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Abstract
Although enormous costs have been dedicated to discovering relevant disease-related genetic variants, especially in genome-
wide association studies (GWASs), only a small fraction of estimated heritability can be explained by these results. This is
the so-called missing heritability problem. The conventional use of overly conservative multiple testing strategies based on
controlling the familywise error rate (FWER), in particular with a genome-wide significance threshold of P <5 × 10−8, is one
of the most important issues from a statistical perspective. To help resolve this problem, we performed comprehensive re-
assessments of currently available strategies using recently published, extremely large-scale GWAS data sets of rheumatoid
arthritis and schizophrenia (>50,000 subjects). The estimates of statistical power averaged for all disease-related genetic
variants of the standard FWER-based strategy were only 0.09% for the rheumatoid arthritis data and 0.04% for the
schizophrenia data. To design more efficient strategies, we also conducted an extensive comparison of multiple testing
strategies by applying false discovery rate (FDR)-controlling procedures to these data sets and simulations, and found that
the FDR-based procedures achieved higher power than the FWER-based strategy, even at a strict FDR level (e.g., FDR=
1%). We also discuss a useful alternative measure, namely “partial power,” which is an averaged power for detecting the
clinically and biologically meaningful genetic factors with the largest effects. Simulation results suggest that the FDR-based
procedures can achieve sufficient partial power (>80%) for detecting these factors (odds ratios of >1.05) with
80,000 subjects, and thus this may be a useful measure for defining realistic objectives of future GWASs.

Introduction

Due to advances in high-throughput technology in medicine
and molecular biology, enormous costs and resources have
been dedicated to discovering relevant disease-related
genetic variants, especially in genome-wide association
studies (GWASs) conducted over the past decade [1].

However, almost none of these studies could identify more
than several dozen variants so as to reach the genome-wide
significance level [2], and in many diseases only a small
fraction of the estimated heritability could be explained by
these variants, the so-called missing heritability problem
[3]. To overcome this issue, several “mega”-analyses have
aggregated large-scale GWAS data sets to gain statistical
efficiency (>50,000 subjects), but they were able to detect
only small numbers of additional significant variants [4–6].

Although these problems may be due to various complex
factors, statistical analysis strategies are among the most
important issues. In particular, multiple testing strategies
that control the familywise error rate (FWER) have been
typically applied in GWAS to adjust the multiplicity of
millions of statistical tests [2, 7, 8]. In principle, the FWER
criterion strictly controls the probability of having at least
one false positive in millions of tests, and geneticists should
generally recognize its inappropriateness regarding the pri-
mary purposes of GWAS, i.e., screening candidates with
relevant variants for further investigations. Other criteria
such as the false discovery rate (FDR) [9], the expected
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proportion of false positives to total significant results, have
been proposed and well discussed [10–12], but almost all
GWASs have still used FWER-controlling strategies (in
particular, the genome-wide significance threshold [2] of P
< 5 × 10−8).

In this article, we present a comprehensive re-assessment
of multiple testing strategies to gain insight into overcoming
the missing heritability problem from a statistical perspec-
tive. In particular, we conducted extensive comparisons of
currently available strategies using large-scale GWAS data
sets from recently published mega-analyses of rheumatoid
arthritis [4] and schizophrenia [5]. Surprisingly, our esti-
mates of statistical power indicated that even for the largest
data sets that had extensively aggregated the currently
available GWAS resources, the standard FWER-controlling
strategy (using the genome-wide significance threshold)
was able to discover less than 0.1% of the total relevant
genetic factors (see “Statistical power of the multiple testing
strategies for the large-scale GWAS data sets”). This sug-
gests the serious problem that most disease-related genetic
factors will not be identified if current GWAS practices are
continued, and much greater costs and resources will be
dedicated to future studies aggregating >100,000 subjects.
Specifically, we do not know for certain how efficient the
current multiple testing practices are, or how accurately
these methods can identify disease-related genetic factors
under the realistic conditions of current GWASs. If the
conventional frameworks do not work efficiently, it is time
that we consider changing the statistical analysis practices
used in GWASs.

To address these problems, we also conducted large-
scale simulation studies to evaluate the efficiency of mul-
tiple testing strategies, in particular estimating how large
statistical power will be if the same practices are continued
and the cumulative sizes of GWAS data sets become much
larger (~80,000 subjects). Although several simulation
studies comparing the effectiveness of multiple testing
procedures for GWASs have already been reported [13, 14],
these studies were small in scale, compared only a few
methods under limited conditions, and did not consider
highly polygenic diseases in which a number of disease-
related single nuclear polymorphisms (SNPs; >1% of all
SNPs) with modest effects (odds ratios (ORs) of <1.05)
contribute to disease risk. By contrast, we considered more
realistically scaled GWASs, with a total of several tens of
thousands of subjects with a million genotyped SNPs, and
focused on association studies of highly polygenic diseases
that are the main target of recent and future GWASs. Under
these conditions, we comprehensively compared the
expected statistical power of currently available multiple
testing strategies that have widely been used in genomics.

In addition, the estimated statistical power of large-scale
mega-analyses of GWASs (less than 0.1%; see “Statistical

power of the multiple testing strategies for the large-scale
GWAS data sets”) also suggests another relevant question,
namely, whether the objective of “discovering all (or a
certain large fraction) of disease-related genetic factors” is
achievable, at least under the realistic current practice
conditions of GWASs. This issue indicates that the con-
ventional statistical power index might not be adequate for
designing and assessing a practical strategy for GWASs. In
this article, we also discuss alternative useful measures [15]
for using extensive numerical evaluations to explore effi-
cient GWAS strategies.

Materials and methods

GWAS data sets

To evaluate the efficiency of multiple testing strategies in
current large-scale GWAS data sets, we used recently
published GWAS data sets of rheumatoid arthritis [4] and
schizophrenia [5]. These data sets were obtained from the
largest-scale meta-analysis and “mega”-analysis (joint ana-
lyses of pooled individual-level data) of these diseases,
respectively, with a total of >50,000 subjects and combining
several GWAS data sets. For the rheumatoid arthritis data
set, we used a data set from a GWAS meta-analysis of four
studies of Asian populations. Also, the GWAS of schizo-
phrenia was conducted in individuals of European ancestry.
The potential population substructure was corrected by
principal components analysis in each study [4, 5]. The
numbers of SNPs used in the evaluation are 6,318,961 for
the rheumatoid arthritis data set and 1,252,901 for the
schizophrenia data set. For details, see Section A in
the Supplementary Notes.

Multiple testing strategies

Due to the overly conservative principles of the standard
FWER-controlling strategy, which strictly controls the
probability of having at least one false positive, approaches
based on the FDR have been widely discussed and practi-
cally applied in other fields (e.g., gene expression micro-
array analyses [16]) as an alternative, but comprehensive
assessments of these strategies in the context of current
GWASs have not been well investigated. To evaluate their
applicability, we conducted extensive comparisons of cur-
rently available strategies by applying them to the current
GWAS data sets and simulation studies. We assessed not
only the performance of the FWER-controlling strategy, but
also those of five FDR-controlling procedures chosen as
representatives of various FDR frameworks involving two
frequentist FDR algorithms: the Benjamini–Hochberg pro-
cedure [9] and Storey’s procedure [11, 17]; the optimal
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discovery procedure [18, 19]; “Locfdr [20, 21],” an
empirical Bayes approach; and a recently developed
Wakefield’s Bayesian method for GWASs [22–24]. We
implemented these procedures in the R Statistical Pro-
gramming Language (available at https://www.r-project.
org/) using widely distributed optional packages (see Sec-
tion B in the Supplementary Notes for details).

Power diagnostics

To assess the efficiency of the various testing strategies, we
considered two types of statistical power measures, con-
sidering especially the definition of achievable objectives
under realistic GWAS situations. First, we considered the
conventional averaged power [25, 26], referred to as
“overall power,” defined as the expected proportion of true
positives among true alternatives for a given significance
criterion. This power can be used to estimate the potential
discoveries of future GWASs as conducted in recent studies
[27, 28], and provides a usual measure in that it reflects the
intent to detect all disease-related genetic factors regardless
of their effect sizes. However, the estimated overall power
of the standard FWER-controlling strategy for large-scale
mega-analyses of GWASs was extremely low (less than
0.1%; see “Statistical power of the multiple testing strate-
gies for the large-scale GWAS data sets”), and it would
generally be difficult to detect all relevant factors for
practically acceptable sample sizes (even if they exceed
100,000). These facts suggest that the overall power might
not be adequate for defining realistic objectives of GWASs.

A practical compromise for addressing this issue would
be to consider that detecting genetic factors with the largest
effect sizes is more important than detecting others with
smaller effect sizes. Geneticists and clinicians have parti-
cular interest in such factors in order to elucidate disease
biology or develop effective risk prediction algorithms.
Therefore, we could also consider an alternative measure
that focuses on disease-related genetic factors with large
effect sizes. Matsui and Noma [15] proposed another useful
measure, “partial power,” that is defined as the averaged
power of all genetic factors with effect sizes larger than a
pre-specified threshold. Naturally, the statistical power for
individual variants differs according to these variants’ effect
sizes, and sufficient averaged power could be achieved by
focusing in particular on the largest subsets of the disease-
related variants under practically feasible sample sizes (see
“Simulation studies for evaluating statistical power for
future GWASs”). In addition, this is a rather realistic
objective that geneticists and clinicians have already aimed
toward, and would provide a new perspective for designing
GWAS strategies. In practice, the partial power can be used
in the same way as the overall power for designing studies
and for assessing efficiency [27]. We evaluated these power

indices under specified levels of FDR. To estimate these
measures under general GWAS settings, we can obtain
model-based estimates under an empirical Bayes framework
based on a semi-parametric hierarchical mixture model [15,
29] (see Sections C and D in the Supplementary Notes for
technical details).

Simulation studies for evaluating false positive
rates and statistical power

Based on the preceding discussion, we evaluated the effi-
ciency of multiple testing strategies in detail by conducting
comprehensive simulation studies that imitated large-scale
mega-analyses of GWASs of polygenic diseases. In parti-
cular, we investigated the expected sizes of statistical power
if current practices are further continued and the cumulative
sizes of GWAS data sets become much larger. PLINK [30]
(available at http://pngu.mgh.harvard.edu/~purcell/plink/)
was used to generate a large-scale GWAS data set for
case–control studies. The number of SNPs was set at
1,000,000 throughout the simulations. We considered equal
numbers of cases and controls, with sample sizes of N=
10,000, 20,000, …, 80,000. Note that all simulated SNPs
were in linkage equilibrium and were independent of each
other. This situation approximately corresponds to con-
ducting multiple testing after linkage disequilibrium (LD)-
based SNP pruning. Uniform distribution of minor allele
frequencies was assumed. The disease prevalence was
assumed to be 1%. To assess the efficiency with respect to
each disease type, we considered two representative disease
scenarios, (1) a minimally polygenic disease and (2) a
highly polygenic disease, by reference to existing estimates
of effect size distributions of disease-associated SNPs for
complex diseases [28, 31]. Supplementary Figure 1 shows
the distributions for both scenarios. In the minimally poly-
genic disease that models diseases like rheumatoid arthritis
[31], a small proportion of the SNPs (20,000 SNPs) are
associated with disease risk and almost all relevant SNPs
have large effect sizes. On the other hand, in the highly
polygenic disease that models diseases like schizophrenia
[28], a large proportion of the SNPs (83,000 SNPs) with
modest effect sizes (ORs of <1.05) are associated with
disease risk. Genotypes were generated with these settings
assuming Hardy–Weinberg equilibrium in the population,
and then the allelic association test (χ2 test with 1 degree of
freedom applied to the 2 × 2 table of case–control allele
counts) [7] was conducted for each SNP to obtain summary
statistics using the “--assoc” option of PLINK. Although
conventional GWAS analysis uses linear or logistic
regression to deal with covariates, we did not consider
effects of covariates and used the χ2 test. Under these
conditions, we generated 3600 independent simulated data
sets and applied the multiple testing strategies to examine
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the actual numbers of true and false positives. Then, we
empirically estimated the statistical power and the FDR by
aggregating these results.

Furthermore, we conducted additional simulations to
assess the statistical power with more realistic assumptions
of LD structure and the distribution of minor allele fre-
quency (see Section F in the Supplementary Notes for
details). The same effect size distributions of disease-related
SNPs in the simplistic simulation were considered. We
generated genotype counts for SNPs from a multinomial
distribution assuming the Hardy–Weinberg equilibrium for
genotype frequencies in a general population. We assumed
that the physical distance between each SNP was 3 kb and
that SNPs in a 30-kb region around an SNP (15-kb
upstream and 15-kb downstream) were in LD with the SNP,
i.e., 10 SNPs were in LD with the SNP. The strength of the
LD and the distribution of allele frequencies were deter-
mined based on the actual data derived by the 1000 Gen-
omes Project [32]. Effect sizes of LD SNPs were
determined using LD coefficients and allele frequencies
based on relevant-related studies of Zondervan and Cardon
[33] and Ackerman et al. [34]. Summary statistics were
obtained by logistic regression using the generated geno-
type counts.

Results

Comparison of the number of significant results in
analyses of large-scale GWAS data sets

We compared the number of SNPs that were declared as
significant by each multiple testing strategy under the
nominal FWER/FDR levels for the two GWAS data sets of
rheumatoid arthritis and schizophrenia (Table 1). Bonfer-
roni correction detected 149 significant SNPs for the

rheumatoid arthritis data set and 128 for the schizophrenia
data set at FWER= 5% due to the conservative property of
the FWER-controlling approach. On the other hand, the
FDR-controlling strategies detected >300 significant SNPs
for the rheumatoid arthritis data set and >700 for the schi-
zophrenia data set, even under relatively strict levels (FDR
= 1%). In fact, since several hundred additional SNPs were
declared as significant with the FDR-based approaches, if
the two GWAS studies had used these strategies their
conclusions would have been different. Also, the number of
SNPs detected using the optimal discovery procedure
(ODP) was much larger than with other methods at the same
FDR, since the ODP provides the optimal significance
ranking for maximizing the expected true positives under
fixed expected false positives. Further, Wakefield’s Baye-
sian procedure declared the greatest number of SNPs as
significant, but the estimated FDRs were quite different
among different prior probability settings, and it is unclear
based on these results whether the FDR is accurately con-
trolled by this method (see also “Simulation studies for
evaluating actual rates of false positives”). Such incon-
sistency would confuse geneticists and clinicians, and most
practitioners would not be able to determine with certainty
how a proper prior probability was selected in practical
situations.

Statistical power of the multiple testing strategies
for the large-scale GWAS data sets

We evaluated the efficiency of the standard FWER-
controlling strategy and the FDR-controlling strategies for
the largest data sets of rheumatoid arthritis and schizo-
phrenia that extensively aggregated the currently available
GWAS resources. To evaluate the efficiency, we estimated
the statistical power of these strategies for both data sets.
Figure 1 shows the estimated overall and partial power for

Table 1 The numbers of SNPs declared as significant by each procedure for the two data sets under nominal FWER/FDR level α

α Bonferroni BH ST ODP Locfdr WBF

π1= 0.01 π1= 0.1 π1= 0.2

(a) Rheumatoid arthritis

0.01 125 770 770 718 334 1259 3347 4609

0.05 149 1215 1215 1637 918 2272 7873 12,570

0.10 177 2218 2218 2691 1474 3460 12,329 23,156

0.20 193 3576 3576 4859 2650 5141 24,212 47,359

(b) Schizophreni

0.01 57 759 776 777 738 822 1746 2494

0.05 128 1560 1693 2207 1683 1352 3853 5964

0.10 156 2939 3221 4889 3086 1826 5884 9665

0.20 211 6050 7112 14,289 7409 2754 10,156 17,954

BH Benjamini–Hochberg, ST Storey, ODP optimal discovery procedure, WBF Wakefield’s Bayesian framework
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the two data sets versus estimated FDR levels. These esti-
mated powers can be used to assess the statistical power of
the standard FWER-controlling strategy as well as those of
the frequentist FDR algorithms [9, 11, 17] in which a P
value threshold is used to declare SNPs as significant (see
Section D in the Supplementary Notes). The dashed line
indicates the estimated FDR level of the genome-wide
significance criterion (0.0061 for rheumatoid arthritis and
0.0011 for schizophrenia). At first, the overall power for
both data sets was extremely low; the power of the FWER-
controlling strategy (using the genome-wide significance
threshold [2] of P < 5 × 10−8) was estimated as only 0.09%
for the rheumatoid arthritis data set and 0.04% for the
schizophrenia data set. These estimates suggest a serious
problem, namely that almost none of the disease-related
genetic factors would be detected by the conventional
strategy even if the largest-scale currently available data sets
were used. On the other hand, for the FDR-controlling
procedure, the overall power was slightly improved but was
still low (less than 1% at FDR= 5%). These results indicate
that it will be impossible to detect all disease-related genetic
variants if the current GWASs practices are continued, even
if significantly more costs and resources are dedicated. The
primary reasons for these extremely underpowered results
are that most of the disease-related SNPs have modest
effects. In Supplementary Figure 2, we present the esti-
mated distributions of effect sizes of disease-related SNPs
derived using the empirical Bayes framework (see Section

C in the Supplementary Notes), and show that in fact almost
all SNPs had modest effect sizes (ORs of <1.05) for these
data sets.

On the other hand, the partial power reached relatively
high levels, and SNPs with comparably large effect sizes
could be successfully detected under reasonable FDR
levels; for example, at FDR= 5%, the partial power to
detect disease-related SNPs with an OR > 1.1 was estimated
to be more than 20% for the rheumatoid arthritis data set
and more than 75% for the schizophrenia data set. Such
high levels of the partial power compared to the extremely
low levels of the overall power might be satisfying for many
practitioners, and almost all genetic factors with the largest
effects would be detectable under the practically feasible
scales of GWASs. Further, these factors might be more
clinically and biologically meaningful than others with
smaller effects, and most researchers might be implicitly
focusing on detecting these factors in current studies.

Simulation studies for evaluating actual rates of
false positives

We assessed the actual false positives rates of each multiple
testing procedure via simulations. Figure 2 shows the actual
FWER/FDR levels estimated from the simulation results
versus desired levels. Bonferroni correction, the
Benjamini–Hochberg procedure, Storey’s procedure, and
the ODP properly controlled false positives to nominal

Fig. 1 Plots of estimated overall and partial power (OR ≥ 0.15 and
OR ≥ 1.1) for the two data sets. The dashed lines are the estimated
FDR levels of the genome-wide significance criterion (0.0061 for
rheumatoid arthritis and 0.0011 for schizophrenia). The estimated
number of associated SNPs was 238079 (3% of all SNPs) for rheu-
matoid arthritis and 340221 (27%) for schizophrenia. The estimated

numbers of associated SNPs with ORs greater than 1.05 and 1.1 were
21421 (0.34%) and 2290 (0.04%) for rheumatoid arthritis, and 2762
(0.22%) and 390 (0.03%) for schizophrenia, respectively. Note that the
number of independently associated SNPs should be much smaller
than these estimates since the SNPs are in LD
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FWER/FDR levels. The validity of these frequentist meth-
ods for GWASs have been examined previously [13, 14].
However, Wakefield’s procedure produced inflated false
positives under improper prior probability settings (π1= 0.1
and 0.2 for the minimally polygenic disease, and π1= 0.2
for the highly polygenic disease). This possibly suggests
that the Bayesian estimates of the FDR are very sensitive to
the prior probability and therefore require careful specifi-
cation in practical use. Also, the Locfdr procedure failed to
properly control false positives. For these reasons, we
checked that the marginal distributions of test statistics for
the null/non-null components were possibly not accurately
estimated via the nonparametric estimation method imple-
mented in this procedure (data not shown). The Locfdr
approach might be unstable when applied to GWASs.

Simulation studies for evaluating statistical power
for future GWASs

We also conducted large-scale simulation studies to evalu-
ate the efficiency of the multiple testing strategies discussed
above, in particular to predict how large the overall/partial
power of each strategy would be if the cumulative sizes of
GWAS data sets become much larger in future studies. Note
that the simulation results of Wakefield’s procedure are not
shown because the results fluctuated widely due to assumed
priors (see “Simulation studies for evaluating actual rates of
false positives”).

Figure 3 shows plots of empirically estimated overall and
partial power versus sample sizes for the two disease

scenarios. The FWER-controlling Bonferroni correction
required a huge sample size to achieve high overall power
levels. In particular, for the highly polygenic disease it
would be impossible to achieve sufficient power with the
FWER-controlling strategy for practically feasible sample
sizes; the estimated overall power of this strategy was only
13% for this scenario, even if 80,000 subjects were aggre-
gated. As suggested by these results, the extremely low
power for current available GWAS data sets (less than
0.1%) can be improved by aggregating many more
resources, but the levels would still be too low to detect all
disease-related genetic factors. On the other hand, the FDR
procedures can achieve improved power; for example, the
ODP achieved an overall power of 45% for the highly
polygenic disease scenario at FDR= 5% with 80,000 sub-
jects. Although it is difficult to detect all disease-related
factors regardless of their effect sizes, such a high power
level might be satisfying for many practitioners, and these
strategies may be useful alternatives to the standard FWER-
controlling strategy. Furthermore, the partial power to
detect disease-related SNPs with ORs of >1.05 reached
>80% for both scenarios using FDR-controlling strategies.
These results would provide a completely different per-
spective compared to the conventional overall power mea-
sures in terms of assessing efficiency and designing future
studies. Almost all disease-related factors with large effects
can be detected by the FDR-controlling strategies if the
cumulative sizes of GWAS data sets become much larger, a
realistic objective for future studies. Further, the magnitudes
of the estimated partial powers for SNPs with ORs of >1.05

Fig. 2 Actual FWER/FDR levels versus desired levels for both disease
scenarios. Empirically estimated FWER are plotted for Bonferroni
correction, and estimated FDR are plotted for other procedures.
Sample size N= 40,000 was assumed. The black solid line

corresponds to exactly controlled error rates; conservative results are
below this line, and liberal results are above this line. BC Bonferroni
correction, BH Benjamini–Hochberg, ST Storey, LF Locfdr, ODP
optimal discovery procedure, WBF Wakefield’s Bayesian framework
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using the current GWAS data sets were relatively small
(Fig. 1), but these will be sufficiently improved by accu-
mulating samples and almost all clinically and biologically
meaningful SNPs will be detected using these strategies.

Table 2 shows a comparison of the overall power for
both scenarios under nominal significance levels if

40,000 subjects are assembled. For both scenarios, the
overall power of the Bonferroni correction was very low
due to its very conservative properties, while the FDR-
controlling procedures were more powerful. Also, the
overall power of the ODP was consistently much larger at
the same FDR than those of other frequentist methods.

Fig. 3 Empirically estimated overall/partial power versus sample sizes.
FWER/FDR level α= 0.05 and a million SNPs were assumed. Note
that Bonferroni correction is identical to the genome-wide significance

criterion under this setting. BC Bonferroni correction, BH
Benjamini–Hochberg, ST Storey, LF Locfdr, ODP optimal discovery
procedure
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Many practitioners implicitly evaluate the priorities of
individual SNPs based on their P values, but these results
suggest that this is not optimal and that improved power can
be achieved by ranking based on the ODP statistics. Table 3
shows a comparison of the partial power for both scenarios
under nominal significance levels. High partial power
values were achieved compared to the overall power; for
example, the Benjamini–Hochberg procedure and Storey’s
procedure achieved a partial power of >80% at FDR= 1%.
However, the ODP showed slightly lower partial power
than the other FDR-controlling procedures, perhaps because
this procedure maximizes the number of expected true
positives regardless of the effect sizes of each relevant SNP,
which is not the optimal method for maximizing partial
power. For these purposes, alternate methods would be
optimal in practice.

Figure 4 shows plots of empirically estimated overall/
partial power versus sample sizes for the two disease sce-
narios under more realistic assumption of LD structure and

the distribution of minor allele frequency. Although the
estimated statistical powers were lower than the results from
the simplistic simulations, the relative ranking of perfor-
mance of each testing strategy was consistent. The lower
power was mainly due to the assumption of the distribution
of minor allele frequency; the minor allele frequency of
almost all SNPs was assumed to be <0.1 in these simula-
tions instead of the uniform distribution in the simplistic
simulations (see Section F in the Supplementary Notes).

Discussion

In this article, we performed a comprehensive re-assessment
of multiple testing strategies to gain insight into overcoming
the missing heritability problem from a statistical perspec-
tive. In particular, we estimated the statistical power of the
current standard FWER-controlling strategies and found
that it was extremely low even for the current largest-scale
mega-analyses of GWASs. Moreover, it will be difficult to
substantially increase power even if many more GWAS
resources are aggregated in future studies. Recently pub-
lished mega-analyses aggregated large-scale resources from
a total of >100,000 subjects [4, 6], but the number of
relevant genetic variants identified by these studies was
much smaller than expected [28, 31]. These results and our
power estimates suggest that most disease-related genetic
factors will not be identified if the current practices are
continued in future studies.

The FDR-based strategies may be promising alternatives,
but these have not been used in GWASs, in contrast to their
wide use in microarray experiments [16]. One reason is that
the proportion of true associations in GWASs is thought to
be very small. If this is the case, there is no remarkable
difference between the FDR and the FWER because almost
all null hypotheses are true (the FDR is exactly equivalent
to the FWER if all null hypotheses are true [9]). Another
reason is that conventional FDR-controlling procedures
cannot appropriately control the actual proportion of false
positives within a study when only a few true associations
exist [35]. However, as suggested by our efficiency
assessments, these strategies might be efficient for GWASs
of polygenic traits in which the proportion of true associa-
tions is much larger than was expected in past studies. Even
though we only considered GWASs with several million
SNPs in this study, similar results would be expected for a
GWAS with more than 10 million SNPs if the proportion of
true associations is as sufficiently large as that in our
simulation studies. Each procedure used in this study can be
executed within a realistic computation time, even in such
large-scale studies. Although one might be concerned about
absolute false-positive rates due to the huge number of
simultaneous tests in GWASs, these rates are properly

Table 2 Overall power for both disease scenarios under nominal
FWER/FDR level α and sample size N= 40,000

α Bonferroni BH ST ODP Locfdr

(a) Minimally polygenic disease

0.01 0.104 0.427 0.428 0.434 0.412

0.05 0.140 0.530 0.531 0.536 0.533

0.10 0.158 0.579 0.580 0.585 0.592

0.20 0.177 0.632 0.634 0.639 0.651

(b) Highly polygenic disease

0.01 0.033 0.147 0.150 0.155 0.124

0.05 0.041 0.221 0.225 0.232 0.200

0.10 0.045 0.269 0.274 0.281 0.257

0.20 0.050 0.333 0.341 0.348 0.341

BH Benjamini–Hochberg, ST Storey, ODP optimal discovery
procedure

Table 3 Partial power (OR ≥ 1.1) for both disease scenarios under
nominal FWER/FDR level α and sample size N= 40,000

α Bonferroni BH ST ODP Locfdr

(a) Minimally polygenic disease

0.01 0.508 0.805 0.805 0.799 0.797

0.05 0.570 0.851 0.851 0.849 0.852

0.10 0.595 0.870 0.871 0.871 0.875

0.20 0.620 0.890 0.891 0.894 0.897

(b) Highly polygenic disease

0.01 0.607 0.846 0.848 0.828 0.827

0.05 0.655 0.887 0.889 0.869 0.877

0.10 0.675 0.905 0.906 0.888 0.900

0.20 0.694 0.923 0.925 0.909 0.925

BH Benjamini–Hochberg, ST Storey, ODP optimal discovery
procedure
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controlled by specifying a strict FDR level (for example,
FDR < 1%), and the FDR-based strategies would be able to
detect a larger number of disease-related variants than the
genome-wide significance threshold even under this con-
dition. Also, among the FDR-controlling procedures com-
pared in this study, the ODP showed the best performance

in terms of the overall power index, and therefore this
procedure should provide the most efficient screening
strategies in multi-stage GWASs. In typical multi-stage
GWASs, candidate SNPs to be validated in further analysis
are usually selected based on a naive P value ranking, or on
thresholding with a less stringent significance level (for

Fig. 4 Overall/partial power versus sample sizes estimated from the
simulations with a more realistic genomic property. FWER/FDR level
α= 0.05 and a million SNPs were assumed. Note that Bonferroni

correction is identical to the genome-wide significance criterion under
this setting. BC Bonferroni correction, BH Benjamini–Hochberg, ST
Storey, LF Locfdr, ODP optimal discovery procedure
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example, P < 10−6). These strategies, however, are not
optimal in terms of maximizing the number of expected true
positives under the fixed number of expected false positives
[18, 19]. ODP statistics give the optimal ranking, and
should be efficient in the early stage screening of candidate
SNPs for further investigations.

The result of the additional simulation study with a more
realistic assumption of LD structure and the minor allele
frequency distribution showed a loss of statistical power for
each strategy, although the FDR-based strategies con-
sistently showed better performance than the FWER-based
strategy. The main reason for the loss of power is the
assumption of lower minor allele frequency for each SNP in
the simulation. Another reason is the assumption of LD
structure since all strategies considered in this study work
most efficiently if tests are independent, i.e., SNPs are not in
LD (see Section B in the Supplementary Notes). On the
other hand, the relative ranking of each strategy obtained
from the simulation was similar to the ranking from the
simplistic simulations, and the ODP consistently showed
the best performance. This might be due to the fact that the
optimality of the ODP also holds under arbitrary depen-
dence [18] (see Section E in the Supplementary Notes).

However, note that differences of estimated power
between each FDR-based strategy were small, although the
relative ranking of each strategy was consistent in the
simulation studies. These results suggest that the observed
relative ranking may not hold for real GWASs. Therefore,
in practical applications, validity of assumptions of each
procedure on real genomic data should be carefully con-
sidered to select the best strategy.

The FDR-based strategies will be able to achieve
improved power, and this might be satisfying for practi-
tioners. However, for highly polygenic diseases in which
almost all disease-related genetic factors have modest
effects, it will be impossible to discover all such factors for
practically available sample sizes under a reasonable FDR
level. One practical compromise would be to focus on
identifying genetic variants with comparably large effects
that are clinically meaningful, and the partial power [15]
provides a convenient measure for assessing the perfor-
mance of screening strategies in this context. Our simula-
tion results suggest that the FDR-based strategies can
achieve sufficient partial power (>80%) for detecting
genetic factors with the largest effects (ORs of >1.05) under
practically feasible sample sizes (80,000 subjects), and they
may be useful measures for redefining realistic objectives of
future GWASs.

In addition, in our simulation studies, we set the effect
size distributions by referencing estimates derived from the
current large-scale GWASs [28, 31] (Supplementary Fig-
ure 1). These studies used the validated estimating method
outlined by Stahl et al. [31]. However, there are other

plausible biological models, e.g., an L-shaped model, where
the frequency of associated SNPs increases as the effect size
decreases. Future studies with applicable real data are
important to further our understanding. Moreover, the use
of partial power is a potentially effective tool for assessing
the number of genes that are likely to be clearly identified
and have noticeable biological functions. We should further
assess these models and tools to determine effective stra-
tegies for GWAS and whether choosing to search for all
genes, even those with small effects, is worth the significant
cost and effort.

As demonstrated in this article, the conventional statis-
tical frameworks for GWASs have limitations, and the
missing heritability problem might never be resolved
without reconsideration of current practices. Investigators
should recognize these facts and possibly change their
strategies to overcome this relevant problem.
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