Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Clinical nutrition

Decreased plasma riboflavin is associated with poor prognosis, invasion, and metastasis in esophageal squamous cell carcinoma

Abstract

Background

Riboflavin deficiency confers a predisposition for esophageal cancer. The role of plasma riboflavin levels in development and prognosis of individuals with digestive tract inflammation and ulcer (DTIU), digestive tract polyps (DTPs), and ESCC is not well understood.

Methods

We performed a cross-sectional study, including 177 DTIU, 80 DTP, and 324 ESCC cases, to measure the plasma riboflavin levels among the three populations. Correlation between plasma riboflavin levels (categorized as ≥31.8, 6.5–31.8 and ≤6.5 nmol/L groups) and clinical characteristics, as well as survival of ESCC patients (556 cases) was analyzed.

Results

There was no difference in plasma riboflavin levels between DTIU, DTP, and ESCC cases (P > 0.05). Plasma riboflavin levels were inversely correlated with invasive depth (correlation coefficient = −0.09, P = 0.026) and lymph node metastasis (correlation coefficient = −0.11, P = 0.010) of ESCC, and ESCC patients with low riboflavin levels had poor recurrence-free survival (P = 0.035) and overall survival (P = 0.003). Decreased riboflavin was a prognostic factor for poor overall survival (HR = 1.91, 95% CI = 1.19–3.07, P = 0.007).

Conclusions

Plasma riboflavin levels in DTIU, DTP, and ESCC patients are similar. Plasma riboflavin levels are associated with the development and prognosis of ESCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Thakur K, Tomar SK, Singh AK, Mandal S, Arora S. Riboflavin and health: a review of recent human research. Crit Rev Food Sci Nutr. 2017;57:3650–60.

    CAS  PubMed  Google Scholar 

  2. Powers HJ. Riboflavin (vitamin B-2) and health. Am J Clin Nutr. 2003;77:1352–60.

    CAS  PubMed  Google Scholar 

  3. Anderson JJ, Suchindran CM, Roggenkamp KJ. Micronutrient intakes in two US populations of older adults: lipid research clinics program prevalence study findings. J Nutr Health Aging. 2009;13:595–600.

    CAS  PubMed  Google Scholar 

  4. Powers HJ, Hill MH, Mushtaq S, Dainty JR, Majsak-Newman G, Williams EA. Correcting a marginal riboflavin deficiency improves hematologic status in young women in the United Kingdom (RIBOFEM). Am J Clin Nutr. 2011;93:1274–184.

    CAS  PubMed  Google Scholar 

  5. Hannon EM, Kiely M, Harrington KE, Robson PJ, Strain JJ, Flynn A. The North/South Ireland Food Consumption Survey: mineral intakes in 18-64-year-old adults. Public Health Nutr. 2001;4:1081–8.

    CAS  PubMed  Google Scholar 

  6. Choi JY, Kim YN, Cho YO. Evaluation of riboflavin intakes and status of 20-64-year-old adults in South Korea. Nutrients. 2014;7:253–64.

    PubMed  PubMed Central  Google Scholar 

  7. Whitfield KC, Karakochuk CD, Liu Y, McCann A, Talukder A, Kroeun H, et al. Poor thiamin and riboflavin status is common among women of childbearing age in rural and urban Cambodia. J Nutr. 2015;145:628–33.

    CAS  PubMed  Google Scholar 

  8. Sydenstricker VP. Clinical manifestations of ariboflavinosis. Am J Public Health Nations Health. 1941;31:344–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Pennathur A, Gibson MK, Jobe BA, Luketich JD. Oesophageal carcinoma. Lancet 2013;381:400–12.

    PubMed  Google Scholar 

  10. Abnet CC, Arnold M, Wei WQ. Epidemiology of esophageal squamous cell carcinoma. Gastroenterology. 2018;154:360–73.

    PubMed  Google Scholar 

  11. Siassi F, Ghadirian P. Riboflavin deficiency and esophageal cancer: a case control-household study in the Caspian Littoral of Iran. Cancer Detect Prev. 2005;29:464–9.

    CAS  PubMed  Google Scholar 

  12. Guo WD, Li JY, Blot WJ, Hsing AW, Chen JS, Fraumeni JF Jr. Correlations of dietary intake and blood nutrient levels with esophageal cancer mortality in China. Nutr Cancer. 1990;13:121–7.

    CAS  PubMed  Google Scholar 

  13. Wahrendorf J, Munoz N, Lu JB, Thurnham DI, Crespi M, Bosch FX. Blood, retinol and zinc riboflavin status in relation to precancerous lesions of the esophagus: findings from a vitamin intervention trial in the People’s Republic of China. Cancer Res. 1988;48:2280–3.

    CAS  PubMed  Google Scholar 

  14. Thurnham DI, Zheng SF, Munoz N, Crespi M, Grassi A, Hambidge KM, et al. Comparison of riboflavin, vitamin A, and zinc status of Chinese populations at high and low risk for esophageal cancer. Nutr Cancer. 1985;7:131–43.

    CAS  PubMed  Google Scholar 

  15. Yang CS, Sun Y, Yang QU, Miller KW, Li GY, Zheng SF, et al. Vitamin A and other deficiencies in Linxian, a high esophageal cancer incidence area in northern China. J Natl Cancer Inst. 1984;73:1449–53.

    CAS  PubMed  Google Scholar 

  16. Munoz N, Crespi M, Grassi A, Qing WG, Qiong S, Cai LZ. Precursor lesions of oesophageal cancer in high-risk populations in Iran and China. Lancet. 1982;1:876–9.

    CAS  PubMed  Google Scholar 

  17. Crespi M, Munoz N, Grassi A, Qiong S, Jing WK, Jien LJ. Precursor lesions of oesophageal cancer in a low-risk population in China: comparison with high-risk populations. Int J Cancer. 1984;34:599–602.

    CAS  PubMed  Google Scholar 

  18. Tang WR, Chen ZJ, Lin K, Su M, Au WW. Development of esophageal cancer in Chaoshan region, China: association with environmental, genetic and cultural factors. Int J Hyg Environ Health. 2015;218:12–18.

    CAS  PubMed  Google Scholar 

  19. Tan HZ, Lin WJ, Huang JQ, Dai M, Fu JH, Huang QH, et al. Updated incidence rates and risk factors of esophageal cancer in Nan’ao Island, a coastal high-risk area in southern China. Dis Esophagus. 2017;30:1–7.

    PubMed  Google Scholar 

  20. Li SS, Xu YW, Wu JY, Tan HZ, Wu ZY, Xue YJ, et al. Plasma riboflavin level is associated with risk, relapse, and survival of esophageal squamous cell carcinoma. Nutr Cancer. 2017;69:21–28.

    CAS  PubMed  Google Scholar 

  21. Petteys BJ, Frank EL. Rapid determination of vitamin B(2) (riboflavin) in plasma by HPLC. Clin Chim Acta. 2011;412:38–43.

    CAS  PubMed  Google Scholar 

  22. Long L, He JZ, Chen Y, Xu XE, Liao LD, Xie YM, et al. Riboflavin depletion promotes tumorigenesis in HEK293T and NIH3T3 cells by sustaining cell proliferation and regulating cell cycle-related gene transcription. J Nutr. 2018;148:834–43.

    PubMed  Google Scholar 

  23. Ainiwaer J, Tuerhong A, Hasim A, Chengsong D, Liwei Z, Sheyhidin I. Association of the plasma riboflavin levels and riboflavin transporter (C20orf54) gene statuses in Kazak esophageal squamous cell carcinoma patients. Mol Biol Rep. 2013;40:3769–75.

    CAS  PubMed  Google Scholar 

  24. Aljaadi AM, How RE, Loh SP, Hunt SE, Karakochuk CD, Barr SI, et al. Suboptimal biochemical riboflavin status is associated with lower hemoglobin and higher rates of anemia in a sample of Canadian and Malaysian women of reproductive age. J Nutr. 2019;149:1952–9.

    PubMed  Google Scholar 

  25. Bruggeman YE, Honegger A, Kreuwel H, Visser AJ, Laane C, Schots A, et al. Regulation of the flavin redox potential by flavin-binding antibodies. Eur J Biochem. 1997;249:393–400.

    CAS  PubMed  Google Scholar 

  26. Stuetz W, Schlormann W, Glei M. B-vitamins, carotenoids and alpha-/gamma-tocopherol in raw and roasted nuts. Food Chem. 2017;221:222–7.

    CAS  PubMed  Google Scholar 

  27. Ainiwaer J, Tuerhong A, Hasim A. Association of the plasma riboflavin levels and riboflavin transporter (C20orf54) gene statuses in Kazak esophageal squamous cell carcinoma patients. Mol Biol Rep. 2013;40:3769–75.

    CAS  PubMed  Google Scholar 

  28. Saedisomeolia A, Ashoori M. Riboflavin in human health: a review of current evidences. Adv Food Nutr Res. 2018;83:57–81.

    PubMed  Google Scholar 

  29. Fernandez-Banares F, Abad-Lacruz A, Xiol X, Gine JJ, Dolz C, Cabre E, et al. Vitamin status in patients with inflammatory bowel disease. Am J Gastroenterol. 1989;84:744–8.

    CAS  PubMed  Google Scholar 

  30. Foy H, Kondi A, Verjee ZH. Relation of riboflavin deficiency to corticosteroid metabolism and red cell hypoplasia in baboons. J Nutr. 1972;102:571–82.

    CAS  PubMed  Google Scholar 

  31. Wynder EL, Klein UE. The possible role of riboflavin deficiency in epithelial neoplasia. I. Epithelial changes of mice in simple deficiency. Cancer. 1965;18:167–80.

    CAS  PubMed  Google Scholar 

  32. Pan F, Chen Y, He JZ, Long L, Chen Y, Luo HJ, et al. Dietary riboflavin deficiency promotes N-nitrosomethylbenzylamine-induced esophageal tumorigenesis in rats by inducing chronic inflammation. Am J Cancer Res. 2019;9:2469–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Gregersen N. Riboflavin-responsive defects of beta-oxidation. J Inherit Metab Dis. 1985;8 Suppl 1:65–69.

    CAS  PubMed  Google Scholar 

  34. Harpey JP, Charpentier C, Goodman SI, Darbois Y, Lefebvre G, Sebbah J. Multiple acyl-CoA dehydrogenase deficiency occurring in pregnancy and caused by a defect in riboflavin metabolism in the mother. Study of a kindred with seven deaths in infancy: value of riboflavin therapy in preventing this syndrome. J Pediatr. 1983;103:394–8.

    CAS  PubMed  Google Scholar 

  35. Li J, Liang N, Long X, Zhao J, Yang J, Du X, et al. SDHC-related deficiency of SDH complex activity promotes growth and metastasis of hepatocellular carcinoma via ROS/NFkappaB signaling. Cancer Lett. 2019;461:44–55.

    CAS  PubMed  Google Scholar 

  36. Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell. 2008;132:344–62.

    CAS  PubMed  Google Scholar 

  37. Sun SC. The noncanonical NF-kappaB pathway. Immunol Rev. 2012;246:125–40.

    PubMed  PubMed Central  Google Scholar 

  38. Kusmartsev S, Gabrilovich DI. Inhibition of myeloid cell differentiation in cancer: the role of reactive oxygen species. J Leukoc Biol. 2003;74:186–96.

    CAS  PubMed  Google Scholar 

  39. Quinn MT, Gauss KA. Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases. J Leukoc Biol. 2004;76:760–81.

    CAS  PubMed  Google Scholar 

  40. Wertman KF, Sypherd PS. The effects of riboflavin deficiency on phagocytosis and susceptibility to infection. J Immunol. 1960;85:511–5.

    CAS  PubMed  Google Scholar 

  41. Mazur-Bialy AI, Buchala B, Plytycz B. Riboflavin deprivation inhibits macrophage viability and activity - a study on the RAW 264.7 cell line. Br J Nutr. 2013;110:509–14.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Stanley Li Lin, Department of Cell Biology and Genetics, Shantou University Medical College, for assistance in revising the manuscript. We are grateful for assistance from the Central Laboratory at Shantou University Medical College, including Prof. Wen-Hong Luo, for obtaining the riboflavin concentration data by HPLC.

Funding

This work was supported by grants from the Natural Science Foundation of China-Guangdong Joint Fund (no. U1301227), the National Cohort of Esophageal Cancer of China (2016YFC0901400).

Author information

Authors and Affiliations

Authors

Contributions

LYX and EML planned the studies. FP and HJL contributed equally to this work. FP, HJL, ZYW, SZC, XW, SXY, JMW, SYL, ZYC, YLG, and PTZ performed the experiments. FP held the responsibility for all data integrity and data analysis. LYX and EML conducted the research. LYX had primary responsibility for the final content. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Li-Yan Xu or En-Min Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, F., Luo, HJ., Wu, ZY. et al. Decreased plasma riboflavin is associated with poor prognosis, invasion, and metastasis in esophageal squamous cell carcinoma. Eur J Clin Nutr 74, 1149–1156 (2020). https://doi.org/10.1038/s41430-020-0585-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-020-0585-8

Search

Quick links