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Abstract
Tunicamycins are nucleoside natural products and show antibacterial, antiviral and antitumor activities, which are attributed
to their inhibition of enzymatic reactions between polyisoprenyl phosphate and UDP-GlcNAc or UDP-MurNAc-
pentapeptide. Because of their various intriguing biological activities, tunicamycins have potential as therapeutic agents for
infectious diseases or cancers. Structurally, tunicamycins have a unique structure composed of an undecodialdose skeleton, a
lipid chain and a GlcNAc fragment linked by a 1,1-β,α-trehalose-type glycosidic bond. In this mini review, we summarize
the total chemical syntheses and biosynthetic studies of tunicamycins.

Introduction

Tunicamycins (Fig. 1) [1–7] are nucleoside natural products
that were first isolated from the fermentation broths of
Streptomyces lysosuperficus and later Streptomyces char-
treusis. Tunicamycins inhibit enzymatic reactions catalyzed
by bacterial phospho-N-acetylmuramyl-pentapeptide trans-
ferase (MraY), which is responsible for the biosynthesis of
peptidoglycan, and undecaprenyl-phosphate α-N-acet-
ylglucosaminyl 1-phosphate transferase (WecA), which is
responsible for the synthesis of lipopolysaccharide and
enterobacterial common antigen [8–16]. These mechanisms
are modes of antibacterial activity of tunicamycins. MraY is
an essential enzyme for bacterial survival and a good target
for antibacterial drug discovery [17–19]. Tunicamycins also
strongly inhibit human UDP-N-acetylglucosamine-dolichyl
phosphate N-acetylglucosamine-phosphotransferase (GPT),
which is responsible for the first N-acetylglucosamination of
N-linked glycopeptides in the endothelial reticulum [20].

Tunicamycins are broadly used as biological tools in studies
of the N-glycosylation of proteins.

Tunicamycins have a unique structure comprising an
undecodialdose core, referred to as tunicamine (2), decorated
with uracil, D-N-acetylglucosamine (GlcNAc) which attached
to the core by a 1,1-β,α-trehalose-type glycosidic bond, and
an amide-linked fatty acid. Streptovirudins [21], corynetoxins
[22], MM19290 [23], mycospocidin [24] and antibiotic 24010
[25] share the same pseudotrisaccharide core, and quinovo-
samycins [26] are a deoxy congener. These unique structural
features and various biological activities have attracted the
attention of many researchers to attempt their challenging
chemical synthesis or revealed their biosynthetic pathways.
Here, we review previous total chemical syntheses and bio-
synthetic analyses of tunicamycins. The total synthesis of
tunicamycin V (1) has been accomplished by Suami’s [27–
29], Myers’ [30], Yu’s [31] and our groups [32], and many
other synthetic studies have been conducted [33–38]. Of all
the synthetic studies, this review focuses only on the total
syntheses.

Total synthesis

The construction of the tunicamine (2) core by a C5′–C6′
bond formation and a 1,1-β,α-trehalose-type glycosylation,
which could result in four stereoisomers, are challenging tasks
in total synthesis of tunicamycin. Suami and co-workers
completed the first total synthesis of 1 in 1985 (Scheme 1)
[27–29]. They achieved the C5′–C6′ bond formation to afford
product 7 via the Henry reaction between 5-deoxy-5-nitro-D-
ribose derivative 4 and an aldehyde 6, which was prepared
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from N-acetylgalactosamine derivative 5. Coupling product 7
was converted to a suitably protected tunicamine derivative 9
via 8, and subsequent protecting group manipulation provided
hexaacetate 10. Then, a uracil moiety was introduced to 10
with bis(trimethylsilyloxy)pyrimidine in the presence SnCl4,
and the substitution of the 11′-OMe group with Cl via a two-
step reaction provided glycosyl chloride 11.

The challenging trehalose-type glycosylation using glyco-
syl chloride 11 and acceptor 12 was conducted in the presence
of two silver salts and provide desired (11′-β,1′′-α)-product
13, but undesired (11′-β,1′′-β)-product 14 was also obtained
in addition to 13 and no selectivity was observed (~1:1)
despite the α-configuration of the anomeric hydroxyl group of
the GlcNAc moiety. Glycoside 13 was then converted into
tunicamycin V (1) via four additional transformations,
including the installation of the fatty acyl side chain.

The second total synthesis was achieved by Myers and co-
workers [30]. In their synthetic strategy, the trehalose-type
linkage was constructed first, and a C5′–C6′ bond was formed
in the last stage of the synthesis. In this type of glycosylation,
the choice of glycosyl donor and acceptor played a very
important role in the selectivity. The glycosylation of glycosyl
acceptor 16 and donor 17 in the presence of TMSOTf as a
promoter in CH2Cl2 provided desired glycoside (β,α)-18 and
undesired glycoside (β,β)-19 (Scheme 2, eq. 1). The β-
selectivity at the anomeric position on the galactosamine side
was controlled by neighboring group participation of the
phthaloyl (Phth) protecting group on donor 17. However, no
selectivity at the anomeric position of the GlcNAc moiety was
observed due to the α-dominance of acceptor 16 (α/β= 2/1).
On the other hand, the glycosylation of donor 20 and Phth-
protected acceptor 21 preferentially provided desired

glycoside (β,α)-22 (22/23 ratio= 7/1; eq. 2). In this case, an
anomeric hydroxyl group of acceptor 21was β-dominant (α/β
= 1/10) due to the steric effect of the Phth group. The high α-
selectivity at the anomeric position of 2-azidoglucose puta-
tively resulted from the restricted transition state conformation
of donor 20 in or an SN2-like mechanism in the glycosylation
using an imidate donor [39, 40].

To achieve the C5′–C6′ bond formation between the
disaccharide unit and uridine, they studied intramolecular
radical cyclization (Scheme 3). Glycoside 22 was converted
to allyl alcohol 24 over several steps, and the formation of a
silylene bridge with uridine 5′-aldehyde derivative 25 pro-
vided radical cyclization precursor 26 (eq. 1). The intra-
molecular radical cyclization of 26 proceeded cleanly in the
presence of Et3B/Bu3SnH, but undesired (5′S)-product 27
was obtained (eq. 2). On the other hand, precursor 28
without a TBS groups on the uridine moiety preferentially
provided desired (5′R)-product 29, which is consistent with
the stereochemistry of tunicamycins (eq. 3). After introdu-
cing the fatty acyl chain and global deprotection, the total
synthesis of tunicamycin V (1) was accomplished.

The total synthesis of tunicamycin V (1) by Yu and co-
workers [31] was reported almost two decades after the
Myers’ report. Their strategy included an aldol reaction to
realize the C5′–C6′ bond formation and two in-house-
developed Au-catalyzed glycosylation to introduce the ura-
cil and GlcNAc units (Scheme 4). Linear enol silyl ether 30,
used as the C6′–C11′ unit in tunicamycin, was prepared from
D-galactosamine in 14 steps. Mukaiyama aldol reaction of 30
and 31 was conducted in the presence of SnCl4, leading to (5′
R)-product 32 with high diastereoselectivity (d.r.= 13/1). The
resulting (5′R)-hydroxyketone 32 was converted to Phth-

Fig. 1 Structures of tunicamycins. The structure shown in a box with broken line is called to tunicamine (2), which is composed of a D-ribose and
D-galactosamine. These antibiotic congeners bear a various length of fatty acyl side chains
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protected glycosyl acceptor 35 over several steps, including a
1,3-trans-selective ketone reduction of 32 and formation of
lactone 34. Next, they studied a stereoselective trehalose-type
glycosylation to introduce the GlcNAc moiety. Glycosylation
between 2-azidoglucosyl alkynylbenzoate 36 and acceptor 35
proceeded in the presence of a catalytic amount of
Ph3PAuNTf2 in toluene as a solvent at room temperature to
give desired pseudotrisaccharide 37 with moderate selectivity
in addition to the other three isomers. After the conversion of
37 to alkynylbenzoate 38 over four steps, the second Au-
catalyzed glycosylation provided uracil-bearing product 39.
Finally, the conversion of the azide group to the corre-
sponding acetamide and the introduction of the fatty acyl
chain provided tunicamycin V (1).

Recently, we accomplished the total synthesis of tunica-
mycin V (1) with a de novo sugar synthesis strategy
(Scheme 5) [32]. The Mukaiyama aldol reaction of enol silyl
ether 40 and aldehyde 41 in the presence of BF3·OEt2 as a
promotor provided desired (5′R)-C5′–C6′ coupling product
42 with very high diastereoselectivity (d.r.>98/2). On the
other hand, the use of SnCl4 as a promotor gave the undesired
(5′S)-product (d.r.= 96/4). Surprisingly, this stereoselectivity
was in contrast to that observed in Yu’s synthesis (Scheme 4,
32). This diastereoselectivity may reflect the difference in the
conformation of the ribose ring or in the substituent at the 1′-
position [41, 42]. A multistep transformation involving an
oxidative furan ring rearrangement of 43 and a stereoselective
reduction of enone 44 afforded allyl carbamate 45 and set the

Scheme 1 Total synthesis of tunicamycin V by Suami and co-workers. Ac acetyl, Cbz benzyloxycarbonyl, DCC dicyclohexylcarbodiimide, MS4A
molecular sieves 4A, TMS trimethylsilyl
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Scheme 2 Studies of 1,1-trehalose-type glycosylation in total synthesis by Myers and co-workers. Bn benzyl, Bz benzoyl, BOM benzyloxymethyl,
Phth phthaloyl, TBS tert-butyldimethylsilyl, Tf trifluoromethanesulfonyl

Scheme 3 Total synthesis of tunicamycin V via radical cyclization by Myers and co-workers. Boc tert-butyloxycarbonyl
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stage for the allylcyanate rearrangement to introduce the 10′-
amino functional group. Dehydration of the carbamate group
provided cyanate 46, which smoothly underwent a [3,3] sig-
matropic rearrangement to give 47. The sequential treatment
of 47 with TAS-F afforded cyclic carbamate 48. The facial
selectivity of the dihydroxylation of olefin in 48 was con-
trolled by the cis-fused structure. After the transformation of
diol 49 to Phth-protected glycosyl acceptor 50, the trehalose-
type glycosylation between 50 and 2-azidoglucosyl imidate
51 in the presence of a catalytic amount of TfOH in Et2O was
conducted according to Myers’ reports [30]. As a result,
desired β,α-glycoside 53 was provided in a higher selectivity
than was observed in previous reports (β,α-53/β,β-52= 14/1).
Finally, introducing the fatty acyl chain and removing the

protection group accomplished the total synthesis of tunica-
mycin V (1).

Biosynthesis

The Tunicamycin family has a unique and curious structure
that contains a C5′–C6′-linked disaccharide, which is unpar-
alleled in nature in terms of biosynthesized compounds.
Although numerous studies on the chemical synthesis
of tunicamycins have been reported since shortly after its
isolation in 1971, biosynthetic studies were not reported until
the 2000’s. The biosynthetic study of tunicamycins by Price
and co-workers reported a new tunicamycin-producing

Scheme 4 Total synthesis of tunicamycin V by Yu and co-workers. AW MS acid washed molecular sieves, BAIB bis-(acetoxy)
iodobenzene, MMTr monomethoxytrytyl, PMP p-methoxyphenyl, TBDPS tert-butyldiphenylsilyl, TEMPO 2,2,6,6-tetramethyl-1-piperidinyloxyl,
TFA trifluoroacetic acid
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Scheme 5 Total synthesis of tunicamycin V by our group. mCPBA m-chloroperbenzoic acid, MOM methoxymethyl, NMO N-methylmorpholine-
N-oxide, TAS-F tris(dimethylamino)sulfonium difluorotrimethylsilicate, TBAI tetrabutylammonium iodide

Fig. 2 Labeling site by
tunicamycin production
experiment using labelled D-
glucose
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Fig. 3 Genetic organization of the tunicamycin biosynthetic gene cluster. The figure was modified from Chem. Sci. 2010 [22]

Scheme 6 Proposed biosynthetic pathway by Davis and co-workers in 2010
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microorganism (S. chartreusis), and the metabolic origin of
tunicamine was revealed [43]. LC-ESI-CD-MS analyses of
the stable isotope-labeled tunicamycin indicated that both the
D-GlcNAc and D-galactosamine moieties originated from D-
glucose (or UDP-GlcNAc) via the sugar metabolic pathway
(Fig. 2), which suggested the presence of UDP-GlcNAc 4′-
epimerase to produce the galactosamine moiety.

In addition, a minimal gene cluster in tunicamycin bio-
synthesis was identified by Davis and co-workers in 2010
(Fig. 3) [44]. Because tunicamycins are not polyketides or
peptide natural products biosynthesized by polyketide
synthase or non-ribosomal peptide synthase (NRPS) with
highly conserved sequences, they utilized bioinformatics

tools and searched genes involving 1→ 1-linking glyco-
syltransferases, N-acetylhexosamine N-deacetylases, lipid-
processing proteins and NDP-hexose epimerase/dehydrase,
which were expected to be involved in the construction of
the unique substructure of tunicamycins. Through these
analyses, tun gene clusters were identified from several
microorganisms containing S. chartreusis, which was
shown to be a tunicamycin-producing microorganism in a
previous report [43]. Considering the putative functions of
tun gene products, it was suggested that a TunB/M-cata-
lyzed, enol-aldehyde reductive C5′-C6′ bond formation in
the radical process formed the tunicamine scaffold (56+
58→ 59, Scheme 6), and this was a previously unknown
enzymatic reaction, and TunD formed the 11′-β,1′′-α
trehalose-type glycosidic bond (59+UDP-GlcNAc→ 60,
Scheme 6). Additionally, the diversity of fatty acyl chains
in the tunicamycin family is attributed to the use of lipids
present in the cells because of the lack of a fatty acid
synthase in the tun gene cluster. These insights were
consistent with a previous report [44], in which D-glucose
(or UDP-GlcNAc) was used as a biosynthetic precursor.

Although tunicamycin-producing gene clusters were
identified and the biosynthetic pathway was proposed, the
details of the C–C radical coupling mechanism remained
unclear. Davis and co-workers elucidated the true pre-
cursor of the C–C radical coupling in 2012 (Fig. 4) [45].
A detailed analysis of the enzymatic reactions revealed
that TunF catalyzes the epimerization of the equatorial-
hydroxyl groups at the 4-positions in UDP-GlcNAc (57)
and UDP-6-deoxy-5,6-ene-GlcNAc (63) to give UDP-
GalNAc (62) and UDP-6-deoxy-5,6-ene-GalNAc (64),
respectively. In addition, TunA catalyzes the 5,6-dehy-
dration of 57 but not 62. These results indicated that 57Fig. 4 The enzymatic experiments of TunA, F

Scheme 7 Revised biosynthetic pathway by Davis and co-workers in 2012
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was dehydrated by TunA to give 5,6-ene-product 63,
which was subsequently epimerized by TunF to give 64
in the biosynthesis of tunicamycin. Therefore, as shown
in the revised biosynthetic pathway (Scheme 7), the C–C
radical coupling is predicted to occur between uridine 5′-
carbon radical 56 and allyl alcohol 64, instead of unsa-
turated ketone (58, Scheme 6), which directly gives
tunicamine scaffold 59. Interestingly, the total synthesis
by Myers’ group [30] mimicked this revised biosynthetic
pathway, especially in the construction of the tunicamine
scaffold, 18 years before Davis’ study.

In recent studies [46], mutant experiments of a tun
gene cluster suggested that six genes (tunABCDEH) are
essential for tunicamycin production, but the functions of
the five gene products (TunFGKLN) could be replaced by
other primary metabolic enzymes. It has also been shown
that the deletion of tunMIJ genes induced an increase in
tunicamycin sensitivity in the producing bacterium,
meaning that the tunMIJ gene products are involved in
self-resistance mediated by deactivation via methylation
(tunM) and the expulsion (tunIJ) of tunicamycins.

Conclusion

Tunicamycins have various biological activities, including
antimicrobial, antivirus and antitumor activities, which result
from the inhibition of MraY in prokaryotes and GPT in
eukaryotes. Tunicamycins also have a unique C5′-C6′-linked
undecodialdose core, which is rare in nature. This has
attracted the attention of many researchers, and many che-
mical synthetic and biosynthetic studies have been conducted.
In the total syntheses of tunicamycin V (1), the C5′–C6′ bond
formation has been accomplished with a nitroaldol reaction,
an intramolecular radical cyclization and a Mukaiyama aldol
reaction. On the other hand, biosynthetic studies indicated that
the tunicamine core was produced via a radical coupling
between uridine and UDP-6-deoxy-5,6-ene-GalNAc, which is
a new type of enzymatic reaction in biosynthesis.

The usefulness of tunicamycins as antibacterial agents is
limited by their off-target inhibition of human-GPT. To
decrease this off-target effect, structural modifications of
tunicamycins to achieve target selectivity is required.
Recently, the structures of tunicamycin complexed with
MraY and GPT were revealed [47–49]. According to the
co-crystal structure of MraY and GPT, the recognition of
GlcNAc moiety in tunicamycin is quite different. Therefore,
a GlcNAc-modified analogue was designed, and this ana-
logue inhibited only MraY but not GPT (IC50= 640 nM vs
15 μM) [48]. As just described, it is expected that the var-
ious synthetic methods of tunicamycins in conjunction with
the structural information provided by the ligand-protein
complexes will facilitate rational drug design to improve

selectivity among enzymes, biological activities, metabolic
stabilities and so on to improve the applicability of these
compounds as antibacterial or anticancer agents.
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