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Abstract
Nonsyndromic oral clefting (NSOC) is although one of the most common congenital disorders worldwide, its underlying
molecular basis remains elusive. This process has been hindered by the overwhelmingly high level of heterogeneity
observed. Given that hitherto multiple loci and genes have been associated with NSOC, and that complex diseases are
usually polygenic and show a considerable level of missing heritability, we used a systems genetics approach to reconstruct
the NSOC network by integrating human-based physical and regulatory interactome with whole-transcriptome microarray
data. We show that the network component contains 53% (23/43) of the curated NSOC-implicated gene set and displays a
highly significant propinquity (P < 0.0001) between genes implicated at the genomic level and those differentially expressed
at the transcriptome level. In addition, we identified bona fide candidate genes based on topological features and
dysregulation (e.g. ANGPTL4), and similarly prioritised genes at GWA loci (e.g. MYC and CREBBP), thus providing further
insight into the underlying heterogeneity of NSOC. Gene ontology analysis results were consistent with the NSOC network
being associated with embryonic organ morphogenesis and also hinted at an aetiological overlap between NSOC and cancer.
We therefore recommend this approach to be applied to other heterogeneous complex diseases to not only provide a
molecular framework to unify genes which may seem as disparate entities linked to the same disease, but to also predict and
prioritise candidate genes for further validation, thus addressing the missing heritability.

Introduction

Nonsyndromic oral clefting (NSOC) is a spectrum of iso-
lated prenatal developmental disorders with complex
aetiologies, comprising genetic and environment factors
along with possible interactions within and between, con-
sistent with it being a complex genetic disease [1, 2].

Among congenital disorders, NSOC is one of the most
prevalent worldwide with a prevalence of ~1.7/1000 births
[3]. This relatively-high prevalence along with its clinical,
economical and psychological effects on affected, has led to
a plethora of studies trying to decipher the underlying
aetiology of these disorders given that the genetic and
environmental factors are largely undetermined. Many
investigations, which started by the pioneer work of
Ardinger et al [4]. roughly three decades ago, have been
focused on identifying the genetic factors involved in
NSOC. Hitherto, multiple genes have been associated with
different types of NSOC, particularly with non-syndromic
cleft lip with or without palate (NSCL/P) through candidate
gene, GWA and whole exome-based studies [5]. Never-
theless, only a few genes that have been confirmed with the

* Naser Ansari-Pour
n.ansaripour@ut.ac.ir

1 Faculty of New Sciences and Technologies, University of Tehran,
Tehran, Iran

2 Max Planck Institute of Molecular Plant Physiology,
Potsdam, Germany

3 Department of Medical Biotechnology, School of Advanced
Technologies in Medicine, Tehran University of Medical Sciences,
Tehran, Iran

4 College of Science and Mathematics, University of Massachusetts
Boston, Boston, Massachusetts, USA

5 Present address: Big Data Institute, Nuffield Department of
Medicine, University of Oxford, Oxford OX3 7LF, UK

Electronic supplementary material The online version of this article
(https://doi.org/10.1038/s41431-018-0263-7) contains supplementary
material, which is available to authorized users.

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41431-018-0263-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41431-018-0263-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41431-018-0263-7&domain=pdf
http://orcid.org/0000-0003-0908-0484
http://orcid.org/0000-0003-0908-0484
http://orcid.org/0000-0003-0908-0484
http://orcid.org/0000-0003-0908-0484
http://orcid.org/0000-0003-0908-0484
mailto:n.ansaripour@ut.ac.ir
https://doi.org/10.1038/s41431-018-0263-7


most prominent being IRF6, a gene confirmed to be
strongly associated with NSOC [6, 7]. Nevertheless, even
this finding has not been replicated in some populations
[8, 9]. More astonishing is non-replication of studies within
a single population. For example, we recently showed that
IRF6 is associated with NSCL/P in Iran [10], however, a
previous study on the same population suggested otherwise
[11]. These observations suggest that substantial hetero-
geneity exists in the genetics of this complex disease and
seems to be unearthed at all levels including aetiological,
locus and allelic heterogeneity [10].

In addition, gene–gene interactions have been reported
for genes implicated in NSOC. These interactions, which
have been shown either statistically [12, 13] or based on
functional assays [6, 14, 15], suggest that the inter-
relationship of NSOC genes is a major contributory factor
of NSOC phenotypic variation. This level of complexity in
the genetics of NSOC suggests that genetic analyses based
on single genes is no longer effective in understanding the
aetiology of these disorders since gene–gene interactions
which are central to complex traits [16] are not addressed
and considering the significant missing heritability [17], a
move must be made towards identifying the underlying
‘network’ as proposed by Kousa and Schutte [18]. This
systematic approach has been previously applied to a
number of complex phenotypes from autism spectrum dis-
orders [19] to severe spermatogenic failure [20]. For NSOC,
however, studies have been limited to either single gene-
centric analysis [21] of IRF6 or gene ontology (GO)
enrichment analysis based on NSOC-associated genes [22]
or those common between orofacial clefting and neural tube
defects [23]. No attempt has therefore been made to expand
the gene regulatory network based on multi-omics inte-
grated systems analysis to identify causative genes
explaining the missing heritability and in turn deliver more
effective diagnosis in the form of targeted gene sequencing
panels. We therefore took a systems genetics approach
similar to that of Ansari-Pour et al. [20] by integrating
physical protein–protein and regulatory interactome data
(with NSOC-implicated genes as network ‘seeds’) with
whole-transcriptome data to not only generate a tissue-
specific network explicating the underlying genetic hetero-
geneity of NSOC, but to also identify genes, modules and
cellular functions likely to be key drivers in biological
processes perturbed in this complex disease.

Methods

NSOC gene set extraction

Genes implicated in nonsyndromic oral clefts (NSOC) at the
genomic level were manually curated by conducting a

systematic literature review by using the keyword “non-
syndromic” with “oral cleft”, “cleft lip with or without
palate”, “cleft lip”, “cleft palate” and “cleft lip/palate” and
“cleft lip and palate” plus “gene”, “genetics”, “locus”,
“mutation”, “polymorphism”, “variant”, “haplotype” and
“GWAS” in PubMed and Google Scholar. To select seed
genes at GWA loci, the gene closest to the top signal was
reported. Manually curated GWA-based genes were then
compared with entries in the GWAS Catalog (https://www.
ebi.ac.uk/gwas, accessed on 18/12/2017) [24] to ensure
completeness and consistency. Interestingly, of the twenty
GWA-based genes, thirteen had been previously associated
with NSOC (see Supplementary Table S1). For gene-wide
association studies, three quality control criteria were
applied, namely a sample size larger than 200, significance
remaining after correction for multiple testing and, under a
case-control setting, the control group not significantly
deviating from Hardy-Weinberg equilibrium expectations at
the associated SNP [25]. For genes identified by SNP
association (both gene-wide and genome-wide), only those
with at least one independent replication were retained. The
final gene list fulfilling the above criteria tallied 43 (see
Supplementary Table S1).

Microarray whole-transcriptome data

The Gene Expression Omnibus (GEO; https://www.ncbi.
nlm.nih.gov/geo/) database was searched for whole-
transcriptome microarray datasets on NSOC. Surprisingly,
only one dataset based on NSCL/P samples was available
(GEO accession number GSE42589) [26] which comprised
seven NSCL/P and six control dental pulp stem cell sam-
ples. The dataset was normalised with RMA [27] and
expression values were obtained in Log2 format. Genes
were considered not expressed if their median expression
level in the control group was below the minimum of
median expression levels observed among the seed genes
and were removed from the dataset. Given that only one
dataset was available, we used a combination of four dif-
ferent well-known statistical methods to identify differen-
tially expressed genes (DEGs) with a higher confidence.
The independent t-test and the Mann–Whitney U-test (both
with multiple testing correction by permutation) were
undertaken independently. Furthermore, we used the Sig-
nificance Analysis of Microarrays (SAM) method [28] and a
geometrical multivariate approach, namely the Character-
istic Direction [29] to also select DEGs. Finally, based on
the four independent lists of DEGs obtained, we employed
the Robust Rank Aggregation (RRA) method [30] to
acquire a single ranked DEG list. The RRA method uses a
probabilistic model for aggregation that is robust to noise
and also facilitates the calculation of significance prob-
abilities for all the genes in the final ranking. Given that
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based on conventional statistical analyses in DEG identifi-
cation, a large number of genes (sometimes in thousands)
show significant expression change [31], we limited the
DEGs to the top 500 as a conservative measure. This set
was then filtered based on expression fold-change, calcu-
lated as 2^(mean expression value in disease state/mean
expression value in control state), and only those that
satisfied a fold-change cut-off of 1.7 were retained. All of
the above analyses were implemented within the R envir-
onment for statistical computing (http://www.r-project.org/).

Global interactome data

The global protein–protein interaction (PPI) network used
was constructed based only on physical interactions repor-
ted in BioGRID (limited to human interactions only) [32]
and HPRD [33] to form the global interactome in this study.
This merged interactome consisted of 16,629 nodes and
22,1831 edges, all of which are based on experimental
evidence.

TREEDUST regulatory network generation

We converted all transcription factor-target interactions
reported in the TRED database [34] into text format and
then merged with those interactions reported in the
TRRUST database [35] to generate the comprehensive
TREEDUST human regulatory interaction network
(meta-dataset available upon request). The generated
network was used to identify downstream targets of TFs
identified in the PPI network. In addition, wherever a
target was also a TF and differentially expressed, its DEG
targets were also added to the network. Next, we con-
ducted a literature search to specifically mine functionally
validated regulatory interactions among the curated seeds
potentially missing from TREEDUST. These pairwise
interactions were combined with the physical PPI and
TREEDUST interactions for network visualisation,
however, given the bias in reported interactions in the
literature, these interactions were excluded from any
topological analysis.

Network reconstruction and topological analysis

We used the approach of Ansari-Pour et al. [20] to identify
the local network of the seed nodes and their interactions
with DEGs, which were identified from the whole-
trancriptome microarray dataset. This approach in network
reconstruction is based on the ‘local hypothesis’ of disease
aetiology [36]. Networks were visualised in Gephi 0.9.1
(http://gephi.github.io/) [37]. In a given network, nodes and
edges are representative of proteins and pairwise interac-
tions, respectively. Directed and undirected edges represent

regulatory and physical interactions respectively. The
NSOC network component was clustered using the fast
unfolding clustering algorithm [38] to identify modules
within the network. For each node, two critical topological
parameters were calculated in Cytoscape [39]. First, degree,
the number of interactions, was calculated. Next, between-
ness centrality, a measure expressing the importance of a
node in intermodular crosstalk, was computed. Modules
were named based on the representative node, which dis-
played the highest betweenness centrality. Shortest path
(SP), an algorithm in identifying the shortest distance
between any two nodes in a given network [40], was also
implemented to compute the distance of all one-to-one
interactions among all seeds and DEGs, thus examining the
level of functional association between the DEG and seed
gene sets.

Functional enrichment analysis

The NSOC network and its constituent modules were ana-
lysed for functional enrichment of gene ontology and
pathway terms by using PANTHER [41] and based on a
custom reference gene set comprising the unique set of
genes with reported interactions in either the merged
interactome or TREEDUST. Enrichment significance values
were corrected for multiple testing by the FDR method and
terms covered with over 10% of NSOC genes were retained
to exclude terms overlapping scantily with the NSOC net-
work. To potentially identify more unique terms associated
with the functional units of the reconstructed network,
enrichment analysis was also undertaken for each module of
the network independently and terms enriched solely in
each module (i.e. not enriched in the overall analysis) were
sought.

Results

NSOC network reconstruction

Initially, we scoured the merged PPI interactome to identify
interactions among the genes implicated in NSOC (i.e.
seeds). Of the total 43 seeds, 40 were present in the merged
PPI interactome, of which 19 interacted physically with at
least one other seed. Interestingly, 15 (79%) of these formed
a single network component.

To expand the NSOC network based on dys-regulated
genes, we identified DEGs from the whole-transcriptome
microarray dataset, tallying to a total of 445 genes. Of these
43 were not mapped to any protein in the PPI interactome
and none were among the seeds To construct the global
NSOC network, we sought to identify the interactions
between seeds and DEGs using SP. Interestingly, SP ranged
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Fig. 1 Graphical representation of a physical protein-protein and b
regulatory interactions in the local NSOC network. Node colours
represent the combination of the source and regulatory attributes of a
given gene included in the network. Node size is proportionate to

degree. TF transcription factor, PPI physical protein–protein interac-
tion, REG TREEDUST regulatory interaction, LIT literature-based
regulatory interaction. All pairwise interactions in this network are
given in Supplementary Table S2
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from one to six for all pairwise interactions with minimum
SP ranging one to three between any DEG and the seed set.
More specifically, of the 402 DEGs in the PPI interactome,
57 directly interacted with the seed gene set, 318 were two-
step neighbours, and the remaining 27 were three-step
neighbours (mean SP= 1.86). We then assessed whether
this level of proximity is a non-random observation in the
human PPI, we generated a null distribution of ‘mean SP’
based on 10,000 random 402-node gene sets sampled from
the global set of expressed genes. The mean of ‘mean SP’
observed between the seeds and the random sets was 21.87
and the propinquity of seed-DEG interactivity was highly
significant (P < 0.0001). To focus on interactions with more
significant functional relevance, we further examined the
interactions of directly interacting DEGs. For this, all three-
node (V shape) and four-node (U shape) sub-graphs (see
Ansari-Pour et al. [20]) of seeds were systematically iden-
tified in the global interactome. Of the 57 one-step DEG
neighbours, 38 were among those forming V and U sub-
graphs with the seeds, suggesting their strong bilateral
functional associations. We then merged the seeds with the
38 shared DEGs, as genes with the highest interactivity with
seeds, to undertake network analysis. After merging, an
extra three seeds were connected to the initial seed com-
ponent through the DEGs alone, resulting in the presence of
22 interconnected seeds (see Fig. 1a for all physical inter-
actions). We then calculated the number of interactions of
each shared DEG with the seed gene set not to only identify
the level of connection heterogeneity among the DEGs, but
to also identify highly interacting DEGs. The mean number
of connections was 1.45 ± 0.86 however, the range of these
interactions was 1–5, displaying considerable connection
heterogeneity. Subsequently, one hub-like DEG was found
with 5 interactions, namely BRCA1. Next, to expand the
NSOC network by integrating regulatory interactions
resulting in expression dysregulation, the TREEDUST
dataset was used to identify TFs in the NSOC network. Of
the 11 TF seeds, five had at least one regulatory interaction
with a DEG, tallying 15 interactions. These five TF seeds
directly targeted 13 unique DEGs, of which one (BRCA1)
was also a TF and regulated two downstream DEGs (see
Fig. 1b). Interestingly, of these target DEGs, four over-
lapped with the 38 shared DEGs of which the only one with
downstream regulatory interactions was BRCA1. DLX4, one
of the five TF seeds, which regulates BRCA1 but has no

reported physical interaction was also added to the network
as a seed (see Fig. 1b). The NSOC network thus comprised
23 seeds, 38 shared DEGs and 10 DEGs unique to reg-
ulatory interactions, and a total of 139 pairwise interactions.
Moreover, we identified a total of six well-defined interac-
tions among the seeds which were absent in the merged PPI
interactome and TREEDUST (i.e. green edges in Fig. 1b;
Supplementary Table S2). Although these interactions
represented only 4% of the network edges, they were
removed when calculating topological parameters due to the
inherent overrepresentation bias of reported interactions in
the literature.

Network analysis

All nodes in the NSOC network were analysed topologi-
cally based on their degree and betweenness centrality.
Among all nodes, MYC, CREBBP, BRCA1, and TFAP2A
not only had the highest betweenness centrality in the net-
work (>0.20), but they were also had high degrees (ranges
of 8–27), thus being crucial hubs in the network (see Sup-
plementary Table S3). We then analysed which of these
were cut-vertices to identify which nodes in the network
solely interact with these highly central nodes. Interestingly,
BRCA1, MYC, and TFAP2A were cut-vertices, thus further
emphasising the importance of the topological position of
these central genes. A total of 10 genes were disconnected
by removing the cut-vertices with each cut-vertex dis-
connecting 2–4 genes from the network (Table 1; Supple-
mentary Figures S1-S3).

Next, to identify potential functional units in the net-
work, we clustered the network based on all edges and
identified eight clusters within the NSOC network (see
Fig. 2). The number of nodes per module ranged from 3 to
19.

Gene enrichment analysis

Based on the NSOC network gene set (Supplementary
Table S4), we identified 319 enriched terms (see Supple-
mentary Table S5). The top terms with the highest fold
enrichment were all biological process terms associated
with either embryonic limb/appendage morphogeneis or
with DNA replication. Consistently, the top enriched path-
ways were Hedgehog signalling and DNA replication.

Table 1 Details of the three hub
cut-vertices in the NSOC
network and their dependent
private neighbours

Cut-vertex Cut-vertex source Disconnected gene(s) Type of interaction

BRCA1 DEG E2F6, DLX4 REG,REG

MYC Seed CBFB, CDC25A, DCAF4L2, IPO7 REG,REG,PPI,REG

TFAP2A Seed ATP10A, CALB2, CD58, PLAUR REG,REG,REG,REG

PPI physical protein–protein interaction, REG TREEDUST regulatory interaction
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Enrichment analysis based on individual network modules
did not result in the enrichment of any further terms.

Discussion

Isolated NSOC is not only the most common nonsyndromic
congenital deformity in humans, but it is also a highly
heterogeneous disorder with a complex aetiology. To
address this complexity, we undertook a systems genetics
approach by conducting network analysis of integrated
multi-omics data. Given that a gene is generally either
functionally disrupted at the protein level or dysregulated at
the transcript level, NSOC-implicated genes identified by
variant screening and/or genetic association studies were
combined with differentially expressed genes to reconstruct
the local network of NSOC (comprising 101 nodes and 9
modules). The NSOC network can explain the likely
functional relationships of 23 of the 43 curated NSOC-
implicated genes by being unified in a highly connected
dense network, many of which may seem as disparate
entities associated with the same disorder. Interestingly, all
but one connected via a physical interaction, thus

emphasising the importance of integrating physical inter-
actome data in multi-omics studies.

A key issue in whole-transcriptome studies is that the
most significantly differentially expressed genes identified
either do not overlap or have no plausible association with
confirmed genes in a particular disease. Also, in this
specific case, the microarray transcriptome dataset used
was based on dental pulp stem cells [26], which do not
accurately represent the NSOC-affected tissue. Given the
difficulty in accurate sampling of the developing palatal
shelves, this remains the only published dataset associated
with NSOC. However, to test the relevance of this dataset
for this analysis, we examined the level of interaction
between DEGs and the seed gene set using SP. Although
any given DEG could have had an SP value of infinity (i.e.
impossible interaction given that the global interactome
comprises 15 disconnnected super-components) to the
seed gene set, we observed a highly significant non-
random co-locality of DEGs and seeds in the network (SP
ranging from 1 to 3, P < 0.0001). According to the ‘local’
hypothesis in network medicine [36], this robust func-
tional association of DEGs make them functionally rele-
vant to NSOC and therefore the dataset that they emanate
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from may be deemed functionally relevant. Moreover, this
suggests that a computational systems approach is
superior in identifying the most functionally relevant
DEGs when compared with the most common status-quo
approach of conducting GO analysis on the overall DEG
list, since one would expect a ‘molecular’ association
among perturbed genes. It should be noted that, based on
the FC range, down-regulation of implicated DEGs is
relatively low in magnitude (max of fivefold down-reg-
ulation). This may be due to the low sample size in the
whole-transcriptome experiment. However, a recent
report showed that low expression changes of key genes
significantly affect facial morphogenesis [14]. Thus, it is
likely that the observed FC range may still have a sig-
nificant impact on NSOC development.

Identification of bona fide candidate genes

We used the NSOC network as a framework to rank DEGs
based on their topological features. ANGTPL4, BRCA1 and
PCNA were the DEGs with the most favourable topological
features in the network. For instance, ANGPTL4 which has
been implicated in disrupting endothelial cell–cell adhesion
[42] is not only the second most dysregulated gene in the
whole-transcriptome, but it also interacts directly with
MYC, thus making it a bona fide candidate gene in NSOC
development. More interestingly, another top DEG, BRCA1
(the highly penetrant breast cancer predisposition gene), not
only interacts physically with five seeds, but it is also
regulated directly by one seed (see Supplementary Fig-
ure S1), thus displaying a strong functional association with
NSOC. This, however, does not necessarily imply that
BRCA1 is an upstream aetiological factor. Rather, it is more
plausible that variants in its regulatory factors such as that
observed in DLX4 may have dysregulated its expression.
Although, due to the paucity of exome studies, there is no
report of BRCA1 variants in NSOC patients, no study has
also shown BRCA1-positive breast cancer patients to have
had NSOC in their childhood. Nonetheless, the potential
effects it may have on its physical seed interactors can not
be ruled out.

The aetiological overlap of NSOC with cancer

A number of epidemiological studies have suggested an
association between different types of cancer and sub-
types of nonsyndromic NSOC with the most reliable and
significant association reported with breast cancer [43].
This suggestion has been further strengthened by recent
genetic studies showing an overlap of predisposition
genes [44, 45] and GWA signals [46] between cancer and
NSOC. The presence of key cancer genes in the network
as hub cut-vertices (e.g. BRCA1) and enriched DNA

replication and repair GO and KEGG terms, support the
aetiological overlap of these concurrent diseases.

Prioritisation of GWAS genes

Among all genes identified through GWAS only (see
Supplementary Table S1), we prioritised MYC as the asso-
ciated gene at 8q24.21. This is due to the highly favourable
topological features of this gene in the network than any
other flanking gene. Also, given the suggested aetiological
overlap of NSOC with cancer and the genome-wide sig-
nificant association of multiple cancers with this locus [47],
this prioritisation seems more palpable. Interestingly, this
finding is further supported with a recent functional study
showing that MYC regulation by enhancers in the 8q24.21
locus is essential for normal facial morphogenesis [48].
Variant detection studies in large cohorts of patients may
validate this finding and explain, to some extent, the miss-
ing heritability of syndromic and nonsyndromic forms of
orofacial cleft, especially in syndromic patients – known for
their strong genetic predisposition – that are IRF6-negative.

Limitations

The global physical interactome and the TREEDUST reg-
ulatory interactome used here are inherently incomplete and
missing interactions are likely. Consistently, of the six
interactions identified in the literature among seeds, none
were reported in the combined physical interactome even
though all nodes were present in both the PPI and TREE-
DUST datasets. Furthermore, the five interactions that we
identified for IRF6 are not reported in either of the two
datasets for this well-studied NSOC gene. For instance, one
of the best established interactions has been demonstrated
between TFAP2A and IRF6 (with rs642961 as the only
aetiological SNP at the IRF6 locus present in the upstream
AP-2α binding site) [6], however, this interaction was
among those missing. This shows that further manual
curation of the literature is required to update the current
physical/regulatory interactome. Another limitation of
multi-omics integrated systems analysis for NSOC is the
inaccessibility of tissue samples representing the developing
palatal shelves. This may become scarcely available with
sporadic research-donated foetal tissue samples. However,
the human developmental biology resource (HDBR) [49],
which is an ongoing effort in human embryonic and foetal
tissue collection for scientific research, is likely to resolve
this issue in a more systematic way.

There is some evidence for subtype-specific genes in
NSOC [12], thus warranting independent systems analysis of
each subtype. However, the number of such genes is currently
not sufficient to allow appropriate network analysis. Never-
theless, increase in the identification of subtype-specific
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genes in the future will create the potential to reconstruct gene
networks of specific NSOC subtypes, which are known to be
aetiologically distinct [22].

Conclusion

In conclusion, we show that the reconstructed local network
of disease aetiology is a solid molecular framework to
address missing heritability of complex diseases by identi-
fying potential bona fide candidate genes and prioritise
genes in GWA loci based on topological parameters and the
level of dysregulation. It has been recently proposed that
mouse models, due to their high similarity in gene sig-
natures, may be a useful tool to unravel the underlying
heterogeneity of NSOC given that human studies are
cumbersome [23]. However, we show that this approach is
able to tackle this issue based on human data and impor-
tantly, does not require the translational step, which is often
not straightforward. A targeted gene sequencing panel
custom-designed to include the genes comprising the
reconstructed NSOC network would be able to validate the
extent of genetic heterogeneity explicated here.

Acknowledgements This study was supported by the Iran National
Science Foundation (INSF) with reference 92041708.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

1. Dixon MJ, Marazita ML, Beaty TH, Murray JC. Cleft lip and
palate: understanding genetic and environmental influences. Nat
Rev Genet. 2011;12:167–78.

2. Wyszynski DF, Duffy DL, Beaty TH. Maternal cigarette smoking
and oral clefts: a meta-analysis. Cleft Palate Craniofac J.
1997;34:206–10.

3. Mossey PA, Little J, Munger RG, Dixon MJ, Shaw WC. Cleft lip
and palate. Lancet. 2009;374:1773–85.

4. Ardinger HH, Buetow KH, Bell GI, Bardach J, VanDemark DR,
Murray JC. Association of genetic variation of the transforming
growth factor-alpha gene with cleft lip and palate. Am J Hum
Genet. 1989;45:348–53.

5. Leslie EJ, Marazita ML. Genetics of orofacial cleft birth defects.
Curr Genet Med Rep. 2015;3:118–26.

6. Rahimov F, Marazita ML, Visel A, et al. Disruption of an AP-
2alpha binding site in an IRF6 enhancer is associated with cleft
lip. Nat Genet. 2008;40:1341–7.

7. Zucchero TM, Cooper ME, Maher BS, et al. Interferon regulatory
factor 6 (IRF6) gene variants and the risk of isolated cleft lip or
palate. N Engl J Med. 2004;351:769–80.

8. Paranaiba LM, Bufalino A, Martelli-Junior H, de Barros LM,
Graner E, Coletta RD. Lack of association between IRF6 poly-
morphisms (rs2235371 and rs642961) and non-syndromic cleft lip
and/or palate in a Brazilian population. Oral Dis. 2010;16:193–7.

9. Pegelow M, Koillinen H, Magnusson M, et al. Association and
mutation analyses of the IRF6 gene in families with nonsyndromic
and syndromic cleft lip and/or cleft palate. Cleft Palate Craniofac
J. 2014;51:49–55.

10. Kerameddin S, Namipashaki A, Ebrahimi S, Ansari-Pour N. IRF6
is a marker of severity in nonsyndromic cleft lip/palate. J Dent
Res. 2015;94:226S–232S.

11. Nouri N, Memarzadeh M, Carinci F, et al. Family-based asso-
ciation analysis between nonsyndromic cleft lip with or without
cleft palate and IRF6 polymorphism in an Iranian population. Clin
Oral Investig. 2015;19:891–4.

12. Carlson JC, Standley J, Petrin A, et al. Identification of 16q21 as a
modifier of nonsyndromic orofacial cleft phenotypes. Genet Epi-
demiol. 2017;41:887–97.

13. Velazquez-Aragon JA, Alcantara-Ortigoza MA, Estandia-Ortega
B, et al. Association of interactions among the IRF6 gene, the
8q24 region, and maternal folic acid intake with non-syndromic
cleft lip/palate in Mexican Mestizos. Am J Med Genet A.
2012;158A:3207–10.

14. Green RM, Feng W, Phang T, et al. Tfap2a-dependent changes in
mouse facial morphology result in clefting that can be ameliorated
by a reduction in Fgf8 gene dosage. Dis Model Mech. 2015;8:31–
43.

15. McDade SS, Henry AE, Pivato GP, et al. Genome-wide analysis
of p63 binding sites identifies AP-2 factors as co-regulators of
epidermal differentiation. Nucleic Acids Res. 2012;40:7190–206.

16. Civelek M, Lusis AJ. Systems genetics approaches to understand
complex traits. Nat Rev Genet. 2014;15:34–48.

17. Manolio TA, Collins FS, Cox NJ, et al. Finding the missing
heritability of complex diseases. Nature. 2009;461:747–53.

18. Kousa YA, Schutte BC. Toward an orofacial gene regulatory
network. Dev Dyn. 2016;245:220–32.

19. Li J, Shi M, Ma Z, et al. Integrated systems analysis reveals a
molecular network underlying autism spectrum disorders. Mol
Syst Biol. 2014;10:774.

20. Ansari-Pour N, Razaghi-Moghadam Z, Barneh F, Jafari M. Testis-
specific Y-centric protein-protein interaction network provides
clues to the etiology of severe spermatogenic failure. J Proteome
Res. 2016;15:1011–22.

21. Dai J, Yu H, Si J, Fang B, Shen SG. Irf6-related gene regulatory
network involved in palate and lip development. J Craniofac Surg.
2015;26:1600–5.

22. Funato N, Nakamura M. Identification of shared and unique gene
families associated with oral clefts. Int J Oral Sci. 2017;9:104–9.

23. Kousa YA, Mansour TA, Seada H, Matoo S, Schutte BC. Shared
molecular networks in orofacial and neural tube development.
Birth Defects Res. 2017;109:169–79.

24. MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E,
et al. The new NHGRI-EBI Catalog of published genome-wide
association studies (GWAS Catalog). Nucleic Acids Res 2017;45:
D896–D901.

25. Namipashaki A, Razaghi-Moghadam Z, Ansari-Pour N. The
essentiality of reporting Hardy-Weinberg equilibrium calculations
in population-based genetic association studies. Cell J.
2015;17:187.

26. Kobayashi GS, Alvizi L, Sunaga DY, Francis-West P, Kuta A,
Almada BV, et al. Susceptibility to DNA damage as a molecular
mechanism for non-syndromic cleft lip and palate. PLoS One
2013;8:e65677.

27. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis
KJ, Scherf U, et al. Exploration, normalization, and summaries of
high density oligonucleotide array probe level data. Biostatistics
2003;4:249–264.

28. Tusher VG, Tibshirani R, Chu G. Significance analysis of
microarrays applied to the ionizing radiation response. Proc Natl
Acad Sci USA. 2001;98:5116–21.

Systems genetics of nonsyndromic orofacial clefting provides insights into its complex aetiology 233



29. Clark NR, Hu KS, Feldmann AS, Kou Y, Chen EY, Duan Q, et al.
The characteristic direction: a geometrical approach to identify
differentially expressed genes. BMC Bioinformatics 2014;15:79.

30. Kolde R, Laur S, Adler P, Vilo J. Robust rank aggregation for gene
list integration and meta-analysis. Bioinformatics. 2012;28:573–80.

31. Wang H, Qiu T, Shi J, Liang J, Wang Y, Quan L, et al. Gene
expression profiling analysis contributes to understanding the
association between non-syndromic cleft lip and palate, and can-
cer. Mol Med Rep 2016;13:2110–2116.

32. Chatr-Aryamontri A, Breitkreutz BJ, Oughtred R, Boucher L,
Heinicke S, Chen D, et al. The BioGRID interaction database:
2015 update. Nucleic Acids Res 2015;43:D470–478.

33. Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S,
Kumar S, Mathivanan S, et al. Human Protein Reference Data-
base–2009 update. Nucleic Acids Res 2009;37:D767–772.

34. Jiang C, Xuan Z, Zhao F, Zhang MQ. TRED: a transcriptional
regulatory element database, new entries and other development.
Nucleic Acids Res. 2007;35:D137–D140.

35. Han H, Shim H, Shin D, Shim JE, Ko Y, Shin J, et al. TRRUST: a
reference database of human transcriptional regulatory interac-
tions. Sci Rep 2015;5:11432.

36. Barabási A-L, Gulbahce N, Loscalzo J. Network medicine: a
network-based approach to human disease. Nat Rev Genet.
2011;12:56.

37. Bastian M, Heymann S, Jacomy M. Gephi: an open source soft-
ware for exploring and manipulating networks. International
AAAI Conference on Web and Social Media. 2009;8:361–2.

38. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast
unfolding of communities in large networks. J Stat Mech Theory
Exp. 2008;2008:P10008.

39. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D,
et al. Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res 2003;13:2498–
2504.

40. Dijkstra EW. A note on two problems in connexion with graphs.
Numer Math. 1959;1:269–71.

41. Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, et al.
PANTHER version 11: expanded annotation data from Gene
Ontology and Reactome pathways, and data analysis tool
enhancements. Nucleic Acids Res 2017;45:D183–D189.

42. Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR,
et al. TGFbeta primes breast tumors for lung metastasis seeding
through angiopoietin-like 4. Cell 2008;133:66–77.

43. Bille C, Winther JF, Bautz A, Murray JC, Olsen J, Christensen K.
Cancer risk in persons with oral cleft--a population-based study of
8093 cases. Am J Epidemiol. 2005;161:1047–55.

44. Andrade Filho PA, Letra A, Cramer A, Prasad JL, Garlet GP,
Vieira AR, et al. Insights from studies with oral cleft genes sug-
gest associations between WNT-pathway genes and risk of oral
cancer. J Dent Res 2011;90:740–746.

45. Frebourg T, Oliveira C, Hochain P, Karam R, Manouvrier S,
Graziadio C, et al. Cleft lip/palate and CDH1/E-cadherin muta-
tions in families with hereditary diffuse gastric cancer. J Med
Genet 2006;43:138–142.

46. Dunkhase E, Ludwig KU, Knapp M, Skibola CF, Figueiredo JC,
Hosking FJ, et al. Nonsyndromic cleft lip with or without cleft
palate and cancer: Evaluation of a possible common genetic
background through the analysis of GWAS data. Genom Data
2016;10:22-29.

47. Grisanzio C, Freedman ML. Chromosome 8q24–associated can-
cers and MYC. Genes Cancer. 2010;1:555–9.

48. Uslu VV, Petretich M, Ruf S, Langenfeld K, Fonseca NA, Mar-
ioni JC, et al. Long-range enhancers regulating Myc expression
are required for normal facial morphogenesis. Nat Genet
2014;46:753–758.

49. Lindsay S, Copp AJ. MRC–Wellcome Trust Human Develop-
mental Biology Resource: enabling studies of human develop-
mental gene expression. Trends Genet. 2005;21:586–90.

234 Z. Razaghi-Moghadam et al.


	Systems genetics of nonsyndromic orofacial clefting provides insights into its complex aetiology
	Abstract
	Introduction
	Methods
	NSOC gene set extraction
	Microarray whole-transcriptome data
	Global interactome data
	TREEDUST regulatory network generation
	Network reconstruction and topological analysis
	Functional enrichment analysis

	Results
	NSOC network reconstruction
	Network analysis
	Gene enrichment analysis

	Discussion
	Identification of bona fide candidate genes
	The aetiological overlap of NSOC with cancer
	Prioritisation of GWAS genes
	Limitations

	Conclusion
	Compliance with ethical standards

	ACKNOWLEDGMENTS
	References




