Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Thermoresponsive structural changes of single poly(N-isopropyl acrylamide) hydrogel microspheres under densely packed conditions on a solid substrate

Abstract

The thermoresponsiveness of hydrogel microspheres (microgels) was visualized in situ at the nanoscale using temperature-controllable high-speed atomic force microscopy (TC-HS-AFM). The morphological changes of the microgels are strongly affected by their packing conditions and by their adsorption on a solid substrate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Roy D, Brooks WLA, Sumerlin BS. New directions in thermoresponsive polymers. Chem Soc Rev. 2013;42:7214–43.

    Article  PubMed  CAS  Google Scholar 

  2. Wei M, Gao Y, Li X, Serpe MJ. Stimuli-responsive polymers and their applications. Polym Chem. 2017;8:127–43.

    Article  CAS  Google Scholar 

  3. Ko H, Javey A. Smart actuators and adhesives for reconfigurable matter. Acc Chem Res. 2017;50:691–702.

    Article  PubMed  CAS  Google Scholar 

  4. Lu C, Urban MW. Stimuli-responsive polymer nano-science: Shape anisotropy, responsiveness, applications. Prog Polym Sci. 2018;78:24–46.

    Article  CAS  Google Scholar 

  5. Hanlon R. Cephalopod dynamic camouflage. Curr Biol. 2007;17:R400–4.

    Article  PubMed  CAS  Google Scholar 

  6. Capadona JR, Shanmuganathan K, Tyler DJ, Rowan SJ, Weder C. Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science. 2008;319:1370–4.

    Article  PubMed  CAS  Google Scholar 

  7. Stuart MAC, Huck WTS, Genzer J, Muller M, Ober C, Stamm M, et al. Emerging applications of stimuli-responsive polymer materials. Nat Mater. 2010;9:101–13.

    Article  PubMed  CAS  Google Scholar 

  8. Suzuki D, Horigome K, Kureha T, Matsui S, Watanabe T. Polymeric hydrogel microspheres: design, synthesis, characterization, assembly and applications. Polym J. 2017;49:695–702.

    Article  CAS  Google Scholar 

  9. Hoffman AS. Stimuli-responsive polymers: biomedical applications and challenges for clinical translation. Adv Drug Deliv Rev. 2013;65:10–6.

    Article  PubMed  CAS  Google Scholar 

  10. Sigolaeva LV, Gladyr SY, Gelissen APH, Mergel O, Pergushov DV, Kurochkin IN, et al. Dual-stimuli-sensitive microgels as a tool for stimulated spongelike adsorption of biomaterials for biosensor applications. Biomacromolecules. 2014;15:3735–45.

    Article  PubMed  CAS  Google Scholar 

  11. Montero de Espinosa L, Meesorn W, Moatsou D, Weder C. Bioinspired polymer systems with stimuli-responsive mechanical properties. Chem Rev. 2017;117:12851–92.

    Article  PubMed  CAS  Google Scholar 

  12. Pelton RH, Chibante P. Preparation of aqueous latices with N-isopropylacrylamide. Colloids Surf. 1986;20:247–56.

    Article  CAS  Google Scholar 

  13. Pelton R. Temperature-sensitive aqueous microgels. Adv Colloid Interface Sci. 2000;85:1–33.

    Article  PubMed  CAS  Google Scholar 

  14. Hoare T, Pelton R. Highly pH and temperature responsive microgels functionalized with vinylacetic acid. Macromolecules. 2004;37:2544–50.

    Article  CAS  Google Scholar 

  15. Lu Y, Ballauff M. Spherical polyelectrolyte brushes as nanoreactors for the generation of metallic and oxidic nanoparticles: synthesis and application in catalysis. Prog Polym Sci. 2016;59:86–104.

    Article  CAS  Google Scholar 

  16. Suzuki D, Kobayashi T, Yoshida R, Hirai T. Soft actuators of organized self-oscillating microgels. Soft Matter. 2012;8:11447–9.

    Article  CAS  Google Scholar 

  17. Kureha T, Aoki D, Hiroshige S, Iijima K, Aoki D, Takata T, et al. Decoupled thermo- and pH-responsive hydrogel microspheres cross-linked by rotaxane networks. Angew Chem Int Ed. 2017;56:15393–6.

    Article  CAS  Google Scholar 

  18. Matsui S, Inui K, Kumai Y, Yoshida R, Suzuki D. Autonomously oscillating hydrogel microspheres with high-frequency swelling/deswelling and dispersing/flocculating oscillations. ACS Biomater Sci Eng. 2019;5:5615–22.

    Article  CAS  Google Scholar 

  19. Kureha T, Nishizawa Y, Suzuki D. Controlled separation and release of organoiodine compounds using poly(2-methoxyethyl acrylate)-analogue microspheres. ACS Omega. 2017;2:7686–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kureha T, Suzuki D. Nanocomposite microgels for the selective separation of halogen compounds from aqueous solution. Langmuir. 2018;34:837–46.

    Article  PubMed  CAS  Google Scholar 

  21. Lu Y, Mei Y, Drechsler M, Ballauff M. Thermosensitive core–shell particles as carriers for Ag nanoparticles: modulating the catalytic activity by a phase transition in networks. Angew Chem Int Ed. 2006;45:813–6.

    Article  CAS  Google Scholar 

  22. Hoare T, Pelton R. Impact of microgel morphology on functionalized microgel-drug interactions. Langmuir. 2008;24:1005–12.

    Article  PubMed  CAS  Google Scholar 

  23. Smith MH, Lyon LA. Tunable encapsulation of proteins within charged microgels. Macromolecules. 2011;44:8154–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Tahara Y, Akiyoshi K. Current advances in self-assembled nanogel delivery systems for immunotherapy. Adv Drug Deliv Rev. 2015;95:65–76.

    Article  PubMed  CAS  Google Scholar 

  25. Plamper FA, Richtering W. Functional microgels and microgel systems. Acc Chem Res. 2017;50:131–40.

    Article  PubMed  CAS  Google Scholar 

  26. Ngai T, Behrens SH, Auweter H. Novel emulsions stabilized by pH and temperature sensitive microgels. Chem Commun. 2005:331–3.

  27. Richtering W. Responsive emulsions stabilized by stimuli-sensitive microgels: emulsions with special non-Pickering properties. Langmuir. 2012;28:17218–29.

    Article  PubMed  CAS  Google Scholar 

  28. Watanabe T, Takizawa M, Jiang H, Ngai T, Suzuki D. Hydrophobized nanocomposite hydrogel microspheres as particulate stabilizers for water-in-oil emulsions. Chem Commun. 2019;55:5990–3.

    Article  CAS  Google Scholar 

  29. Hellweg T, Dewhurst CD, Brückner E, Kratz K, Eimer W. Colloidal crystals made of poly(N-isopropylacrylamide) microgel particles. Colloid Polym Sci. 2000;278:972–8.

    Article  CAS  Google Scholar 

  30. Lyon LA, Debord JD, Debord SB, Jones CD, McGrath JG, Serpe MJ. Microgel colloidal crystals. J Phys Chem B. 2004;108:19099–108.

    Article  CAS  Google Scholar 

  31. Suzuki D, McGrath JG, Kawaguchi H, Lyon LA. Colloidal crystals of thermosensitive, core/shell hybrid microgels. J Phys Chem C. 2007;111:5667–72.

    Article  CAS  Google Scholar 

  32. Okubo T, Suzuki D, Yamagata T, Katsuno A, Sakurai M, Kimura H, et al. Colloidal crystallization of thermo-sensitive gel spheres of poly (N-isopropyl acrylamide). Colloid Polym Sci. 2011;289:291–9.

    Article  CAS  Google Scholar 

  33. Hoshino Y, Imamura K, Yue M, Inoue G, Miura Y. Reversible absorption of CO2 triggered by phase transition of amine-containing micro- and nanogel particles. J Am Chem Soc. 2012;134:18177–80.

    Article  PubMed  CAS  Google Scholar 

  34. Yue M, Hoshino Y, Ohshiro Y, Imamura K, Miura Y. Temperature-responsive microgel films as reversible carbon dioxide absorbents in wet environment. Angew Chem Int Ed. 2014;53:2654–7.

    Article  CAS  Google Scholar 

  35. Yue M, Hoshino Y, Miura Y. Design rationale of thermally responsive microgel particle films that reversibly absorb large amounts of CO2: fine tuning the pKa of ammonium ions in the particles. Chem Sci. 2015;6:6112–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Lapeyre V, Gosse I, Chevreux S, Ravaine V. Monodispersed glucose-responsive microgels operating at physiological salinity. Biomacromolecules. 2006;7:3356–63.

    Article  PubMed  CAS  Google Scholar 

  37. Hoare T, Pelton R. Charge-switching, amphoteric glucose-responsive microgels with physiological swelling activity. Biomacromolecules. 2008;9:733–40.

    Article  PubMed  CAS  Google Scholar 

  38. Karg M, Pich A, Hellweg T, Hoare T, Lyon LA, Crassous JJ, et al. Nanogels and microgels: from model colloids to applications, recent developments, and future trends. Langmuir. 2019;35:6231–55.

    Article  PubMed  CAS  Google Scholar 

  39. Keidel R, Ghavami A, Lugo DM, Lotze G, Virtanen O, Beumers P, et al. Time-resolved structural evolution during the collapse of responsive hydrogels: the microgel-to-particle transition. Sci Adv. 2018;4:eaao7086.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Conley GM, Aebischer P, Nöjd S, Schurtenberger P, Scheffold F. Jamming and overpacking fuzzy microgels: deformation, interpenetration, and compression. Sci Adv. 2017;3:e1700969.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Bouhid de Aguiar I, van de Laar T, Meireles M, Bouchoux A, Sprakel J, Schroën K. Deswelling and deformation of microgels in concentrated packings. Sci Adv. 2017;7:10223.

    CAS  Google Scholar 

  42. Minato H, Murai M, Watanabe T, Matsui S, Takizawa M, Kureha T, et al. The deformation of hydrogel microspheres at the air/water interface. Chem Commun. 2018;54:932–5.

    Article  CAS  Google Scholar 

  43. Bergman MJ, Gnan N, Obiols-Rabasa M, Meijer JM, Rovigatti L, Zaccarelli E, et al. A new look at effective interactions between microgel particles. Nat Commun. 2018;9:5039.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Conley GM, Zhang C, Aebischer P, Harden JL, Scheffold F. Relationship between rheology and structure of interpenetrating, deforming and compressing microgels. Nat Commun. 2019;10:2436.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Ando T, Uchihashi T, Scheuring S. Filming biomolecular processes by high-speed atomic force microscopy. Chem Rev. 2014;114:3120–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Matsui S, Kureha T, Hiroshige S, Shibata M, Uchihashi T, Suzuki D. Fast adsorption of soft hydrogel microspheres on solid surfaces in aqueous solution. Angew Chem Int Ed. 2017;56:12146–9.

    Article  CAS  Google Scholar 

  47. Matsui S, Nishizawa Y, Uchihashi T, Suzuki D. Monitoring thermoresponsive morphological changes in individual hydrogel microspheres. ACS Omega. 2018;3:10836–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Matsui S, Hosho K, Minato H, Uchihashi T, Suzuki D. Protein uptake into individual hydrogel microspheres visualized by high-speed atomic force microscopy. Chem Commun. 2019;55:10064–7.

    Article  CAS  Google Scholar 

  49. Nishizawa Y, Matsui S, Urayama K, Kureha T, Shibayama M, Uchihashi T, et al. Non-thermoresponsive decanano-sized domains in thermoresponsive hydrogel microspheres revealed by temperature- controlled high-speed atomic force microscopy. Angew Chem Int Ed. 2019;58:8809–13.

    Article  CAS  Google Scholar 

  50. Zhang Z, Xu N, Chen DTN, Yunker P, Alsayed AM, Aptowicz KB, et al. Thermal vestige of the zero-temperature jamming transition. Nature. 2009;459:230–3.

    Article  PubMed  CAS  Google Scholar 

  51. Caswell TA, Zhang Z, Gardel ML, Nagel SR. Observation and characterization of the vestige of the jamming transition in a thermal three-dimensional system. Phys Rev E. 2013;87:012303.

    Article  CAS  Google Scholar 

  52. Yunker PJ, Chen K, Gratale MD, Lohr MA, Still T, Yodh AG. Physics in ordered and disordered colloidal matter composed of poly(N-isopropyl acrylamide) microgel particles. Rep Prog Phys. 2014;77:056601.

    Article  PubMed  CAS  Google Scholar 

  53. Urayama K, Cong S, Saeki T, Uratani S, Takigawa T, Murai M, et al. A simple feature of yielding behavior of highly dense suspensions of soft micro-hydrogel particles. Soft Matter. 2014;10:9486–95.

    Article  PubMed  CAS  Google Scholar 

  54. Minami S, Watanabe T, Suzuki D, Urayama K. Rheological properties of suspensions of thermo-responsive poly(N-isopropylacrylamide) microgels undergoing volume phase transition. Polym J. 2016;48:1079–86.

    Article  CAS  Google Scholar 

  55. Minami S, Suzuki D, Urayama K. Rheological aspects of colloidal gels in thermoresponsive microgel suspensions: formation, structure, and linear and nonlinear viscoelasticity. Curr Opin Colloid Interface Sci. 2019;43:113–24.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

DS and TU would like to acknowledge Grants-in-Aid for Scientific Research on Innovative Areas from the Japan Society for the Promotion of Science (JSPS; 19H05388 to DS; 18H04512 and 19H05389 to TU). Moreover, DS gratefully acknowledges a Grant-in-Aid for Young Scientists (A) (JSPS; 17H04892).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Takayuki Uchihashi or Daisuke Suzuki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minato, H., Nishizawa, Y., Uchihashi, T. et al. Thermoresponsive structural changes of single poly(N-isopropyl acrylamide) hydrogel microspheres under densely packed conditions on a solid substrate. Polym J 52, 1137–1141 (2020). https://doi.org/10.1038/s41428-020-0372-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0372-3

Search

Quick links