrib-
uted to genetic heterogeneity and overlapping clinical fea-
tures across specific disease types, making clinical
diagnosis extremely challenging in certain cases [10]. It has
well been recognized that identification of exact causal
mutation is important for providing definitive molecular
diagnosis in genetic disorders in supporting clinical man-
agement of patients [11–13]. Variant analysis of next-
generation sequencing data is a laborious task, involving
filtration of thousands of variants based on sequencing
metrics, allele frequency, predicted functional impact,
conservation scores followed by gene, and phenotype-based
variant prioritization [6, 14]. As full experimental and
clinical validation of the massive volume of candidate genes
retrieved from such platforms is impracticable, there is
continuing need for tools that can prioritize a short-list of
genes that are more likely to be causal. In addition, gene-
based interpretation becomes crucial to avoid missing out
valuable information as a gene may have novel undocu-
mented variants not previously associated with any known
disease or phenotype [15]. Hence, gene prioritization has an
important role in diagnosis using exome sequencing
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platforms. Recent studies have emphasized the importance
of deep phenotyping [16] in increasing the diagnostic cap-
ability of clinical exome sequencing [17–19]. As compared
with an agnostic approach, the onus of finding a true causal
variant lies in efficient phenotype based gene prioritization,
which substantially reduces the number of candidates to
review. Human Phenotype Ontology (HPO) [20] is one of
the most widely used platform for standardized vocabulary
of phenotypic descriptions of human disorders in addition to
other similar platforms—Medical Subject Headings
(MeSH) [21], Unified Medical Language System (UMLS)
[22], and SNOMED CT [23]. As of November 2018, HPO
comprised of ~ 13,000 descriptive phenotype terms and
over 156,000 annotations to hereditary diseases [24]. A
recent publication showed that the use of HPO terms could
be potentially advantageous over MeSH terms and UMLS
concepts in automated text-mining approaches [25].
Semantic similarity of HPO terms to known diseases when
used in conjunction with variant prioritization has been
shown to improve diagnosis [18, 19], particularly for
patients with atypical clinical profiles [17]. Recently, it was
also reported that use of specific and large number of
relevant HPO terms proved to be beneficial for phenotype
based gene-ranking algorithm [19]. With the large number
of commercial as well as freely accessible gene prioritiza-
tion tools available to facilitate this process, the choice of
tools still remains ambigous [6, 26–28].

In this context, we sought to assess the utility of full-
versus-partial repertoire of patient-specific primary HPO
identifiers (HPO ID) in gene prioritization of a varied cohort
of Mendelian disorders. Specificity of a given phenotype is
defined by how closely associated it was with the causal
disease. HPO database contains phenotype terms arranged
in a hierarchical manner such that a general phenotype term
is sub-divided into specific phenotype terms and each of
these terms are described by multiple synonyms. Hence,
each specific and general phenotype terms has a specific
HPO ID to bypass ambiguity caused by free text descrip-
tions or synonyms. We used these HPO IDs along with the
gene-ranking feature of three recently released web-based
gene prioritization tools- VarElect [15], Phenolyzer [29],
and OMIMExplorer [30], which utilize HPO identifiers as
semantics for gene-ranking, on a total of 50 cases.

Materials and methods

Data set generation and HPO standardization

A total of 50 cases with pre-identified causal genes and their
associated HPO IDs were used as queries for gene prior-
itization. Of these cases, 10 were described previously
[15, 31, 32] and termed “Known Training set”; another 10

were recently described having novel disease–gene asso-
ciations [33–38] and referred as “Novel Training set”. At
last, 30 cases were derived from in-house exome analysis of
neuromuscular disorder cases and termed “In-house”. The
novel training set was compiled based on studies published
between 25 April and 25 July 2017 and the prioritization
analysis exercise in this study was conducted in the week of
25 July 2017. Each clinician provided patient phenotype
was translated into primary HPO IDs by entering each
description into the HPO browser (http://human-phenotype-
ontology.github.io/2016/02/05/browser.html) and retrieving
the best fit match. As, clinical symptoms are documented in
HPO browser by superclass, primary ID, alternative ID,
subclass, and in some cases multiple synonyms of the
description, we restricted our selection to primary HPO IDs
only, to evade non-recognition or poor specificity of the
term for a given disease–gene prioritization exercise. A
detailed list of all cases with respective phenotype
descriptions, HPO IDs, and disease–gene associations is
given in Supplementary Table 1.

Gene prioritization

In all the 50 cases, the disease causing gene had already
been resolved and was termed probe gene. The genes
obtained from respective exome sequencing accompanied
each probe gene and together, this list was referred to as the
candidate gene list (Supplementary Table 2). Three web-
based gene prioritization tools—VarElect, OMIMExplorer,
and Phenolyzer—were used for ranking the candidate genes
of all the cases by simultaneously utilizing patient specific
HPO IDs. These tools ranked the input genes based on
gene–phenotype associations retrieved from tool specific
databases. An overview of the gene prioritization workflow
is given in Fig. 1.

Fig. 1 Gene prioritization workflow
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Evaluation criteria of gene prioritization analysis

For conducting partial HPO ID-based analysis, 10%, 30%,
and 50% of the original HPO ID list were randomly picked
using random selection function in excel. Only 26 cases
could be assessed for this analysis, which was a modified
application of leave one out cross validation (LOOCV) [28],
owing to the limitation of choosing at least one HPO ID for
the lowest cutoff (10% HPO IDs). Partial phenotype term-
based assessment has been previously carried out using up
to 40 maximum HPO terms via computational simulations
[17–19], whereas all our analysis were based on real patient
data. We used this approach of HPO ID selection to bring in
uniformity in HPO ID fractions as not all cases had same
number of HPO IDs. In addition, we also analyzed these
cases using single specific and top 10%, 30%, and 50%
HPO IDs based on information content as defined pre-
viously [19]. All HPO IDs describing the cases were eval-
uated for number of genes that they annotate and were
ordered in decreasing order of information content from
which top 10%, 30%, and 50% HPO IDs were chosen
(Supplementary Table 3). To conduct a more robust com-
parison, we calculated the performance measures by deter-
mining the true positive and false-positive rate in a subset of
ranked gene list [26]. We used four commonly used
thresholds [25, 26, 39] of top 5%, 10%, 30%, and 50% of
the respective ranked gene lists per query and the true-
positive rate (TPR) was calculated for each threshold. TPR
[26] was defined as the fraction of true disease genes ranked
in the Top 5%, 10%, 30%, and 50% genes among all the
cases by each tool and vice versa. In addition, we deter-
mined how well the true positives were ranked in the output
list by estimating Median Rank Ratio (MedRR) and Nor-
malized Discounted Gain (NDCG) [39]. MedRR was the
median of all rank ratios obtained for each probe gene
across all disease–gene prioritizations per tool. The lower
the value of MedRR, the higher was the performance of the
tool. NDCG penalized the true positives occurring later in
the ranked list and showed the importance of a probe gene
being detected as higher up in the ranked list. All evaluation
criteria used in this study are described in detail in Sup-
plementary Methods.

Results

Gene prioritization using full and partial HPO IDs

In order to assess the impact of using all HPO IDs on gene
prioritization, partial HPO IDs in ranking each probe gene,
we conducted a threefold validation based on randomized
selection of 10%, 30%, and 50% of the HPO IDs for each
disease–gene prioritization (Table 1, Supplementary Table 2

and 4). We further randomized each subset (10%, 30%, and
50%) for a total of four times and calculated the MedRR
across 26 cases (Supplementary Table 5). This comparison
enabled the assessment of the phenotype dependency of
each tool with respect to both quantity and specificity of
HPO ID chosen for prioritization. The probe gene was
ranked poorly in all 26 cases when 10%, and 30% HPO ID
list was used across all three tools, which was directly
linked to the type and number of HPO IDs that
were involved in the gene prioritization (Fig. 2, Table 1).
Figure 3 shows the distribution of MedRR across the entire
cohort of 26 cases. Significant positive correlation was
observed between probe gene-ranking ability across 26
cases for 50% HPO IDs vs 30% HPO IDs (Pearson’s cor-
relation coefficient= 0.88, p value= 2.8 × 10−9) and 50%
HPO IDs vs 10% HPO IDs (Pearson’s correlation coeffi-
cient= 0.46, p value= 0.017). At last, Phenolyzer and
VarElect correlated significantly for all LOOCV’s (p value
= 0.0326, 10% HPO; 0.0193, 30% HPO; 0.0002, 50%
HPO; and 1.1 × 10−5, 100% HPO).

Performance of gene prioritization tools

To assess the impact of using partial gene list in gene
prioritization, we utilized three tools across top 5%, 10%,
30%, 50%, and 100% of the ranked gene list across 50
disease–gene associations, which comprised of in-house,
known and novel disease–gene associations (Table 2,
Supplementary Table 6). VarElect and OMIMExplorer
performed well in identifying the probe gene as the number
one candidate gene for in-house cohort in > 40% of the
cases (Fig. 4a). In addition, VarElect had the lowest MedRR
(0.23), followed by OMIMExplorer (1.2) (Supplementary

Table 1 Performance measures of three HPO-based gene prioritization
tools when partial HPO ID’s were used

Tool Evaluation criteria 10%
HPOI-
D’s

30%
HPOI-
D’s

50%
HPOI-
D’s

All
HPOI-
D’s

Omimexplorer TPR (%) 84.62 84.62 84.62 84.62

MedRR (%) 2.65 1.67 1.06 1.06

Median NDCG 0.97 0.97 0.98 0.98

Phenolyzer TPR (%) 96.15 96.15 100 100

MedRR (%) 10.03 3.78 1.18 3.17

Median NDCG 0.98 0.99 0.99 0.99

Varelect TPR (%) 100 100 100 100

MedRR (%) 0.55 0.31 0.19 0.22

Median NDCG 0.99 0.99 0.99 0.99

The best performance measures per evaluation criteria across the 10%,
30%, 50, and 100% HPO ID’s used are given in bold italics for each
tool NDCG-normalized discounted cumulative gain of the probe gene
ranks, TPR-true positive rate, MedRR-median rank ratio. This Table
represents analysis for 26 cases only

Specific phenotype semantics facilitate gene prioritization in clinical exome sequencing 1391



Table 7a). Highest TPR were observed for gene-disease
associations in the in-house data set across all three tools
when compared with known or novel data set (Supple-
mentary Table 7a). For the known as well as novel data set,
VarElect could rank the given probe genes better than the
other tools across top 5%, 10%, 30%, and 50% of the gene
lists with highest NDCG and lowest MedRR values for the
same (Supplementary Table 7b and 7c, Supplementary
Fig. 2). When assessing disease inheritance pattern of
candidate gene, the best performance measures were
obtained for disease with X-linked inheritance, which could
be attributed to all but one case being associated with DMD
probe gene, hence bringing uniformity to the disease

phenotype associations (Supplementary Fig. 2, Supple-
mentary Table 8d, Table 3). Genes with autosomal recessive
and unknown inheritance were grouped together and Var-
Elect outperformed the rest two tools across all analyzed
performance measures with 100% TPR, lowest MedRR
(range from 4.8 to 10.2) and highest NDCG (range from
0.99 to 0.89) (Supplementary Fig. 2, Supplementary
Table 8b). We further divided our cohort of 50 cases into
those associated with single or multiple (heterogeneous)
disorders with autosomal inheritance (Supplementary
Fig. 2, Supplementary Table 9). VarElect performed best
for the genes related to multiple disorders (TPR: 100–75%,
MedRR: 0.32–4.5, Median NDCG: 0.99–0.91) across all
LOOCV’s of 100%, 50%, 30%, and 10% gene list (Sup-
plementary Table 9b). OMIMExplorer returned the best
receiver-operating characteristics curve overall with area
under the curve= 0.823 and sensitivity= 85.4%. Table 4
summarizes the area under the curve values over 10% and
1% false-positive threshold for all gene prioritization tools
when all HPO IDs were used.

Discussion

Candidate gene identification is more challenging for
Mendelian disorders with genetic heterogeneity than for
those that are associated with unique and well-characterized
list of associated phenotype terms. In the former, gene
prioritization and variant analysis is compounded by com-
plexities whereby one gene may be associated with multiple
disorders or multiple genes may be associated with similar
or overlapping phenotypes, leading to multiple molecular
diagnosis [10, 40].

Fig. 3 Median rank ratio distribution using partial HPO terms across
three gene prioritization tools. The median rank ratio values obtained
across all partial HPO-based analysis (10% HPO, 30% HPO, 50%
HPO, and full list of HPO) are depicted for each of the three tools
studied. The values have been normalized (by 100) for graphical
representation

Fig. 2 Distribution of probe
gene rank positions across 26
partial HPO-based queries. Four
HPO-based gene query groups
(10% HPO, 30% HPO, 50%
HPO, and full list of HPO) and
their subsequent gene rank
positions are summarized for
three tools- VarElect,
Phenolyzer, and
OMIMExplorer. The frequency
of probe gene being identified as
Rank 1, Rank 2–10, Rank
11–20, Rank 21–100 and >
Rank 100 are represented across
overall, In-house, known, and
novel cohorts
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The primary aim of our study was to investigate the
relevance of specific HPO ID-based semantics rather than
mere quantitative reliance of using large inputs of HPO IDs
for effective gene prioritization in genetically heterogeneous
Mendelian disorders. The rate of diagnostic success has
been reported to be lower in cases with less-specific phe-
notypes [41]. Recent studies have emphasized the use
of relevant HPO-descriptive terms in gene prioritization
[17–19, 42]. These studies reported efficient disease–gene
prioritization when using all HPO terms describing the

phenotype as opposed to when incomplete (1–5, 6–10 terms
etc.), imprecise (more general HPO term included), or noisy
(unrelated terms) HPO terms were used [17–19]. In our
study, we followed modified approach of random partial
HPO ID selection [18] to simulate a real life scenario of
having partial or incomplete phenotypes available for each
case, from the clinic. We further randomized the selection
of HPO IDs four times per case and observed that the trend
observed in Fig. 3 was normalized and best MedRR values
were inclined toward 100% HPO IDs followed by 50%,

Table 2 Overall performance
measures of four gene
prioritization tools across
50 cases

Tool Evaluation criteria Top 5% Top 10% Top 30% Top 50% Total gene list

VarElect TPR (%) 76 78 86 88 100

MedRR (%) 4.17 2.16 0.77 0.46 0.23

Median NDCG 0.92 0.95 0.98 0.98 0.99

OMIMExplorer TPR (%) 76 76 86 86 86

MedRR (%) 22.01 11.01 4.02 2.41 1.2

Median NDCG 0.82 0.88 0.94 0.96 0.98

Phenolyzer TPR (%) 60 64 78 84 96

MedRR (%) 7.53 3.9 2.59 2.69 1.72

Median NDCG 0.88 0.92 0.96 0.98 0.99

NDCG-normalized discounted cumulative gain of the probe gene ranks, TPR-true positive rate, MedRR-
median rank ratio. Above performance measures are a summary of all 50 cases used in this study across top
5%, Top 10%, Top 30%, and Top 50% of the prioritized list of genes. All (100%) HPO ID’s per case were
used for all the above gene prioritization analysis

Fig. 4 Distribution of probe gene rank positions across 50 cases by
disease cohort. The frequency of probe gene being identified as Rank
1, Rank 2–10, Rank 11–20, Rank 21–100, and > Rank 100 are

represented across overall, In-house, known, and novel cohorts for
three tools- OMIMExplorer, Phenolyzer, and VarElect
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30%, and 10% HPO IDs for VarElect and Phenolyzer tools
(Supplementary Fig. 3). This result could be correlated to
imperfect HPO IDs as reported previously [17–19]. In
addition, randomly chosen 10% HPO IDs subset had
highest variance followed by 30% HPO IDs and 50% HPO
IDs for Phenolyzer, while 30% HPO IDs had highest var-
iance followed by 10% HPO IDs and 50% HPO IDs for
VarElect (Supplementary Table 10). This highlights the
probability of choosing a less-specific phenotype term,
which ranks a given probe gene away from the top position,
resulting in higher variability in probe gene ranks. We
observed that the analysis utilizing single-specific HPO ID
with maximum information content yielded favorable probe
gene ranks (Supplementary Table 11). In addition, in cases
with well-characterized disorders, top 10% HPO IDs ranked
the probe gene equally well as that when all HPO IDs were
used (Supplementary Fig 3a, Supplementary Table 12). The
novel disease–gene associations could not be ranked well,
which highlights the dependency of tool on underlying

gene-search algorithm and known databases. OMIMEx-
plorer could not be used for information content-based gene
prioritization and multiple randomization as it was taken
offline owing to hardware issues at the time of these ana-
lyses and hence, we substituted this tool with commonly
used semantic similarity based tool—Phenomizer and a
recently introduced machine learning based tool—Amelie
[43]. At last, we carried out a deeper case study of 15 cases
with DMD probe gene, whereby each case was described by
a different set of HPO IDs based on original clinical
symptoms provided by the clinician (Supplementary
Table 13). HPO database has annotated Duchenne muscular
dystrophy with 23 HPO IDs and Becker muscular dystro-
phy with 15 HPO IDs. In 46.7% (7/15) of cases for which ≥
10 specific HPO IDs were used to describe patient pheno-
type, DMD gene was ranked as number one candidate by all
tools. However, when ≤ 4 HPO IDs were used to describe
other DMD-related queries, the gene could be ranked as top
candidate more frequently by VarElect as compared to the
rest of the two tools (Supplementary Table 13). This could
be attributed to the use of more generic HPO IDs such as
HP:0003236—elevated serum creatine phosphokinase and
HP:0003560—muscular dystrophy in latter, whereas former
had more disease-specific HPO IDs provided in the list. For
cases 13, 14, and 15, the HPO ID for muscular dystrophy—
HP:0003560 was used for prioritization which in turn is
annotated with 76 genes in HPO and is one of the HPO IDs
described for Becker muscular dystrophy. Poor ranking of
DMD gene in these cases could be correlated with lower
information content of the HPO ID used. For Case 27,
Phenolyzer ranked the gene poorly as compared with its
counterparts at 10%, 30%, and 50% HPO IDs. This could
be owing to underlying variability in gene score generation
by each tool. In addition, when we used single specific HPO
ID with highest information content–HP:0008981 (Calf
muscle hypertrophy with 38 annotated genes in HPO),
DMD could be ranked as top candidate gene. Hence, these
results suggest, whereas specific phenotyping is key in

Table 3 Median rank ratios of probe genes across four tools

Mode ofinheritance Genes VarElect OMIMExplorer Phenolyzer

AR/unknown ATXN1L*, THAP11*, AP4B1, GLDN, POC1A, RNASEH2A, SGCB, SPTBN4,
SUOX, DYSF, SMN1, CEP290#, FKRP, CAPN, NPAT#, LAMA2, NEB

4.83 3.17 17.51

AD FGF9, SEC16A, TFAP2A, ELN, GABRB3#, CACNA1H# 1.19 3.17 2.45

AR/AD LMNA, MYH7, MYBPC1, FBN1#, RYR1 (3), ENPP1#, COL6A2, TTN (2) 0.23 1.1 1.93

XL DMD (15), FHL1 0.08 0.54 0.33

Values indicate normalized median rank ratios across 50 cases with full candidate gene list used to rank each. Lower value of median rank ratio
indicates better ranking ability of the tool as it represents that the probe gene was ranked in top fractions of the gene list. Number of cases with the
candidate gene are given in brackets if more than one case had the same candidate gene

AR-Autosomal Recessive, AD-Autosomal Dominant, XL-X linked

* Genes with unknown diseases or inheritance pattern

# Genes associated with disorders of known as well as unknown inheritance patterns

Table 4 Receiver operator curve characteristics of four gene
prioritization tools

VarElect OMIMExplorer Phenolyzer

10% FPR threshold

Accuracy (%) 58.80% 71.60% 60.80%

Sensitivity (%) 64.60% 78.80% 70.60%

Specificity (%) 44.10% 62.80% 50.80%

AUC 0.575 0.738 0.632

1% FPR threshold

Accuracy (%) 67.90% 52.40% 57.60%

Sensitivity (%) 84.80% 100% 87.90%

Specificity (%) 55.10% 45.70% 48.40%

AUC 0.745 0.832 0.731

AUC – area under the curve, FPR – false-positive rate

All HPO ID’s per case were used for this analysis

Bold entries indicate highest value for Accuracy, Sensitivity,
Specificity and AUC across all three tools for each comparison

1394 S. Tomar et al.



describing clinical cases, the use of specific HPO IDs leads
to effective gene-ranking whereby even top 10% of HPO
IDs are sufficient to rank the candidate gene. However, the
choice of these HPO IDs has to be based on clinical acumen
besides mere computational assessment of number of genes
annotated by the corresponding HPO ID. Second, we
assessed the diagnostic rate on retrospective, known, and
novel disease–gene cohorts using three gene prioritization
tools, which use pair-wise gene–phenotype-based similarity
as their underlying semantics. Our findings show that
OMIMExplorer works best only on disease phenotypes that
are well-characterized in OMIM. VarElect has previously
been shown to outperform Phenolyzer [15] and in our study,
we observed that it performed better than both OMIMEx-
plorer and Phenolyzer. In addition, VarElect remained less
affected by use of partial HPO IDs-based gene-ranking. The
individual differences between the gene prioritization
obtained from these three tools can be attributed to their
unique workflow, which is based on their underlying data-
bases and algorithms (Supplementary Table 14). When
assessing the use of HPO IDs by each tool, Phenolyzer
queries the HPO IDs to create a weighted ranked gene list
via logistic regression model, whereas VarElect uses Boo-
lean logic and guilt by association methodology to search
rare, unique, and uncharacterized medical terminology
matching the input HPO IDs to identify genes sharing same
pathways. At last, OMIMExplorer uses semantic similarity
to match the HPO ID to the known OMIM diseases and
calculates similarity scores of disease genes. We also
looked into the gene-ranking ability of all tools based
on disease–gene inheritance and found that VarElect per-
formed fairly well as compared with the other two coun-
terparts across all disease inheritance patterns
(Supplementary Fig. 2, Supplementary Table 8). In a cohort
of 52 known cases, Zemojtel et al. [18] had reported that
best rank ratios were returned via PhenIX tool for AD and
X-linked disease genes. Our results when analyzed by dis-
ease inheritance pattern reflected similar trend with X-
linked giving best MedRR followed by AD and then AR
and unknown inheritance models. If we compare our gene
prioritization approach with an agnostic approach whereby
phenotype associations are not considered for gene-ranking,
one could focus on sequence ontology and in silico pre-
dictive assessment. However, taking the example of case 1
from our retrospective cohort, candidate variants in 2740
genes were identified after removing low quality, synon-
ymous and > 1% minor allele frequency variants. Focusing
only on protein-effecting variants without phenotype con-
sideration, further reduced our list to 936 genes (Supple-
mentary Table 6). However, to prioritize candidate variants
in these 936 genes in the absence of any gene-related
ranking feature would have made the analysis more labor-
ious. Hence, the use of gene prioritization tools helped in

reducing this list to a manageable set by ranking each of the
936 genes from rank 1 to 936, whereby only top 10 ranked
genes could be further curated.

Drawing conclusions from previous studies [19, 44] on
small subsets of specific phenotypes, we analyzed 50 cases
of neuromuscular disorder in this study, which suggests that
specific phenotyping alone can enhance gene rankings and
reduce analysis time in a clinical setting. Although this
study was performed mostly on neuromuscular cases, as
pointed by these other studies [19, 44], such conclusions
could generally be extended to other disorders. We
recommend the use of specific HPO ID-based gene prior-
itization using web-based, and easy to use comprehensive
tools. We speculate this approach could be effective toward
uncovering not just monogenic but also “blended pheno-
types” for cases that portray multiple monogenic disorders
and would be an advantageous tool to fill in the gaps in
clinician derived gene lists for efficient molecular diagnosis.
In addition, it would further provide the user more freedom
to choose various gene lists based on different filtering
criteria, which in turn could highlight similar genes asso-
ciated with given phenotypic features. A potential limitation
of our study was the small sample size of 26 cases used for
assessing partial phenotype based gene prioritization and
future work would involve validating the findings of this
study in a larger study cohort. Second, quantitative esti-
mation of the specificity of each HPO ID to the given
disease–gene association was beyond the scope of this
study. In summary, our study shows that effective gene
prioritization is linked to the specificity of well-defined
phenotypic identifiers to a given disorder rather than the
number of HPO IDs. Hence, from a clinical standpoint, it is
imperative to provide specific phenotype identifiers, which
the clinician deems as most relevant to a given disease, as
inputs for efficient gene prioritization in both known and
unknown monogenic disease associations. Lastly, the
availability of more user-friendly and comprehensive web-
based gene-ranking tools with fast processing time would
facilitate candidate gene identification in clinical
sequencing.
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