Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protein, malnutrition and wasting disorders

CKD autophagy activation and skeletal muscle atrophy—a preliminary study of mitophagy and inflammation

Abstract

Background/Objectives

Long-lived proteins and organelles, such as mitochondria and the sarcoplasmic reticulum, are degraded by autophagy. However, the specific role of autophagy in chronic kidney disease (CKD) muscle atrophy is still undefined.

Subjects/Methods

This was a cross-sectional study with 20 subjects and 11 controls. Autophagy induction was studied in human skeletal muscle biopsies from CKD patients and controls by comparing the cross-sectional areas of muscle fibers, protein, and mRNA expression of autophagy-related genes and the appearance of autophagosomes.

Results

The cross-sectional area of muscle fibers was decreased in CKD patients as compared with the control group. CKD was associated with activated autophagy and mitophagy, as measured by the elevated mRNA and protein expression of BNIP3, (microtubule-associated proteins 1 A/1B light chain 3, also MAP1LC3) LC3, p62, PINK1, and PARKIN in the skeletal muscle and isolated mitochondria of the CKD group. Electron microscopy and immunohistofluorescence analysis showed mitochondrial engulfment by autophagosomes. Mitophagy was further demonstrated by the colocalization of LC3 and p62 puncta with the mitochondrial outer membrane protein TOM20. In addition, degradative FOXO3 (Forkhead box O3) was activated and synthetic mTOR (mammalian target of rapamycin) was inhibited, whereas the upstream mediators VPS34 (class III PI3-kinase) and AKT (protein kinase B, PKB) were activated in CKD patients.

Conclusions

Hyperactive autophagy and mitophagy may play important roles in CKD muscle atrophy. Autophagy was activated by FOXO3 translational factors in the skeletal muscle tissues of CKD patients, which maybe a new way of intervention for CKD muscle atrophy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Carrero JJ, Chmielewski M, Axelsson J, Snaedal S, Heimbürger O, Bárány P, et al. Muscle atrophy, inflammation and clinical outcome in incident and prevalent dialysis patients. Clin Nutr. 2008;27:57–64.

    Article  Google Scholar 

  2. Carrero JJ, Stenvinkel P, Cuppari L, Ikizler TA, Kalantar-Zadeh K, Kaysen G, et al. Etiology of the protein-energy wasting syndrome in chronic kidney disease: a consensus statement from the International Society of Renal Nutrition and Metabolism (ISRNM). J Ren Nutr. 2013;23:77–90.

    Article  PubMed  Google Scholar 

  3. Mitch WE. Malnutrition: a frequent misdiagnosis for hemodialysis patients. J Clin Invest. 2002;110:437–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stenvinkel P, Heimburger O, Lindholm B. Wasting, but not malnutrition, predicts cardiovascular mortality in end-stage renal disease. Nephrol Dial Transplant. 2004;19:2181–3.

    Article  PubMed  Google Scholar 

  5. Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, et al. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J. 2004;18:39–51.

    Article  CAS  PubMed  Google Scholar 

  6. Sacheck JM, Hyatt JP, Raffaello A, Jagoe RT, Roy RR, Edgerton VR, et al. Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases. FASEB J. 2007;21:140–55.

    Article  CAS  PubMed  Google Scholar 

  7. Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, et al. Autophagy is required to maintain muscle mass. Cell Metab. 2009;10:507–15.

    Article  CAS  PubMed  Google Scholar 

  8. Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147:728–41.

    Article  CAS  PubMed  Google Scholar 

  9. Romanello V, Sandri M. Mitochondrial quality control and muscle mass maintenance. Front Physiol. 2015;6:422.

    PubMed  Google Scholar 

  10. Lewis MI, Fournier M, Wang H, Storer TW, Casaburi R, Cohen AH, et al. Metabolic and morphometric profile of muscle fibers in chronic hemodialysis patients. J Appl Physiol. 2012;112:72–8.

    Article  PubMed  Google Scholar 

  11. Matsumoto N, Ichimura S, Hamaoka T, Osada T, Hattori M, Miyakawa S. Impaired muscle oxygen metabolism in uremic children: improved after renal transplantation. Am J Kidney Dis. 2006;48:473–80.

    Article  CAS  PubMed  Google Scholar 

  12. Verzola D, Procopio V, Sofia A, Villaggio B, Tarroni A, Bonanni A, et al. Apoptosis and myostatin mRNA are upregulated in the skeletal muscle of patients with chronic kidney disease. Kidney Int. 2011;79:773–82.

    Article  CAS  PubMed  Google Scholar 

  13. Conjard A, Ferrier B, Martin M, Caillette A, Carrier H, Baverel G. Effects of chronic renal failure on enzymes of energy metabolism in individual human muscle fibers. J Am Soc Nephrol. 1995;6:68–74.

    Article  CAS  PubMed  Google Scholar 

  14. Yamamoto D, Maki T, Herningtyas EH, Ikeshita N, Shibahara H, Sugiyama Y, et al. Branched-chain amino acids protect against dexamethasone-induced soleus muscle atrophy in rats. Muscle Nerve. 2010;41:819–27.

    Article  CAS  PubMed  Google Scholar 

  15. Hayashi YK, Matsuda C, Ogawa M, Goto K, Tominaga K, Mitsuhashi S, et al. Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy. J Clin Invest. 2009;119:2623–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mitsuhashi S, Hatakeyama H, Karahashi M, Koumura T, Nonaka I, Hayashi YK, et al. Muscle choline kinase beta defect causes mitochondrial dysfunction and increased mitophagy. Hum Mol Genet. 2011;20:3841–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Backer JM. The regulation and function of Class III PI3Ks: novel roles for Vps34. Biochem J. 2008;410:1–17.

    Article  CAS  PubMed  Google Scholar 

  18. Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J. 2001;20:5971–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pyo JO, Nah J, Jung YK. Molecules and their functions in autophagy. Exp Mol Med. 2012;44:73–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 2007;6:458–71.

    Article  CAS  PubMed  Google Scholar 

  21. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000;19:5720–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Geisler S, Holmström KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol. 2010;12:119–31.

    Article  CAS  PubMed  Google Scholar 

  23. Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol. 2008;183:795–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Glass DJ. PI3 kinase regulation of skeletal muscle hypertrophy and atrophy. Curr Top Microbiol Immunol. 2010;346:267–78.

    CAS  PubMed  Google Scholar 

  25. Lazaro RP, Kirshner HS. Proximal muscle weakness in uremia. Case reports and review of the literature. Arch Neurol. 1980;37:555–8.

    Article  CAS  PubMed  Google Scholar 

  26. Clyne N, Jogestrand T, Lins LE, Pehrsson SK, Ekelund LG. Factors limiting physical working capacity in predialytic uraemic patients. Acta Med Scand. 1987;222:183–90.

    Article  CAS  PubMed  Google Scholar 

  27. Haggmark T, Thorstensson A. Fibre types in human abdominal muscles. Acta Physiol Scand. 1979;107:319–25.

    Article  CAS  PubMed  Google Scholar 

  28. Simoneau JA, Bouchard C. Human variation in skeletal muscle fiber-type proportion and enzyme activities. Am J Physiol. 1989;257:E567–72.

    CAS  PubMed  Google Scholar 

  29. Kouidi E, Albani M, Natsis K, Megalopoulos A, Gigis P, Guiba-Tziampiri O, et al. The effects of exercise training on muscle atrophy in haemodialysis patients. Nephrol Dial Transplant. 1998;13:685–99.

    Article  CAS  PubMed  Google Scholar 

  30. Clyne N, Esbjornsson M, Jansson E, Jogestrand T, Lins LE, Pehrsson SK. Effects of renal failure on skeletal muscle. Nephron. 1993;63:395–9.

    Article  CAS  PubMed  Google Scholar 

  31. Sharma D, Hawkins M, Abramowitz MK. Association of sarcopenia with eGFR and misclassification of obesity in adults with CKD in the United States. Clin J Am Soc Nephrol. 2014;9:2079–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang XH, Mitch WE. Mechanisms of muscle wasting in chronic kidney disease. Nat Rev Nephrol. 2014;10:504–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Franch HA, Mitch WE. Catabolism in uremia: the impact of metabolic acidosis. J Am Soc Nephrol. 1998;9:S78–81.

    CAS  PubMed  Google Scholar 

  34. Bailey JL, Wang X, England BK, Price SR, Ding X, Mitch WE. The acidosis of chronic renal failure activates muscle proteolysis in rats by augmenting transcription of genes encoding proteins of the ATP-dependent ubiquitin-proteasome pathway. J Clin Invest. 1996;97:1447–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bosutti A, Toigo G, Ciocchi B, Situlin R, Guarnieri G, Biolo G. Regulation of muscle cathepsin B proteolytic activity in protein-depleted patients with chronic diseases. Clin Nutr. 2002;21:373–8. 34

    Article  CAS  PubMed  Google Scholar 

  36. Adey D, Kumar R, McCarthy JT, Nair KS. Reduced synthesis of muscle proteins in chronic renal failure. Am J Physiol Endocrinol Metab. 2000;278:E219–25.

    Article  CAS  PubMed  Google Scholar 

  37. Balakrishnan VS, Rao M, Menon V, Gordon PL, Pilichowska M, Castaneda F, et al. Resistance training increases muscle mitochondrial biogenesis in patients with chronic kidney disease. Clin J Am Soc Nephrol. 2010;5:996–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 2008;27:433–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Otera H, Mihara K. Molecular mechanisms and physiologic functions of mitochondrial dynamics. J Biochem. 2011;149:241–51.

    Article  CAS  PubMed  Google Scholar 

  40. Lemasters JJ. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res. 2005;8:3–5.

    Article  CAS  PubMed  Google Scholar 

  41. Park SJ, Rao M, Menon V, Gordon PL, Pilichowska M, Castaneda F, et al. Mitochondrial fragmentation caused by phenanthroline promotes mitophagy. FEBS Lett. 2012;586:4303–10.

    Article  CAS  PubMed  Google Scholar 

  42. Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell. 2012;148:1145–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vila M, Ramonet D, Perier C. Mitochondrial alterations in Parkinson’s disease: new clues. J Neurochem. 2008;107:317–28.

    Article  CAS  PubMed  Google Scholar 

  44. Sugie K, Noguchi S, Kozuka Y, Arikawa-Hirasawa E, Tanaka M, Yan C, et al. Autophagic vacuoles with sarcolemmal features delineate Danon disease and related myopathies. J Neuropathol Exp Neurol. 2005;64:513–22.

    Article  CAS  PubMed  Google Scholar 

  45. Raben N, Hill V, Shea L, Takikita S, Baum R, Mizushima N, et al. Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease. Hum Mol Genet. 2008;17:3897–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sandri M. Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol. 2013;45:2121–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Grumati P, Coletto L, Sabatelli P, Cescon M, Angelin A, Bertaggia E, et al. Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration. Nat Med. 2010;16:1313–20.

    Article  CAS  PubMed  Google Scholar 

  48. Ramos FJ, Chen SC, Garelick MG, Dai DF, Liao CY, Schreiber KH, et al. Rapamycin reverses elevated mTORC1 signaling in lamin A/C-deficient mice, rescues cardiac and skeletal muscle function, and extends survival. Sci Transl Med. 2012;4:144ra103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. De Palma C, Morisi F, Cheli S, Pambianco S, Cappello V, Vezzoli M, et al. Autophagy as a new therapeutic target in Duchenne muscular dystrophy. Cell Death Dis. 2012;3:e418.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Carmignac V, Svensson M, Körner Z, Elowsson L, Matsumura C, Gawlik KI, et al. Autophagy is increased in laminin alpha2 chain-deficient muscle and its inhibition improves muscle morphology in a mouse model of MDC1A. Hum Mol Genet. 2011;20:4891–902.

    Article  CAS  PubMed  Google Scholar 

  51. Doyle A, Zhang G, Abdel Fattah EA, Eissa NT, Li YP. Toll-like receptor 4 mediates lipopolysaccharide-induced muscle catabolism via coordinate activation of ubiquitin-proteasome and autophagy-lysosome pathways. FASEB J. 2011;25:99–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lokireddy S, Wijesoma IW, Teng S, Bonala S, Gluckman PD, McFarlane C, et al. The ubiquitin ligase Mul1 induces mitophagy in skeletal muscle in response to muscle-wasting stimuli. Cell Metab. 2012;16:613–24.

    Article  CAS  PubMed  Google Scholar 

  53. Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 2007;6:472–83.

    Article  CAS  PubMed  Google Scholar 

  54. Mofarrahi M, Sigala I, Guo Y, Godin R, Davis EC, Petrof BS, et al. Autophagy and skeletal muscles in sepsis. PLoS ONE. 2012;7:e47265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bailey JL, Zheng B, Hu Z, Price SR, Mitch WE. Chronic kidney disease causes defects in signaling through the insulin receptor substrate/phosphatidylinositol 3-kinase/Akt pathway: implications for muscle atrophy. J Am Soc Nephrol. 2006;17:1388–94.

    Article  CAS  PubMed  Google Scholar 

  56. Mammucari C, Schiaffino S, Sandri M. Downstream of Akt: FoxO3 and mTOR in the regulation of autophagy in skeletal muscle. Autophagy. 2008;4:524–6.

    Article  CAS  PubMed  Google Scholar 

  57. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell. 2004;117:399–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lacson E Jr, Wang W, Zebrowski B, Wingard R, Hakim RM. Outcomes associated with intradialytic oral nutritional supplements in patients undergoing maintenance hemodialysis: a quality improvement report. Am J Kidney Dis. 2012;60:591–600.

    Article  CAS  PubMed  Google Scholar 

  59. Chertow GM, Ling J, Lew NL, Lazarus JM, Lowrie EG. The association of intradialytic parenteral nutrition administration with survival in hemodialysis patients. Am J Kidney Dis. 1994;24:912–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to the patients, whose participation made this study possible. We thank Zhang Boyan at the Department of Central Laboratory, Eye and ENT Hospital of Fudan University, for technical support for confocal imaging and Chen Xinyu at the Shanghai Jiaotong University School of Medicine for technical support for electron microscopy. We thank the collaborators, who assisted in obtaining the tissue studied in the research, as follows: Xu Mindong at the Department of Nephrology, Tongji University Affiliated Shanghai Yangpu District Central Hospital; Han Guofeng and Hu Weifeng at the Department of Nephrology, No. 455 Hospital of People’s Liberation Army, China; Xi Xiaowei and Chen Yongping at the Department of Obstetrics and Gynecology, Shanghai Jiaotong University Affiliated Shanghai First People’s Hospital; Peng Zhihai at the Department of General Surgery, Shanghai Jiaotong University Affiliated Shanghai First People’s Hospital. We thank Pubsci Limited for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin fang Bao or Wei jie Yuan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y.y., Gu, L.j., Huang, J. et al. CKD autophagy activation and skeletal muscle atrophy—a preliminary study of mitophagy and inflammation. Eur J Clin Nutr 73, 950–960 (2019). https://doi.org/10.1038/s41430-018-0381-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-018-0381-x

This article is cited by

Search

Quick links