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Abstract

Split-hand—split-foot malformation (SHFM) is a rare condition that occurs in 1 in 8500-25,000 newborns and accounts for
15% of all limb reduction defects. SHFM is heterogeneous and can be isolated, associated with other malformations, or
syndromic. The mode of inheritance is mostly autosomal dominant with incomplete penetrance, but can be X-linked or
autosomal recessive. Seven loci are currently known: SHFMI1 at 7q21.2q22.1 (DLX5 gene), SHFM?2 at Xq26, SHFM3 at
10924925, SHFM4 at 3q27 (TP63 gene), SHFMS at 2q31 and SHFMG6 as a result of variants in WNT10B (chromosome
12q13). Duplications at 17p13.3 are seen in SHFM when isolated or associated with long bone deficiency. Tandem genomic
duplications at chromosome 10q24 involving at least the DACTYLIN gene are associated with SHFM3. No point variant in
any of the genes residing within the region has been identified so far, but duplication of exon 1 of the BTRC gene may
explain the phenotype, with likely complex alterations of gene regulation mechanisms that would impair limb
morphogenesis. We report on 32 new index cases identified by array-CGH and/or by qPCR, including some prenatal
ones, leading to termination for the most severe. Twenty-two cases were presenting with SHFM and 7 with monodactyly
only. Three had an overlapping phenotype. Additional findings were identified in 5 (renal dysplasia, cutis aplasia,
hypogonadism and agenesis of corpus callosum with hydrocephalus). We present their clinical and radiological findings and
review the literature on this rearrangement that seems to be one of the most frequent cause of SHFM.

Introduction

Ectrodactyly or split-hand/split-foot malformation (SHFM)
is a rare condition that occurs in 1 in 8500-25,000 new-
borns and accounts for around 15% of all limb reduction

These authors contributed equally: Muriel Holder-Espinasse,
Aleksander Jamsheer.

Supplementary information The online version of this article (https://
doi.org/10.1038/s41431-018-0326-9) contains supplementary
material, which is available to authorized users.

P4 Muriel Holder-Espinasse
muriel.holder @gstt.nhs.uk

Extended author information available on the last page of the article.

defects. It is a limb malformation affecting the central rays
of the autopod involving syndactyly, median clefts of the
hands and feet, aplasia and/or hypoplasia of phalanges,
metacarpals and metatarsals [1]. SHFM is extremely vari-
able in its phenotypic expression between families, within
families and even between limbs of a single patient, ranging
from syndactyly and oligodactyly to the most severe
expression-monodactyly with only a single phalanx [2].
Monodactyly is a rare malformation of the extremities,
with agenesis of the four preaxial rays of the hand and foot.
It has been considered as part of the SHFM spectrum since
the first publication in 1916 [3]. There are two main ana-
tomic varieties of SHFM. Type 1 split-hand/split-foot pre-
sents as a ‘lobster claw’, with the absence of the central
rays. This is generally associated with syndactyly between
the digits on each side of the cleft. Type 2 split-hand/split-

SPRINGER NATURE


http://crossmark.crossref.org/dialog/?doi=10.1038/s41431-018-0326-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41431-018-0326-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41431-018-0326-9&domain=pdf
http://orcid.org/0000-0002-1368-1023
http://orcid.org/0000-0002-1368-1023
http://orcid.org/0000-0002-1368-1023
http://orcid.org/0000-0002-1368-1023
http://orcid.org/0000-0002-1368-1023
http://orcid.org/0000-0002-0767-7511
http://orcid.org/0000-0002-0767-7511
http://orcid.org/0000-0002-0767-7511
http://orcid.org/0000-0002-0767-7511
http://orcid.org/0000-0002-0767-7511
http://orcid.org/0000-0002-5999-5300
http://orcid.org/0000-0002-5999-5300
http://orcid.org/0000-0002-5999-5300
http://orcid.org/0000-0002-5999-5300
http://orcid.org/0000-0002-5999-5300
mailto:muriel.holder@gstt.nhs.uk
https://doi.org/10.1038/s41431-018-0326-9
https://doi.org/10.1038/s41431-018-0326-9

526

M. Holder-Espinasse et al.

foot is associated with a preaxial ray deficiency and there-
fore there is no cleft. Usually, only the fifth digit is present,
and thus the term monodactyly is used [4].

SHFM and monodactyly are clinically heterogeneous
and can be either isolated, associated with other mal-
formations or part of syndromic entities, such as
Ectrodactyly-Ectodermal  dysplasia-Cleft (EEC) [5],
Cornelia-De Lange [6-8] and Smith-Lemli-Opitz syn-
dromes [9].

Genetics of SHFM is complex, with 7 known loci and 3
causative genes (SHFM1 at 7q21.3 (DYNCII and DLX5),
SHFM2 at Xq26, SHFM3 at 10q24.3, SHFM4 (TP63) at
3q27 [10, 11], SHEMS5 at 2q31, SHFM6 at 12q13.11-q13
(WNT10B), SHFM/SHFLD at 17p13.3). Tandem 10q24
(SHEM3) duplications created by an unequal recombination
between sequences of the centromeric region and sequences
of the DACTYLIN gene region were associated with ectro-
dactyly in 2003 by de Mollerat et al., who pointed to the
extreme clinical variability of this phenotype [12]. Of note,
in a four-generation Chinese family carrying the duplication
of the SHFM3 region, one of the affected individuals pre-
sented with fibular monodactyly, while others showed
classical SHFM [13]. Deletions and translocations at the
7921 region have been associated with syndromic SHFM
[14-16]. Large chromosomal deletions at 2q31 region
(SHFEMS) including the HOXD cluster have also been
described in association with split-hand split-foot or
monodactyly [17-19].

SHFM3 in humans has been located at 10q24 and the
naturally occurring Dactylaplasia mouse is the animal
model for this condition [20, 21]. The two existing Dac
alleles result from MusD-insertions upstream of or within
Dactylin (Fbxw4). 325-570kb tandem genomic duplica-
tions at chromosome 10q24 involving at least the DAC-
TYLIN (FBXW4) gene have been found in SHFM3 patients
[22-24]. No causal sequence alterations have been found,
although two interesting genes (FGFS8 and FBXW4) reside
within the critical locus [24]. Duplications always seem to
include BTRC and POLL, whereas FBXW4 can be only
partially included. A poster on 5 cases presenting with
10g24 duplication had shown that part of BTRC and the
whole of the POLL gene up-regulation alone were insuffi-
cient to cause SHFM3 as patients carrying duplications did
not present with any limb defect [25]. In 2015, Li et al.
identified the minimal critical region responsible for the
SHFM3 phenotype in a series of 42 patients gathered from
DECIPHER, previously published cases (PubMed) and a
family with 6 affected individuals. Interestingly, they con-
cluded that duplication of sequence in exon 1 of BTRC
could be sufficient to the development of the SHFM3
phenotype and suggested that this may be via cis-acting or
trans-acting effects on genes or regulatory sequences
involved in the limb development pathway [26]. It is also
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interesting that patients harbouring wider duplications
might also present with other limb malformations such as
bilateral femoral hypoplasia but no SHFM [27]. No point
variant in any of the genes residing within the duplicated
region has been reported so far, and it is still not clear how
the duplication leads to the SHFM3 phenotype. Indeed,
complex alterations of gene regulation mechanisms that
would impair limb morphogenesis are likely. We report on
32 new index cases of 10q24 duplication (22 SHFM
including 3 with preaxial polydactyly, 7 monodactylies and
3 patients presenting overlapping phenotypes) and describe
the first prenatal case of SHFM associated with this chro-
mosomal rearrangement.

Case reports
Patient’s phenotypes

All patients were examined by experienced clinical geneti-
cists. Their phenotypes are summarised in Table 1 and
photographs of their hands and feet, when available are
presented in Fig. 1. X-rays of their hands and feet, when
available, are presented in Fig. 2. For some patients, var-
iants in the coding part of 7P63 had been excluded by direct
sequencing. Written consent was obtained from all patients
and/or their legal guardians for publication of the images, as
well as clinical and radiological data.

Patient’s material

Peripheral blood cell DNA from patients and their parents
when available was obtained after informed consent fol-
lowing standard protocols.

Array CGH analysis

Different types of array-CGH were performed as patients
were tested in different genetics department in France,
Lebanon, Switzerland, UK and Poland.

Detection of gene copy number was performed by array-
CGH following the manufacturer’s recommendations
(Agilent™, Agilent Technologies, Santa Clara, CA) using
either 244K, 180K, 60K or 44K oligo probes approximately
spaced at 35-40kb intervals across the genome (Human
Genome 18 or 19). Commercial (PromegaTM) or non-
commercial female or male genomic DNA were used as
reference in hybridizations. Array-CGH results were
extracted with Feature extraction software and analysed
with the DNA-analytics software by applying an
ADM?2 segmentation algorithm to identify chromosome
aberrations. Copy-number gains and losses were determined
using a threshold of 0.3 and —0.3, respectively. Aberrant
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S < _ signals obtained with three or more neighbouring oligonu-
i 5 % %a‘gzi cleotide probes were considered indicative of genomic
?%é % g 2533 . aberrations. Data (array-CGH and phenotype) was sub-
Al mAas <ssAss - mitted in Decipher or in the ClinVar database for all cases.
o o High-resolution array-CGH was performed on genomic
5 g g' ‘;' 5 DNA and analysed versus reference DNA (Kreatech,
2 By s 253850 Amsterdam, The Netherlands). NimbleGen 135k or 1.4 M
=2 é% E“%%%é; £ CGH microarray was used with a calculated functional
resolution of 0.2 Mb (95% confidence limits, Human Gen-
S S ome 19). The DNA samples were labelled (test with Cy3
i‘“ 5o ggéggg and reference with Cy5) and co-hybridised to the micro-
s §§ T§§§§§§ 3 array in accordance with the manufacturer’s instructions
S ROt e (NimbleGen Arrays User’s Guide: CGH and CGH/LOH
P Arrays v9.1, Roche NimbleGen, Madison, WI, USA). The
5 g ;'A‘Sg microarray was washed and then scanned on an Axon
£ %g ég’g%gi GenePix 4400A Scanner using GenePix Pro 7 software
a| £ A8 252528 8 (Molecular Devices, Sunnyvale, CA, USA). Raw data was
normalized, LOESS correction applied and the data ratios
_ Y f. f.% calculated using DEVA v1.01 Software (Roche Nimble-
2) 5_ i wﬁg‘%? Gen). The normalized data was processed using Infoquant
« E §§ EDEJ %g%% 2 Fusion v6.0 software (Infoquant, London, UK) with ana-
lysis call settings of 3 consecutive probes +0.4 Cy3/Cy5
s o ratio.
5 F %Aé‘g
4 %g §§“§§§§ i Real-time quantitative PCR (qPCR) analysis
5= A28 52823 &
o To evaluate 10q24 duplication by qPCR, a set of different
= = :' é g primer pairs located within the SHFM3 locus was designed
- ZACS2ER (including exon 1 and exon 15 of BTRC gene) using the
ol 2 §§ %%%géﬁ 3 Primer 3 v0.4.0 software (http://primer3.ut.ee) (Primer
sequences are available upon request). qPCR was per-
. 22 formed in a total volume of 25 ul containing 12.5ul of
z . % E5¢% SYBR Green PCR Master Mix (Applied Biosystems), 10 ng
2 &8 5E 5338 of genomic DNA and 0.25 pl of primers (100 mM each).
af=ar 4524833 ~ Samples were run on the Applied Biosystems 7900HT or
. s ViiA7 Real-Time PCR System in triplicate in separate
5 £ ¢ of reactions to permit the quantification of the target sequences
2 2e §§§§§§ normalized to the RPPHI and SALL4 genes or ALB and F8
= R 5‘)%:3'% 23 38 genes. PCR conditions were as follows: 2 min activation
step at 50 °C, 10 min initial denaturation step at 95 °C fol-
v g S lowed by 40 cycles at 95 °C for 15s and 60 °C for 1 min.
2 % w§5§§ By use of calibrator samples of normal control DNA, the
. ? %é gﬂ %§§§§ % gene copy number was estimated on the basis of the com-
A es seEass s parative AACt method. The experiments were repeated
R twice. A cut-off of relative gene copy numbers of 1.3 was
5 £ o 2% used for duplication.
2 %g é;‘)?%%g Data for patients who only had qPCR analysis was
oo £ 8% 358553 8 entered in the LOVD database.
2
£ z MLPA
-l 1z =
2 ) 4 § o A custom probe: 10_103216238 was used for the MLPA
Sldlze & & [28].
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Fig. 1 Photographs of patients’ hands and feet. 1 Case 1. Prenatal
ultrasound revealing bilateral split hands. Left hand. Note 1-2 and 3-
4 syndactyly as well as excessive tissue between 2 and 3. Right hand.
Note 1-2 and 3—-4 syndactyly. Bilateral split feet. 2 Case 2. Note
bilateral monodactyly of hands and feet. 3 Case 3. Note bilateral
monodactyly of hands and feet. 4 Case 4. Note bilateral monodactyly
of hands and feet. 5 Case 5. Note ectrodactyly of 4 limbs. 6 Case 6.
Note ectrodactyly of 4 limbs. 7 Case 7. Note ectrodactyly of 4 limbs. 8
Case 8. Note monodactyly of hands. 9 Case 9. Note split hands, right
split-foot and left 2-3—4 toe syndactyly. 10 Case 10. Note normal
hands and split feet. 11 Case 11. Note ectrodactyly/syndactyly of 4

Results

Results are summarised in Table 1 and Fig. 3 for all patients
[29].

Twenty-two index patients presented with SHFM
(including 3 with preaxial polydactyly), 7 with mono-
dactylies affecting 3 or all 4 limbs and 3 patients with a
mixed phenotype comprising ectro and monodactyly.
Seventeen cases were familial and 15 occurred de novo.
Parental samples were tested for all de novo cases except
cases 28 and 32, by qPCR and none of them carried the
duplication. Segregation studies for familial cases were

limbs. 12 Case 12. Note ectrodactyly of 4 limbs. 18 Case 18. Note
ectrodactyly of 4 limbs. 19 Case 19. Note ectrodactyly of 4 limbs. 20
Case 20. Note ectrodactyly of 3 limbs. The right is very mildly
affected with a triphalangeal thumb and a radial deviation of the index.
21 Case 21. Note ectrodactyly of 4 limbs. 22 Case 22. Note ectro-
dactyly of feet and one hand and preaxial polydactyly on other hand.
23 Case 23. Note ectrodactyly of feet. 24 Case 24. Note ectrodactyly
and monodactyly of hands and feet. 25 Case 25. Note ectrodactyly of 4
limbs. 26 Case 26. Note ectrodactyly of 4 limbs following surgery for
a right hand preaxial polydactyly

only performed for cases 22, 25, 29 and 31 and confirmed
that all affected individuals were carrying the duplication,
and that unaffected relatives did not. There was a very
wide range of clinical variability, even between indivi-
duals from the same family. When possible (n = 35), sex
was recorded for singletons, index and familial cases. The
male to female ratio was 15/20 in this cohort. Five cases
presented with additional findings (2 cutis aplasia, 1 renal
hypoplasia, 1 hypogonadism and 1 agenesis of corpus
callosum with hydrocephalus). One case was identified
during the pregnancy following detection of ectrodactyly
involving all 4 limbs on scans, and the array-CGH had

SPRINGER NATURE
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Fig. 2 X-rays of patients’ hands and feet. 1 Case 1. Note skin syn-
dactyly of hands and split feet. X-rays performed at 12 months. 2 Case
2. Note monodactyly of hands and feet. X-rays performed at 1 month.
5 Case 5. Note split hands. X-rays performed at 32 years. 6 Case 6.
Note ectrodactyly of 4 limbs. X-rays performed at 5 months. 8 Case 8.
Note monodactyly of 4 limbs. X-rays performed at 25 years. 11 Case
11. Note skin syndactyly and absent distal phalanges. X-rays per-
formed at 18 months. 12 Case 12. Note ectrodactyly of 4 limbs. X-rays
performed at 5 years. 20 Case 20. Note ectrodactyly of the left hand
and both feet. Note camptodactyly of the right index. X-rays

been performed on foetal DNA extracted from the
amniotic fluid.

Ten patients were screened with Agilent 180K array-
CGH, nine patients with 44K array-CGH, two with Agilent
244K array-CGH, one with Agilent 60K array-CGH [hg 18
or hg 19] as well as 2 with Nimblegen 135K and 1 with
Nimblegen 1.4M array-CGH [hg 19]. Breakpoints for
patients 1-7, 11, 13, 15, 16, 19-32 are summarised in
Table 1 and Fig. 3 shows the sizes of the duplication for
cases 1-7, 11, 13, 15, 16 and 19-32. The minimum size
duplication was 291 kb and the maximum size duplication
was 597 kb. All cases tested by array-CGH had duplication
of at least BTRC and POLL genes. Seven cases had dupli-
cation of LBXI gene as well and 12 patients had duplica-
tions comprising the FBXW4 gene (although partially for
cases 24 and 27). Twenty-six patients had a qPCR that
either confirmed the array-CGH result (19 cases) or that was

SPRINGER NATURE
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performed at 30 months. 21 Case 21. Note ectrodactyly of 4 limbs. X-
rays performed at 24 weeks’ gestation. 22 Case 22. Note ectrodactyly
of feet and preaxial polydactyly of hand. X-rays performed at age
3 months. 23 Case 23. Note ectrodactyly of feet. X-rays performed at
age 12 months. 25 Case 25. Note ectrodactyly of feet and monodactyly
of hands. X-rays performed at age 39 years. 26 Case 26. Note ectro-
dactyly of feet and polydactyly/ectrodactyly and distal amputations of
hands. X-rays performed at age 3 years. 28 Case 28. Note mono-
dactyly of hands and ectrodactyly of feet. X-rays performed at age 18
years

done as a first line diagnostic test (7 cases). One patient had
an MLPA that confirmed the array-CGH result.

Discussion

SHFM3 is caused by duplication at the 1024 locus.
DACTYLIN (FBXW4), LBXI, SUFU, BTRC and FGF$8
genes are located in this region [12, 24, 30]. According to
previously reported series, SHFM3 seems to be one of the
most common causes of SHFM when an underlying cyto-
genetic or molecular mechanism has been identified (12%
against 13% with 17p13.3 duplication [30]; 20% [2]).
SHFM3 is inherited in an autosomal dominant manner and
to our knowledge, the phenotype is fully penetrant but there
is a very wide range of clinical variability, even between
individuals from the same family [31]. In case 22, the father
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Fig. 3 Array CGH 10924 duplications are displayed for all cases
tested. All positions have been converted to the build hg38 for this
figure. The TAD region shown has been detected in human embryonic
stem cells and overlaps with the minimal duplicated region across all
cases. Inversion of POLL, DPCD, FBW4 and FGF8 which occurred
during vertebrate evolution is shown. All coding and non-coding

only presented with cutaneous syndactyly of the feet
(bilateral 1st and 2nd toes and 3rd and 4th toes). Hands
were normal. Radiographs of the hands and feet had shown
no skeletal involvement. This patient was diagnosed
because his daughter presented with typical SHFM. In case
10, there was ectrodactyly of the lower limbs only with
normal hands. Preaxial polydactyly is a relatively common
finding in SHFM3 [2, 30, 32], but infrequent in other
SHFM types. The preaxial involvement can range from
preaxial and central ray aplasia to milder preaxial involve-
ment (i.e. preaxial polydactyly), reminiscent of Holt-Oram
or Okihiro syndromes which can also present with either
absent thumbs or triphalangeal thumbs. In 2012, Klopocki
et al. reported a series of 10 patients with 10q24 duplication
[2]. Only 1 patient presented with monodactyly and most
cases manifested ectrodactyly, ranging from 1 to all 4 limbs.
One case presented additionally with learning difficulties
and oligodontia, one with intellectual disability and 2 with
preaxial polydactyly. Dimitrov et al. in 2010 suggested that
the 10q24.31q24.32 duplication cause a syndromic form of
SHFM [24]. They reported associated common facial

Ensembl v87 genes overlapping the region chr10:101121147—
102503988 are shown, including SUFU and FGFS8. The phastCons
conservation score for 29 mammals aligned to the human genome was
downloaded from UCSC. For every 1000 base window, a mean con-
servation score between 0 and 1 was calculated indicating the prob-
ability of negative selection

dysmorphic features in their 6 patients, however we did not
observe similar findings in our patients and there has been
no subsequent report showing identical appearance. It
seems therefore that this is mostly an isolated form of
SHFM as very few cases present with additional findings
and it is not certain that these additional features are linked
with the limb defects (5/32 in our series, 2/10 in Klopocki
et al. [2]).

The naturally occurring Dactylaplasia (Dac) mouse is an
animal model for human SHFM3. It has absent central
digits, hypoplasia or aplasia of metacarpal/metatarsal bones
and syndactyly. The phenotype results from disruption of
the Dactylin gene and the defect is inherited in an autosomal
semi-dominant manner, where heterozygotes present with
classical SHFM whereas homozygotes show monodactyly.
In addition, the variable phenotype depends also on
homozygosity for a recessive mdac modifier allele that
appears only in certain inbred strains [33]. The reduced
expression of the Dactylin gene is thought to play a central
role in the pathogenesis of SHFM3 and this was supported
by a possible underlying gene dosage mechanism [34].
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However, the relationship between gene dosage and phe-
notype is complex and one of the hypotheses is based on
diminished phenotype for both increased and decreased
gene dosage, indicating either multi-subunit complexes with
a single component that has a tight stoichiometry (gene
balance hypothesis) or specific regulatory imbalances as a
consequence of under- (insufficient amount hypothesis)
and/or over-expression [1, 35, 36]. The loss of digits in Dac
mutants involves increased cell death in a specific portion of
the apical ectodermal ridge (AER) and SHFM3 is due to a
disruption of the AER which is characterized by regulatory
complexity [37]. It has also been suggested that epigenetics
could be involved in the pathogenesis of SHFM3 [38].
Recently, Li et al. have shown that duplication of the first
exon of the BTRC gene could be responsible for the SHFM3
phenotype and that the highest density of conserved non-
coding elements is found in the BTRC gene [26]. However,
further functional analyses will be needed to confirm this
finding. BTRC had always been thought to be of particular
interest as it functions as a ubiquitination factor of proteins
involved in several signalling transduction pathways
involved in limb development [39], but it is possible that
conserved non-coding elements within the BTRC gene point
to another example of disturbed cis-regulation such as
topological associated domains (TADs) [29]. There does
not seem to be a correlation between severe clinical invol-
vement and larger duplications. Indeed, wider duplications
involving the FGFS§ gene are not associated with the SHFM
phenotype, despite comprising the first exon of the BTRC
gene [27]. FGF8 induces and regulates the limb bud pat-
terning via AER signalling and Fgf8 inactivation in mouse
models in the early limb ectoderm causes hypoplasia/aplasia
of specific distal skeletal elements [40].

In conclusion, SHFM3 is one of the most common types
of SHFM known to date. We report on a cohort of 32 index
patients gathered through various collaborations across
Europe. When such patients are seen in Genetics Clinics,
and if an autosomal dominant inheritance is the most likely,
array CGH should be the first-line test when available, but
gPCR or MLPA for SHFM3 (10q24) or SHFM/SHFLD
(17p13) loci could be offered as an alternative [41, 42].
Prenatal diagnosis based on scans and invasive testing in
pregnancy can allow better genetic counselling and man-
agement in the context of non-syndromic SHFM. Future
studies with animal models containing sequence from exon
1 of BRTC may help exploring its effect on the AER, as
well as refining the breakpoints at a nucleotide level [26].
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