Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Screening for potent and selective anticlostridial leads among FDA-approved drugs

Abstract

Clostridium difficile is a leading cause of morbidity and mortality particularly in hospital settings. In addition, treatment is very challenging due to the scarcity of effective therapeutic options. Thus, there remains an unmet need to identify new therapeutic agents capable of treating C. difficile infections. In the current study, we screened two FDA-approved drug libraries against C. difficile. Out of almost 3200 drugs screened, 50 drugs were capable of inhibiting the growth of C. difficile. Remarkably, some of the potent inhibitors have never been reported before and showed activity in a clinically achievable range. Structure–activity relationship analysis of the active hits clustered the potent inhibitors into four chemical groups; nitroimidazoles (MIC50 = 0.06–2.7 μM), salicylanilides (MIC50 = 0.2–0.6 μM), imidazole antifungals (MIC50 = 4.8–11.6 μM), and miscellaneous group (MIC50 = 0.4–22.2 μM). The most potent drugs from the initial screening were further evaluated against additional clinically relevant strains of C. difficile. Moreover, we tested the activity of potent inhibitors against representative strains of human normal gut microbiota to investigate the selectivity of the inhibitors towards C. difficile. Overall, this study provides a platform that could be used for further development of potent and selective anticlostridial antibiotics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lessa FC, Mu Y, Bamberg WM, Beldavs ZG, Dumyati GK, Dunn JR, et al. Burden of Clostridium difficile infection in the United States. N Engl J Med. 2015;372:825–34.

    CAS  PubMed  Google Scholar 

  2. ECDC. European surveillance of Clostridium difficile infections. Surveillance protocol version 2.2. European Centre for Disease Prevention and Control. European Surveillance of Clostridium difficile infections. Surveillance protocol version 2.2. Stockholm: ECDC; 2015.

  3. Khanna S, Pardi DS, Aronson SL, Kammer PP, Orenstein R, St Sauver JL, et al. The epidemiology of community-acquired Clostridium difficile infection: a population-based study. Am J Gastroenterol. 2012;107:89–95.

    PubMed  Google Scholar 

  4. Barra-Carrasco J, Paredes-Sabja D. Clostridium difficile spores: a major threat to the hospital environment. Future Microbiol. 2014;9:475–86.

    CAS  PubMed  Google Scholar 

  5. Kelly CP, LaMont JT. Clostridium difficile–more difficult than ever. N Engl J Med. 2008;359:1932–40.

    CAS  PubMed  Google Scholar 

  6. Cruz MP. Fidaxomicin (Dificid), a novel oral macrocyclic antibacterial agent for the treatment of Clostridium difficile-associated diarrhea in adults. P T. 2012;37:278–81.

    PubMed  PubMed Central  Google Scholar 

  7. Mohammad H, AbdelKhalek A, Abutaleb NS, Seleem MN. Repurposing niclosamide for intestinal decolonization of vancomycin-resistant enterococci. Int J Antimicrobial Agents. 2018;51:897–904.

    CAS  Google Scholar 

  8. AbdelKhalek A, Abutaleb NS, Mohammad H, Seleem MN. Repurposing ebselen for decolonization of vancomycin-resistant enterococci (VRE). PLoS ONE. 2018;13:e0199710.

    PubMed  PubMed Central  Google Scholar 

  9. Younis W, AbdelKhalek A, Mayhoub AS, Seleem MN. In vitro screening of an FDA-approved library against ESKAPE pathogens. Curr Pharm Des. 2017;23:2147–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Thangamani S, Eldesouky HE, Mohammad H, Pascuzzi PE, Avramova L, Hazbun TR, et al. Ebselen exerts antifungal activity by regulating glutathione (GSH) and reactive oxygen species (ROS) production in fungal cells. Biochim Biophys Acta. 2016;1861:3002–10.

    PubMed Central  Google Scholar 

  11. Younis W, Thangamani S, Seleem MN. Repurposing non-antimicrobial drugs and clinical molecules to treat bacterial infections. Curr Pharm Des. 2015;21:4106–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Thangamani S, Younis W, Seleem MN. Repurposing celecoxib as a topical antimicrobial agent. Front Microbiol. 2015;6:750.

    PubMed  PubMed Central  Google Scholar 

  13. Thangamani S, Younis W, Seleem MN. Repurposing ebselen for treatment of multidrug-resistant staphylococcal infections. Sci Rep. 2015;5:11596.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Thangamani S, Mohammad H, Younis W, Seleem MN. Drug repurposing for the treatment of staphylococcal infections. Curr Pharm Des. 2015;21:2089–100.

    CAS  PubMed  Google Scholar 

  15. Clinical and Laboratory Standards Institute (CLSI). Methods for antimicrobial susceptibility testing of anaerobic bacteria, 8th ed. CLSI document M11-A8. Wayne, PA: Clinical and Laboratory Standards Institute: 2012.

  16. Shao X, AbdelKhalek A, Abutaleb NS, Velagapudi UK, Yoganathan S, Seleem MN, et al. Chemical space exploration around thieno[3,2-d]pyrimidin-4(3H)-one Scaffold led to a novel class of highly active clostridium difficile inhibitors. J Med Chem. 2019;62:9772–91.

  17. McDonald LC, Gerding DN, Johnson S, Bakken JS, Carroll KC, Coffin SE, et al. Clinical Practice Guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis. 2018;66:e1–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kumar M, Adhikari S, Hurdle JG. Action of nitroheterocyclic drugs against Clostridium difficile. Int J Antimicrobial Agents. 2014;44:314–9.

    CAS  Google Scholar 

  19. Jarrad AM, Karoli T, Blaskovich MA, Lyras D, Cooper MA. Clostridium difficile drug pipeline: challenges in discovery and development of new agents. J Med Chem. 2015;58:5164–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Surawicz CM, Brandt LJ, Binion DG, Ananthakrishnan AN, Curry SR, Gilligan PH, et al. Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am J Gastroenterol. 2013;108:478–98.

    CAS  PubMed  Google Scholar 

  21. Bolton RP, Culshaw MA. Faecal metronidazole concentrations during oral and intravenous therapy for antibiotic associated colitis due to Clostridium difficile. Gut. 1986;27:1169–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ang CW, Jarrad AM, Cooper MA, Blaskovich MAT. Nitroimidazoles: molecular fireworks that combat a broad spectrum of infectious diseases. J Med Chem. 2017;60:7636–57.

    CAS  PubMed  Google Scholar 

  23. Upcroft JA, Dunn LA, Wright JM, Benakli K, Upcroft P, Vanelle P. 5-Nitroimidazole drugs effective against metronidazole-resistant Trichomonas vaginalis and Giardia duodenalis. Antimicrobial Agents Chemother. 2006;50:344–7.

    CAS  Google Scholar 

  24. Jokipii L, Jokipii AM. Comparative evaluation of the 2-methyl-5-nitroimidazole compounds dimetridazole, metronidazole, secnidazole, ornidazole, tinidazole, carnidazole, and panidazole against Bacteroides fragilis and other bacteria of the Bacteroides fragilis group. Antimicrobial Agents Chemother. 1985;28:561–4.

    CAS  Google Scholar 

  25. Jokipii AM, Jokipii L. Comparative activity of metronidazole and tinidazole against Clostridium difficile and Peptostreptococcus anaerobius. Antimicrobial Agents Chemother. 1987;31:183–6.

    CAS  Google Scholar 

  26. Hedge DD, Strain JD, Heins JR, Farver DK. New advances in the treatment of Clostridium difficile infection (CDI). Therapeutics Clin Risk Manag. 2008;4:949–64.

    CAS  Google Scholar 

  27. Erkkola R, Jarvinen H. Single dose of ornidazole in the treatment of bacterial vaginosis. Annales Chirurgiae et Gynaecologiae Supplementum. 1987;202:94–6.

    CAS  PubMed  Google Scholar 

  28. Gorenek L, Dizer U, Besirbellioglu B, Eyigun CP, Hacibektasoglu A, Van Thiel DH. The diagnosis and treatment of Clostridium difficile in antibiotic-associated diarrhea. Hepato-Gastroenterol. 1999;46:343–8.

    CAS  Google Scholar 

  29. Gookin JL, Copple CN, Papich MG, Poore MF, Stauffer SH, Birkenheuer AJ, et al. Efficacy of ronidazole for treatment of feline Tritrichomonas foetus infection. J Vet Intern Med. 2006;20:536–43.

    PubMed  Google Scholar 

  30. Steiner JM, Schwamberger S, Pantchev N, Balzer HJ, Vrhovec MG, Lesina M, et al. Use of ronidazole and limited culling to eliminate tritrichomonas muris from laboratory mice. J Am Assoc Lab Anim Sci. 2016;55:480–3.

    PubMed  PubMed Central  Google Scholar 

  31. Gooyit M, Janda KD. Reprofiled anthelmintics abate hypervirulent stationary-phase Clostridium difficile. Sci Rep. 2016;6:33642.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rajamuthiah R, Fuchs BB, Conery AL, Kim W, Jayamani E, Kwon B, et al. Repurposing salicylanilide anthelmintic drugs to combat drug resistant Staphylococcus aureus. PLoS ONE. 2015;10:e0124595.

    PubMed  PubMed Central  Google Scholar 

  33. Tharmalingam N, Port J, Castillo D, Mylonakis E. Repurposing the anthelmintic drug niclosamide to combat Helicobacter pylori. Sci Rep. 2018;8:3701.

    PubMed  PubMed Central  Google Scholar 

  34. AbdelKhalek A, Abutaleb NS, Mohammad H, Seleem MN. Antibacterial and antivirulence activities of auranofin against Clostridium difficile. Int J Antimicrob Agents. 2019;53:54–62.

  35. Ghannoum MA, Rice LB. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev. 1999;12:501–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Heerding DA, Chan G, DeWolf WE, Fosberry AP, Janson CA, Jaworski DD, et al. 1,4-Disubstituted imidazoles are potential antibacterial agents functioning as inhibitors of enoyl acyl carrier protein reductase (FabI). Bioorg medicinal Chem Lett. 2001;11:2061–5.

    CAS  Google Scholar 

  37. Marreddy RKR, Wu X, Sapkota M, Prior AM, Jones JA, Sun D, et al. The fatty acid synthesis protein enoyl-ACP reductase II (FabK) is a target for narrow-spectrum antibacterials for Clostridium difficile Infection. ACS Infect Dis. 2019;5:208–17.

    CAS  PubMed  Google Scholar 

  38. Rani N, Sharma A, Singh R. Imidazoles as promising scaffolds for antibacterial activity: a review. Mini Rev Med Chem. 2013;13:1812–35.

    CAS  PubMed  Google Scholar 

  39. McVay CS, Rolfe RD. In vitro and in vivo activities of nitazoxanide against Clostridium difficile. Antimicrobial Agents Chemother. 2000;44:2254–8.

    CAS  Google Scholar 

  40. Musher DM, Logan N, Bressler AM, Johnson DP, Rossignol JF. Nitazoxanide versus vancomycin in Clostridium difficile infection: a randomized, double-blind study. Clin Infect Dis. 2009;48:e41–6.

    CAS  PubMed  Google Scholar 

  41. Hoffman PS, Sisson G, Croxen MA, Welch K, Harman WD, Cremades N, et al. Antiparasitic drug nitazoxanide inhibits the pyruvate oxidoreductases of Helicobacter pylori, selected anaerobic bacteria and parasites, and Campylobacter jejuni. Antimicrobial Agents Chemother. 2007;51:868–76.

    CAS  Google Scholar 

  42. Willcox RR. Treatment of vaginal trichomoniasis with 2-acetylamino-5-nitrothiazole (aminitrozole) given orally. Br J Vener Dis. 1957;33:115–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kalinichenko NF. Nitazole–an antimicrobial substance. Mikrobiol Z. 1998;60:83–91.

    CAS  PubMed  Google Scholar 

  44. Villegas F, Angles R, Barrientos R, Barrios G, Valero MA, Hamed K, et al. Administration of triclabendazole is safe and effective in controlling fascioliasis in an endemic community of the Bolivian Altiplano. PLoS Negl Trop Dis. 2012;6:e1720.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Andrews P, Bonse G. Chemistry of anticestodal agents. In: Campbell WC, Rew RS, editors. Chemotherapy of Parasitic Diseases. Boston, MA: Springer; 1986.

  46. Perez-Cobas AE, Moya A, Gosalbes MJ, Latorre A. Colonization resistance of the gut microbiota against Clostridium difficile. Antibiotics. 2015;4:337–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wust J. Susceptibility of anaerobic bacteria to metronidazole, ornidazole, and tinidazole and routine susceptibility testing by standardized methods. Antimicrobial Agents Chemother. 1977;11:631–7.

    CAS  Google Scholar 

  48. Nenoff P, Koch D, Kruger C, Drechsel C, Mayser P. New insights on the antibacterial efficacy of miconazole in vitro. Mycoses. 2017;60:552–7.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Award Number R01AI130186.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed N. Seleem.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AbdelKhalek, A., Mohammad, H., Mayhoub, A.S. et al. Screening for potent and selective anticlostridial leads among FDA-approved drugs. J Antibiot 73, 392–409 (2020). https://doi.org/10.1038/s41429-020-0288-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-020-0288-3

This article is cited by

Search

Quick links