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Abstract
CHARGE syndrome is a rare genetic disorder mainly due to de novo and private truncating mutations of CHD7 gene. Here
we report an intriguing hot spot of intronic mutations (c.5405-7G>A, c.5405-13G>A, c.5405-17G>A and c.5405-18C>
A) located in CHD7 IVS25. Combining computational in silico analysis, experimental branch-point determination and in vitro
minigene assays, our study explains this mutation hot spot by a particular genomic context, including the weakness of the
IVS25 natural acceptor-site and an unconventional lariat sequence localized outside the common 40 bp upstream the acceptor
splice site. For each of the mutations reported here, bioinformatic tools indicated a newly created 3’ splice site, of which the
existence was confirmed using pSpliceExpress, an easy-to-use and reliable splicing reporter tool. Our study emphasizes the
idea that combining these two complementary approaches could increase the efficiency of routine molecular diagnosis.

Introduction

CHARGE syndrome ((CS), MIM#214800) refers to a rare
autosomal dominant polymalformative syndrome due to
haploinsufficiency of the gene encoding chromodomain
helicase DNA-binding protein 7 (CHD7, MIM*608892).
Most CHD7 mutations are truncating 1] while missense
mutations are present in 8% of cases. Intronic variations not
affecting the canonical dinucleotides of the acceptor or
donor splice sites are difficult to interpret. Bioinformatic
prediction tools exist to evaluate their putative impact on the
splicing mechanism but require experimental procedures to
be confirmed. In vitro experiments like minigene assays

could be a reliable option. pSpliceExpress 2] is an efficient
vector allowing fast generation of splicing reporter con-
structs that use direct recombination between PCR products
of the patient’s genomic DNA and a modified Exontrap
vector. In this work, we report a series of 22 CS patients
carrying one of the following nucleotide variations located
in CHD7 IVS25: c.5405-7G>A (rs398124321), c.5405-
13G>A (rs1131690787), c.5405-17G >A (rs794727423)
and c.5405-18C >A (rs199981784). The four variations
were predicted to create a new 3’ splice site (3’ss). Accu-
mulation of such variations within IVS25 was surprising
because most CHD7 mutations are private in CS and only a
few recurrent nonsense or complex frameshift mutations
have previously been reported.

Material and methods

Patients and molecular genetics data

We studied by routine molecular diagnosis [3, 4] 23 patients
with clinical CS according to Verloes’ updated diagnostic
criteria. CHD7 NM_017780.2 and NG_007009.1 were used
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respectively for nucleotide reference and exon numbering.
All variants reported here are submitted in clinvar database
(https://www.ncbi.nlm.nih.gov/clinvar/) and could be
viewed using the following accession number:
SCV000579497 (c.5405-2A >G), SCV000579496 (c.5405-
7G>A), SCV000575887 (c.5405-13G >A),
SCV000579495 (c.5405-17G>A) and SCV000575888
(c.5405-18C>A). CS patients described in this study and
their corresponding variants were also submitted in CHD7
database (https://molgenis51.gcc.rug.nl/) under the follow-
ing references: M1345 (c.5405-2A>G), patient 1131;
M184 (c.5405-7G >A), patients 1119 to 1130; M1346
(c.5405-13G>A), patient 1118; M41 (c.5405-17G >A),
patients 1111 to 1117 and M1352 (c.5405-18C >A),
patients 1109 to 1110.

Software prediction tools

All software is freely available and listed in Supplementary
table 1. A brief description of each program and the settings
used for splicing analysis is detailed in Supplementary
material and methods.

Generation of minigene reporter

We used pSpliceExpress construct, according to the authors
experimental procedure 2] (see Supplementary material and
methods for details). The different steps of minigene gen-
eration are summarized in Fig. 1a. PCR primers are listed in
Supplementary table 2.

Minigene product analysis using fluorescent capillary
electrophoresis

RT-PCR fragments were obtained with E2F and E3R dye
labeled primers using a limited number of cycles so that the
DNA yield generated in the exponential step could be
comparable between different samples. After PCR, ampli-
cons were differentiated in size by capillary electrophoresis
using an ABI PRISM 3130 DNA sequencer (ThermoFisher
Scientific, Courtaboeuf, France). Data were visualized using
genemapper software (ThermoFisher Scientific).

Lariat RT-PCR to determine the branch point

We performed nested lariat RT-PCR according to Gao et al
5] (see Supplementary material and methods for details) to
amplify a fragment spanning the 2’-5’ phosphodiester bond
at the branch-point. Lariat RT-PCR was performed using
primers C and D for the first round and primers A and B for
the second round (Fig. 2b).

Results

Clinical findings

All 23 probands in our series fulfilled the diagnostic criteria
of CS defined by Verloes 6] (Supplementary table 3).
Eighteen had typical CS. In the two familial cases (cases 3a
and 6a, Supplementary figure 1, Supplementary clinical
data and Supplementary table 4), index cases had a typical
CS and inherited c.5405-17G >A variation from their
mildly affected mothers that failed to fulfill Verloes’ diag-
nostic criteria.

In silico splice site prediction

We used 8 freely available bioinformatic tools particularly
MaxEntScan 7] and Human Splicing Finder 8] (HSF). As
depicted in Supplementary table 5, several tools did not
detect the native 3’ss. c.5405-7A>G was clearly revealed
as a splicing mutation by HSF only. Other mutations were
more easily detected by all software.

Minigene product splicing assays

Minigene analysis was performed by RT-PCR (Fig. 1a) and
the amplification products were analyzed by fluorescent
capillary electrophoresis (Fig. 1b). The four intronic muta-
tions showed a higher amplicon size than the one obtained
for the wild type sequence (391 bp) ranging from 396 to
407 bp. The 261 bp amplicon, corresponding to an alter-
native splicing between exon 2 and exon 3 of rat Insulin
gene, could be observed in each RT-PCR sample. Direct
sequencing of each RT-PCR product confirmed prediction
software analysis (Fig. 1c). The 4 IVS25 variations intro-
duced respectively 5, 11, 15, and 16 intronic bp at 5’ end of
exon 26. Electropherograms did not show any trace of wild
type exon 26 sequence. Three of these variations, c.5405-
7G>A, c.5405-13G>A and c.5405-18C>A, led to fra-
meshift mutations which could be named respectively p.
(Gly1802fs), p.(Tyr1803fs) and p.(Tyr1803fs). Only
c.5405-17G >A variation induced an in-frame five amino
acid insertion, p.(His1801_Gly1802insAspGlyHisGlyThr).
Furthermore c.5405-2A >G variation (patient 23) disrupt-
ing native 3’ss is characterized by a shorter CHD7 exon 26
(Fig. 1b), suggesting the use of a cryptic 3’ss localized
within exon 26, a finding confirmed by DNA sequencing.

Branch point analysis

Branch-point (BP) position was obtained from a genome
wide study providing the first map of splicing BP in the
human genome 9]. Through exploration, we found a puta-
tive BP at chr8:g.61762997A, corresponding to c.5405-

288 M. Legendre et al.

https://www.ncbi.nlm.nih.gov/clinvar/
https://molgenis51.gcc.rug.nl/


a c

b

Fig. 1 CHD7 IVS25 recurrent mutation analysis by minigene assays.
A- Schematic representation of CHD7 exon 26 and its flanking regions.
The last 21 nucleotides of IVS25 DNA sequence are indicated in lower
cases and the consensus acceptor splice site in bold. The first nucleotides
of exon 26 appear in upper case. Double arrows indicate different lengths
in base pair. Simple arrows show the localization of PCR primers used
for minigene generation (B1 and B2 refer to the attB1 and attB2 DNA
sequences which were added in 5’ end of forward and reverse primers
respectively). Overview of minigene assays using pSplice Express. Step
1 Amplification of the region of interest (amplicon of 624 bp). Two
primers forward and reverse are used to amplify a part of the genomic
DNA that harbors exon of interest (hatched rectangle) and its flanking
intronic region (around 200 bp). The primers have recombination sites
(AttB1, AttB2) that are indicated by circles. Step 2: Construction of the
splicing reporter using pSpliceExpress. The PCR fragment is recombined
in vitro with pSpliceExpress vector. The vector contains Cm and ccdB
selection markers that are used to isolate recombined clones. The inserted

DNA is flanked by two constitutive rat insulin exons, indicated by
checkered rectangle. The transcript is driven by a RSV LTR promoter
(full black arrow) and the subcloned genomic fragment flanked by attL
sites, which are generated by the recombination of attB and attP sites.
Step 3: Analysis of the splicing reporter. The minigene construct is
transfected into HeLa cells. The RNA generated is determined by RT-
PCR, using E2F and E3R primers (indicated by small arrows). The
mRNA structures, indicated below the gene structure are expected to be
generated by the construct. The range of amplicon length is indicated
above double arrows. B- Minigene analysis of all recurrent IVS25
mutations by RT-PCR by fluorescent capillary electrophoresis. 380 to
407 bp PCR products correspond to CHD7 exon 26 minigenes, 261 bp
amplicon corresponds to an alternative splicing between exon 2 and exon
3 of rat Insulin gene. C- cDNA organization and DNA sequencing of
each RT-PCR amplicon obtained from each minigene analysis. Letters in
bold indicate, for each minigene, the CHD7 protein sequence encoded by
exon 26
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55A. To confirm this finding obtained by RNA-seq, we
used the lariat RT-PCR method 5]. We obtained a major
amplicon of 159 bp (Fig. 2a) of which the DNA sequencing
indicates a misincorporated “A” nucleotide at the BP posi-
tion (Fig. 2b), a finding supporting the notion that c.5405-
55A is the natural BP. Using the same experiment, we
demonstrated that each IVS25 variation does not affect BP
localization (Fig. 2a). To confirm these results, we carried

out minigene assays that selectively disrupted 4 putative BP
positions predicted by the SVM-BP finder on-line tool 10]:
c.5405-55A >G, c.5405-67A >G, c.5405-98A>G and
c.5405-108A >G. As depicted in Fig. 3, the weakest peak
signal intensity corresponding to the exon 26 inclusion was
obtained for c.5405-55A >G minigene in comparison with
the wild-type IVS25 and other constructs. Concomitantly,
alternative splicing generating rat Ins exon 2 / exon 3
appeared weaker for these minigenes than for the c.5405-
55A>G construct. These data strengthen the notion des-
ignating c.5405-55A as the native BP.

Discussion

Pathogenic effects of variants

In this work, all IVS25 variations have a de novo origin or
co-segregate with the disease, data consistent with variants
affecting CHD7 function. Most of bioinformatic programs
indicate that IVS25 3’ss has a very weak splicing signal.
This particular configuration could be the first factor
explaining the hot spot of mutation toward CHD7 IVS25.
The 4 intronic variations were predicted as “pathogenic”,
notably by HSF. The use of pSpliceExpress 2] confirmed
the effect on the mRNA processing and indicated that
IVS25 variants activated a new 3’ss without any alternative
splicing. Surprisingly, these splicing mutations were found
in 22 index CS cases among 460 CHD7 mutated patients
from the French cohort (5%). So, IVS25 3’ss is the first real
hot spot of mutations not related to its genomic size. In this
hot spot, c.5405-7G>A and c.5405-17G>A are inex-
plicably recurrent.

CHD7 IVS25 belongs to the “AG independent” intron
class and harbors a distant branch point (dBP)

Native BP localization outside the classical 40-50 nucleo-
tide range upstream the 3’ss may be the second explanation
for the hot spot of mutations toward CHD7 IVS25. Introns
with dBP are expected to be vulnerable to mutations
introducing a new “AG” sequence within the AG Exclusion
Zone (AGEZ) 11] area, a phenomenon accounting for
almost 42% of intronic mutations 12]. One characteristic of
dBPs is their “AG” independent splicing mechanism. Sus-
taining this hypothesis, the disruption of native 3’ss high-
lighted the use of an exonic cryptic 3’ss instead of exon
skipping. The IVS25 cryptic 3’ss used was the second “AG”
dinucleotide downstream native 3’ss. This result was not
surprising since the nucleotide preceding the “AG” has a
striking influence upon competition between closely spaced
AGs (the order of competitiveness is CAG≥TAG>AAG>
GAG). Here, the first “NAG” trinucleotides is “GAG” while

a

b

Fig. 2 CHD7 IVS25 branch point determination by lariat RT-PCR and
minigene assays. A Nested lariat RT-PCR electrophoresis. Amplicons
of 159 bp correspond to the relevant branch point sequence. The
smaller amplicon that can be observed lane 3 (Fig. 2a) corresponds to
an irrelevant product of splicing. B DNA sequencing of 159 bp
amplicon obtained from nested lariat RT-PCR. A misincorporated “A”
nucleotide (corresponding to the circled nucleotide T) indicates the
branch point position. Arrows on the schematic explanation for lariat
PCR indicate PCR primer localization: first round of lariat RT-PCR
was performed with D and C, respectively located 163 nucleotide
upstream CHD7-IVS25 3’ss and 97 bp upstream IVS2 rat Ins 5’ss.
Nested PCR was performed using primers B and A, located respec-
tively 125 bp upstream IVS25 3’ss and 38 bp downstream rats Ins 5’ss
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the second one is “AAG”, leading to a more favorable
configuration. Accordingly, all IVS25 mutations presented
in this work created 3’ss in a similar favorable context.

Our study provided molecular evidence about an atypical
configuration of the splicing core elements of the 3’
IVS25 sequence. There are no strict genotype/phenotype
relations in CS and we have shown that splicing variants are
responsible for variable phenotypes even within the same
family or even if the open reading frame is conserved. For
confirmation of a molecular diagnosis, our work demon-
strates that pSpliceExpress is a reliable and easy-to-use tool
to study nucleotide variation on the splicing mechanism and

confirms the importance of AGEZ screening in genetic
diseases.
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