Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interventions and public health nutrition

A pilot study of the effect of phospholipid curcumin on serum metabolomic profile in patients with non-alcoholic fatty liver disease: a randomized, double-blind, placebo-controlled trial

Abstract

Background/Objectives

Curcumin, a natural polyphenol compound in the spice turmeric, has been found to have potent anti-oxidative and anti-inflammatory activity. Curcumin may treat non-alcoholic fatty liver disease (NAFLD) through its beneficial effects on biomarkers of oxidative stress (OS) and inflammation, which are considered as two feature of this disease. However, the effects of curcumin on NAFLD have been remained poorly understood. This investigation evaluated the effects of administrating curcumin on metabolic status in NAFLD patients.

Subjects/Methods

Fifty-eight NAFLD patients participated in a randomized, double-blind, placebo-controlled parallel design of study. The subjects were allocated randomly into two groups, which either received 250 mg phospholipid curcumin or placebo, one capsule per day for a period of 8 weeks. Fasting blood samples were taken from each subject at the start and end of the study period. Subsequently, metabolomics analysis was performed for serum samples using NMR.

Results

Compared with the placebo, supplementing phospholipid curcumin resulted in significant decreases in serum including 3- methyl-2-oxovaleric acid, 3-hydroxyisobutyrate, kynurenine, succinate, citrate, α-ketoglutarate, methylamine, trimethylamine, hippurate, indoxyl sulfate, chenodeoxycholic acid, taurocholic acid, and lithocholic acid. This profile of metabolic biomarkers could distinguish effectively NAFLD subjects who were treated with curcumin and placebo groups, achieving value of 0.99 for an area under receiver operating characteristic curve (AUC).

Conclusions

Characterizing the serum metabolic profile of the patients with NAFLD at the end of the intervention using NMR-based metabolomics method indicated that the targets of curcumin treatment included some amino acids, TCA cycle, bile acids, and gut microbiota.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rinella ME. Nonalcoholic fatty liver disease: a systematic review. JAMA. 2015;313:2263–73.

    CAS  PubMed  Google Scholar 

  2. Bacon BR, Farahvash MJ, Janney CG, Neuschwander-Tetri BA. Nonalcoholic steatohepatitis: an expanded clinical entity. Gastroenterology. 1994;107:1103–9.

    CAS  PubMed  Google Scholar 

  3. Matteoni CA, Younossi ZM, Gramlich T, Boparai N, Liu YC, McCullough AJ. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology. 1999;116:1413–9.

    CAS  PubMed  Google Scholar 

  4. Lindor KD, Kowdley KV, Heathcote EJ, Harrison ME, Jorgensen R, Angulo P, et al. Ursodeoxycholic acid for treatment of nonalcoholic steatohepatitis: results of a randomized trial. Hepatology. 2004;39:770–8.

    CAS  PubMed  Google Scholar 

  5. Lavine JE, Schwimmer JB, Van Natta ML, Molleston JP, Murray KF, Rosenthal P, et al. Effect of vitamin E or metformin for treatment of nonalcoholic fatty liver disease in children and adolescents: the TONIC randomized controlled trial. JAMA. 2011;305:1659–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: the Indian solid gold. The molecular targets and therapeutic uses of curcumin in health and disease. Springer, New York, 2007. p. 1–75.

  7. Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. 2003;23(1/A):363–98.

    CAS  PubMed  Google Scholar 

  8. Babu PS, Srinivasan K. Hypolipidemic action of curcumin, the active principle of turmeric (Curcuma longa) in streptozotocin induced diabetic rats. Mol Cell Biochem. 1997;166:169–75.

    CAS  PubMed  Google Scholar 

  9. Jang E-M, Choi M-S, Jung UJ, Kim M-J, Kim H-J, Jeon S-M, et al. Beneficial effects of curcumin on hyperlipidemia and insulin resistance in high-fat–fed hamsters. Metabolism. 2008;57:1576–83.

    CAS  PubMed  Google Scholar 

  10. Jurenka JS. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern Med Rev. 2009;14:141–53.

    PubMed  Google Scholar 

  11. Manjunatha H, Srinivasan K. Hypolipidemic and antioxidant effects of curcumin and capsaicin in high-fat-fed rats. Can J Physiol Pharmacol. 2007;85:588–96.

    CAS  PubMed  Google Scholar 

  12. Schraufstatter E, Bernt H. Antibacterial action of curcumin and related compounds. Nature. 1949;164:456–7.

    CAS  PubMed  Google Scholar 

  13. Nishimura Y, Kitagishi Y, Yoshida H, Okumura N, Matsuda S. Ethanol extracts of black pepper or turmeric down-regulated SIRT1 protein expression in Daudi culture cells. Mol Med Rep. 2011;4:727–30.

    CAS  PubMed  Google Scholar 

  14. Elahi RK. Preventive effects of turmeric (Curcuma longa Linn.) powder on hepatic steatosis in the rats fed with high fat diet. Life Sci. 2012;9:5462–8.

    Google Scholar 

  15. Raftery D. High-throughput NMR spectroscopy. Anal Bioanal Chem. 2004;378:1403–4.

    CAS  PubMed  Google Scholar 

  16. Lacey ME, Subramanian R, Olson DL, Webb AG, Sweedler JV. High-resolution NMR spectroscopy of sample volumes from 1 nL to 10 μL. Chem Rev. 1999;99:3133–52.

    CAS  PubMed  Google Scholar 

  17. Nobakht M, Gh BF, Aliannejad R, Rezaei-Tavirani M, Taheri S, Oskouie AA. The metabolomics of airway diseases, including COPD, asthma and cystic fibrosis. Biomarkers. 2015;20:5–16.

    Google Scholar 

  18. Emwas A-HM, Salek RM, Griffin JL, Merzaban J. NMR-based metabolomics in human disease diagnosis: applications, limitations, and recommendations. Metabolomics. 2013;9:1048–72.

    CAS  Google Scholar 

  19. Kaddurah-Daouk R, Kristal BS, Weinshilboum RM. Metabolomics: a global biochemical approach to drug response and disease. Annu Rev Pharmacol Toxicol. 2008;48:653–83.

    CAS  PubMed  Google Scholar 

  20. Stadlmayr A, Aigner E, Steger B, Scharinger L, Lederer D, Mayr A, et al. Nonalcoholic fatty liver disease: an independent risk factor for colorectal neoplasia. J Intern Med. 2011;270:41–9.

    CAS  PubMed  Google Scholar 

  21. Feldman A, Eder SK, Felder TK, Kedenko L, Paulweber B, Stadlmayr A, et al. Clinical and metabolic characterization of lean Caucasian subjects with non-alcoholic fatty liver. Am J Gastroenterol. 2017;112:102–10.

    PubMed  Google Scholar 

  22. Yin P, Lehmann R, Xu G. Effects of pre-analytical processes on blood samples used in metabolomics studies. Anal Bioanal Chem. 2015;407:4879–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Nobakht BF, Arefi Oskouie A, Rezaei-Tavirani M, Aliannejad R, Taheri S, Fathi F, et al. NMR spectroscopy-based metabolomic study of serum in sulfur mustard exposed patients with lung disease. Biomarkers. 2017;22:413–9.

    CAS  Google Scholar 

  24. Nobakht BF, Aliannejad R, Rezaei-Tavirani M, Arefi Oskouie A, Naseri MT, Parastar H, et al. NMR-and GC/MS-based metabolomics of sulfur mustard exposed individuals: a pilot study. Biomarkers. 2016;21:479–89.

    CAS  PubMed  Google Scholar 

  25. Brown FF, Campbell ID, Kuchel PW, Rabenstein DC. Human erythrocyte metabolism studies by 1 H spin echo NMR. FEBS Lett. 1977;82:12–6.

    CAS  PubMed  Google Scholar 

  26. Tang H, Wang Y, Nicholson JK, Lindon JC. Use of relaxation-edited one-dimensional and two dimensional nuclear magnetic resonance spectroscopy to improve detection of small metabolites in blood plasma. Anal Biochem. 2004;325:260–72.

    CAS  PubMed  Google Scholar 

  27. Fardet A, Canlet C, Gottardi G, Lyan B, Llorach R, Rémésy C, et al. Whole-grain and refined wheat flours show distinct metabolic profiles in rats as assessed by a 1H NMR-based metabonomic approach. ‎J Nutr. 2007;137:923–9.

    CAS  PubMed  Google Scholar 

  28. Viant MR. Improved methods for the acquisition and interpretation of NMR metabolomic data. Biochem Biophys Res Commun. 2003;310:943–8.

    CAS  PubMed  Google Scholar 

  29. Mahadevan S, Shah SL, Marrie TJ, Slupsky CM. Analysis of metabolomic data using support vector machines. Anal Chem. 2008;80:7562–70.

    CAS  PubMed  Google Scholar 

  30. Nicholson JK, Foxall PJ, Spraul M, Farrant RD, Lindon JC. 750 MHz 1H and 1H-13C NMR spectroscopy of human blood plasma. Anal Chem. 1995;67:793–811.

    CAS  PubMed  Google Scholar 

  31. Psychogios N, Hau DD, Peng J, Guo AC, Mandal R, Bouatra S, et al. The human serum metabolome. PLoS ONE. 2011;6:e16957.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Xia J, Wishart DS. Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat Protoc. 2011;6:743–60.

    CAS  PubMed  Google Scholar 

  33. Xia J, Broadhurst DI, Wilson M, Wishart DS. Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics. 2013;9:280–99.

    CAS  PubMed  Google Scholar 

  34. Xia J, Sinelnikov IV, Han B, Wishart DS. MetaboAnalyst 3.0-making metabolomics more meaningful. Nucleic Acids Res. 2015;43(W1):W251–W7.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Booth SC, Weljie AM, Turner RJ. Computational tools for the secondary analysis of metabolomics experiments. Comput Struct Biotechnol J. 2013;4:e201301003.

    PubMed  PubMed Central  Google Scholar 

  36. Shao W, Yu Z, Chiang Y, Yang Y, Chai T, Foltz W, et al. Curcumin prevents high fat diet induced insulin resistance and obesity via attenuating lipogenesis in liver and inflammatory pathway in adipocytes. PLoS ONE. 2012;7:e28784.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. El-Moselhy MA, Taye A, Sharkawi SS, El-Sisi SF, Ahmed AF. The antihyperglycemic effect of curcumin in high fat diet fed rats. Role of TNF-α and free fatty acids. Food Chem Toxicol. 2011;49:1129–40.

    CAS  PubMed  Google Scholar 

  38. Abbondante S, Eckel-Mahan KL, Ceglia NJ, Baldi P, Sassone-Corsi P. Comparative circadian metabolomics reveal differential effects of nutritional challenge in the serum and liver. J Biol Chem. 2016;291:2812–28.

    CAS  PubMed  Google Scholar 

  39. Soga T, Sugimoto M, Honma M, Mori M, Igarashi K, Kashikura K, et al. Serum metabolomics reveals γ-glutamyl dipeptides as biomarkers for discrimination among different forms of liver disease. J Hepatol. 2011;55:896–905.

    CAS  PubMed  Google Scholar 

  40. Denery JR, Nunes AA, Hixon MS, Dickerson TJ, Janda KD. Metabolomics-based discovery of diagnostic biomarkers for onchocerciasis. PLoS Negl Trop Dis. 2010;4:e834.

    PubMed  PubMed Central  Google Scholar 

  41. Tan Y, Yin P, Tang L, Xing W, Huang Q, Cao D, et al. Metabolomics study of stepwise hepatocarcinogenesis from the model rats to patients: potential biomarkers effective for small hepatocellular carcinoma diagnosis. Mol Cell Proteom. 2012;11:M111. 010694

    Google Scholar 

  42. Hori S, Nishiumi S, Kobayashi K, Shinohara M, Hatakeyama Y, Kotani Y, et al. A metabolomic approach to lung cancer. Lung Cancer. 2011;74:284–92.

    PubMed  Google Scholar 

  43. Xuan J, Pan G, Qiu Y, Yang L, Su M, Liu Y, et al. Metabolomic profiling to identify potential serum biomarkers for schizophrenia and risperidone action. J Proteome Res. 2011;10:5433–43.

    PubMed  Google Scholar 

  44. Townsend MK, Bao Y, Poole EM, Bertrand KA, Kraft P, Wolpin BM, et al. Impact of pre-analytic blood sample collection factors on metabolomics. Cancer Epidemiol Biomark Prev. 2016;25:823–29.

    CAS  Google Scholar 

  45. Brauer R, Leichtle AB, Fiedler GM, Thiery J, Ceglarek U. Preanalytical standardization of amino acid and acylcarnitine metabolite profiling in human blood using tandem mass spectrometry. Metabolomics. 2011;7:344–52.

    CAS  Google Scholar 

  46. Ishikawa S, Sugimoto M, Kitabatake K, Tu M, Sugano A, Yamamori I, et al. Effect of timing of collection of salivary metabolomic biomarkers on oral cancer detection. Amino Acids. 2017;49:761–70.

    CAS  PubMed  Google Scholar 

  47. Emwas A-H, Roy R, McKay RT, Ryan D, Brennan L, Tenori L, et al. Recommendations and standardization of biomarker quantification using NMR-based metabolomics with particular focus on urinary analysis. J Proteome Res. 2016;15:360–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Rubio-Aliaga I, de Roos B, Duthie SJ, Crosley LK, Mayer C, Horgan G, et al. Metabolomics of prolonged fasting in humans reveals new catabolic markers. Metabolomics. 2011;7:375–87.

    CAS  Google Scholar 

  49. Munro H, Fernstrom J, Wurtman R. Insulin, plasma aminoacid imbalance, and hepatic coma. Lancet. 1975;305:722–4.

    Google Scholar 

  50. Cheng S, Wiklund P, Autio R, Borra R, Ojanen X, Xu L, et al. Adipose tissue dysfunction and altered systemic amino acid metabolism are associated with non-alcoholic fatty liver disease. PLoS ONE. 2015;10:e0138889.

    PubMed  PubMed Central  Google Scholar 

  51. Lai Y-S, Chen W-C, Kuo T-C, Ho C-T, Kuo C-H, Tseng YJ, et al. Mass-spectrometry-based serum metabolomics of a C57BL/6J mouse model of high-fat-diet-induced non-alcoholic fatty liver disease development. J Agric Food Chem. 2015;63:7873–84.

    CAS  PubMed  Google Scholar 

  52. Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9:311–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lake AD, Novak P, Shipkova P, Aranibar N, Robertson DG, Reily MD, et al. Branched chain amino acid metabolism profiles in progressive human nonalcoholic fatty liver disease. Amino Acids. 2015;47:603–15.

    CAS  PubMed  Google Scholar 

  54. King NJ, Thomas SR. Molecules in focus: indoleamine 2, 3-dioxygenase. Int J Biochem Cell Biol. 2007;39:2167–72.

    CAS  PubMed  Google Scholar 

  55. O’Connor JC, André C, Wang Y, Lawson MA, Szegedi SS, Lestage J, et al. Interferon-γ and tumor necrosis factor-α mediate the upregulation of indoleamine 2, 3-dioxygenase and the induction of depressive-like behavior in mice in response to bacillus Calmette-Guérin. J Neurosci. 2009;29:4200–9.

    PubMed  PubMed Central  Google Scholar 

  56. Connor TJ, Starr N, O’Sullivan JB, Harkin A. Induction of indolamine 2, 3-dioxygenase and kynurenine 3-monooxygenase in rat brain following a systemic inflammatory challenge: a role for IFN-γ? Neurosci Lett. 2008;441:29–34.

    CAS  PubMed  Google Scholar 

  57. Pawlak K, Domaniewski T, Mysliwiec M, Pawlak D. The kynurenines are associated with oxidative stress, inflammation and the prevalence of cardiovascular disease in patients with end-stage renal disease. Atherosclerosis. 2009;204:309–14.

    CAS  PubMed  Google Scholar 

  58. Jeong Y-I, Kim SW, Jung ID, Lee JS, Chang JH, Lee C-M, et al. Curcumin suppresses the induction of indoleamine 2, 3-dioxygenase by blocking the Janus-activated kinase-protein kinase Cδ-STAT1 signaling pathway in interferon-γ-stimulated murine dendritic cells. J Biol Chem. 2009;284:3700–8.

    CAS  PubMed  Google Scholar 

  59. Jakobsdottir G, Xu J, Molin G, Ahrne S, Nyman M. High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects. PLoS ONE. 2013;8:e80476.

    PubMed  PubMed Central  Google Scholar 

  60. Aragonès G, Auguet T, Berlanga A, Guiu-Jurado E, Martinez S, Armengol S, et al. Increased circulating levels of alpha-ketoglutarate in morbidly obese women with non-alcoholic fatty liver disease. PLoS ONE. 2016;11:e0154601.

    PubMed  PubMed Central  Google Scholar 

  61. van de Wier B, Balk JM, Haenen GR, Giamouridis D, Bakker JA, Bast BC, et al. Elevated citrate levels in non‐alcoholic fatty liver disease: the potential of citrate to promote radical production. FEBS Lett. 2013;587:2461–6.

    PubMed  Google Scholar 

  62. Satapati S, Kucejova B, Duarte JA, Fletcher JA, Reynolds L, Sunny NE, et al. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver. J Clin Invest. 2015;125:4447–62.

    PubMed  PubMed Central  Google Scholar 

  63. Sunny NE, Parks EJ, Browning JD, Burgess SC. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab. 2011;14:804–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Begriche K, Massart J, Robin MA, Bonnet F, Fromenty B. Mitochondrial adaptations and dysfunctions in nonalcoholic fatty liver disease. Hepatology. 2013;58:1497–507.

    CAS  PubMed  Google Scholar 

  65. Pérez‐Carreras M, Del Hoyo P, Martín MA, Rubio JC, Martín A, Castellano G, et al. Defective hepatic mitochondrial respiratory chain in patients with nonalcoholic steatohepatitis. Hepatology. 2003;38:999–1007.

    PubMed  Google Scholar 

  66. García-Ruiz I, Fernández-Moreira D, Solís-Muñoz P, Rodríguez-Juan C, Díaz-Sanjuán T, Muñoz-Yagüe T, et al. Mitochondrial complex I subunits are decreased in murine nonalcoholic fatty liver disease: implication of peroxynitrite. J Proteome Res. 2010;9:2450–9.

    PubMed  Google Scholar 

  67. Gusdon AM, Song K-X, Qu S. Nonalcoholic fatty liver disease: pathogenesis and therapeutics from a mitochondria-centric perspective. Oxid Med Cell Longev. 2014;2014:637027.

    PubMed  PubMed Central  Google Scholar 

  68. Jung KH, Park J-W. Suppression of mitochondrial NADP + -dependent isocitrate dehydrogenase activity enhances curcumin-induced apoptosis in HCT116 cells. Free Radic Res. 2011;45:431–8.

    CAS  PubMed  Google Scholar 

  69. Shah F-A, Gim S-A, Sung J-H, Jeon S-J, Kim M-O, Koh P-O. Identification of proteins regulated by curcumin in cerebral ischemia. J Surg Res. 2016;201:141–8.

    CAS  PubMed  Google Scholar 

  70. Rastogi M, Ojha RP, Rajamanickam G, Agrawal A, Aggarwal A, Dubey G. Curcuminoids modulates oxidative damage and mitochondrial dysfunction in diabetic rat brain. Free Radic Res. 2008;42:999–1005.

    CAS  PubMed  Google Scholar 

  71. Boursier J, Diehl AM. Implication of gut microbiota in nonalcoholic fatty liver disease. PLoS Pathog. 2015;11:e1004559.

    PubMed  PubMed Central  Google Scholar 

  72. Schnabl B, Brenner DA. Interactions between the intestinal microbiome and liver diseases. Gastroenterology. 2014;146:1513–24.

    CAS  PubMed  Google Scholar 

  73. Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012;482:179–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Targher G, Byrne CD. Non-alcoholic fatty liver disease: an emerging driving force in chronic kidney disease. Nat Rev Nephrol. 2017;13:297–310.

    CAS  PubMed  Google Scholar 

  75. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA. 2009;106:3698–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BA, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535:376–81.

    CAS  PubMed  Google Scholar 

  77. Liu R, Hong J, Xu X, Feng Q, Zhang D, Gu Y, et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med. 2017;23:859–68.

    CAS  PubMed  Google Scholar 

  78. Shen L, Liu L, Ji H-F. Regulative effects of curcumin spice administration on gut microbiota and its pharmacological implications. Food Nutr Res. 2017;61:1361780.

    PubMed  PubMed Central  Google Scholar 

  79. Feng W, Wang H, Zhang P, Gao C, Tao J, Ge Z, et al. Modulation of gut microbiota contributes to curcumin-mediated attenuation of hepatic steatosis in rats. Biochim Biophys Acta. 2017;1861:1801–12.

    CAS  Google Scholar 

  80. Kalhan SC, Guo L, Edmison J, Dasarathy S, McCullough AJ, Hanson RW, et al. Plasma metabolomic profile in nonalcoholic fatty liver disease. Metab Clin Exp. 2011;60:404–13.

    CAS  PubMed  Google Scholar 

  81. Mouzaki M, Wang AY, Bandsma R, Comelli EM, Arendt BM, Zhang L, et al. Bile acids and dysbiosis in non-alcoholic fatty liver disease. PLoS ONE. 2016;11:e0151829.

    PubMed  PubMed Central  Google Scholar 

  82. Ferslew BC, Xie G, Johnston CK, Su M, Stewart PW, Jia W, et al. Altered bile acid metabolome in patients with nonalcoholic steatohepatitis. Dig Dis Sci. 2015;60:3318–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Perez MJ, Briz O. Bile-acid-induced cell injury and protection. World J Gastroenterol. 2009;15:1677–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Yang F, Tang X, Ding L, Yang Q, Gong J, Wang G, et al. Curcumin protects ANIT-induced cholestasis through signaling pathway of FXR-regulated bile acid and inflammation. Sci Rep. 2016;6:33052.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported financially by the grant, which has been taken from Neyshabur University of Medical Science (NUMS) and Sharif University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Fatemeh Nobakht M. Gh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chashmniam, S., Mirhafez, S.R., Dehabeh, M. et al. A pilot study of the effect of phospholipid curcumin on serum metabolomic profile in patients with non-alcoholic fatty liver disease: a randomized, double-blind, placebo-controlled trial. Eur J Clin Nutr 73, 1224–1235 (2019). https://doi.org/10.1038/s41430-018-0386-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-018-0386-5

This article is cited by

Search

Quick links