Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Structural aspects and electronic states of polyuret—construction of robust extended systems with nonbonding flat bands

Abstract

The polymer of isocyanic acid has been referred to as cyamelide (cyamelid) by Liebig and Wöhler in some early studies, in which it was considered a mixture of chain polymers of isocyanic acid and cyanuric acid. Despite the knowledge of its fundamental structure, the chain polymeric compound has not been well characterized. We herein polymerized isocyanic acid and purified the resultant polymer to obtain a white powder. This powder was characterized by using IR, Raman, and UV spectroscopies; X-ray diffraction analysis; and band calculations. Analogous to the extended systems of urea, e.g., biuret, triuret, and higher oligomers, we refer to this polymer as polyuret. The structural chemistry of the polyuret was thoroughly explored with regard to possible cis/trans-isomerism. This polymer has flat bands at the frontier levels due to the nonbonding character of the urea moieties. We suggest that this compound should no longer be referred to as cyamelide or polyisocyanate to avoid confusion with the aforementioned uncharacterized mixture or with isocyanate-pendant polymers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Iwamura H. High-spin organic molecules and spin alignment in organic molecular assemblies. Adv Phys Org Chem. 1990;26:179–253.

    CAS  Google Scholar 

  2. Rajca A. The physical organic chemistry of very high-spin polyradicals. Adv Phys Org Chem. 2005;40:153–99.

    CAS  Google Scholar 

  3. Vicencio RA, Cantillano C, M-Inostroza L, Real B, Mejía-Cortés C, Weimann S, et al. Observation of localized states in Lieb photonic lattices. Phys Rev Lett. 2015;114:245503.

    Article  CAS  Google Scholar 

  4. Mukherjee S, Spracklen A, Choudhury D, Goldman N, Öhberg P, Andersson E, et al. Observation of a localized flat-band state in a photonic Lieb lattice. Phys Rev Lett. 2015;114:245504.

    Article  CAS  Google Scholar 

  5. Morales-Inostroza L, Vicencio RA. Simple method to construct flat-band lattices. Phys Rev A. 2016;94:043831.

    Article  Google Scholar 

  6. Alberola A, Less RJ, Pask CM, Rawson JM, Palacio F, Oliete P, et al. A Thiazyl-based organic ferromagnet. Angew Chem Int Ed. 2003;42:4782–5.

    Article  CAS  Google Scholar 

  7. Hatanaka M. Tautomerism in polyguanide. Comput Theor Chem. 2011;971:58–64.

    Article  CAS  Google Scholar 

  8. Dowd P. Trimethylenemethane. Acc Chem Res. 1972;5:242–8.

    Article  CAS  Google Scholar 

  9. Hatanaka M, Shiba R. Prediction of high-spin ground states of biguanide trication and biuret trication as a design for novel polymer ferrromagnets. J Comp Chem Jpn. 2005;4:101–6.

    Article  CAS  Google Scholar 

  10. Hatanaka M. High-spin stability of urea dication. Comp Theor Chem. 2011;968:44–8.

    Article  CAS  Google Scholar 

  11. Liebig J, Wöhler F. Untersuchungen über die Cyansäure. Ann Phys Chem 1830;20:369–400.

    Article  Google Scholar 

  12. Lehmann MA. Hantzsch: Ueber das Cyamelid. Berichte; 1905:1013–21.

  13. Senier A, Walsh T. The polymerization of cyanic acid: cyanuric acid, and cyamelide. J Chem Soc. 1908;81:290–1.

    Article  Google Scholar 

  14. Geith J, Klapötke TM. Ab initio calculations of the polymerization pathways of isocyanic acid HNCO. J Mol Struct (Theochem). 2001;538:29–39.

    Article  CAS  Google Scholar 

  15. Carlström D, Ringertz H. The molecular and crystal structure of triuret. Acta Cryst. 1965;18:307–13.

    Article  Google Scholar 

  16. Roth J, O’Leary DJ, Wade CG, Miller D, Armstrong KB, Thoburn JD. Conformational analysis of alkylated biuret and triuret: evidence for helicity and helical inversion in oligoisocyanates. Org Lett. 2000;2:3063–66.

    Article  CAS  Google Scholar 

  17. Ni Y, Becquart F, Chen J, Taha M. Polyurea–urethane supramolecular thermo-reversible networks. Macromolecules. 2013;46:1066–74.

    Article  CAS  Google Scholar 

  18. Freeman HC, Smith JEWL, Taylor JC. Crystallographic studies of the biuret reaction. Nature. 1959;184:707–10.

    Article  CAS  Google Scholar 

  19. Kurzer F. Biuret and related compounds. Chem Rev. 1956;95–197.

  20. Bur AJ, Fetters LJ. The chain structure, polymerization, and conformation of polyisocyanates. Chem Rev. 1976;76:727–46.

    Article  CAS  Google Scholar 

  21. Mayer S, Zentel R. Chiral polyisocyanates, a special class of helical polymers. Prog Polym Sci. 2001;26:1973–2013.

    Article  CAS  Google Scholar 

  22. Hoover FW, Stevenson HB, Rothrock HS. Chemistry of isocyanic acid I. Reactions of isocyanic acid with carbonyl compounds. J Org Chem. 1963;28:1825–30.

    Article  CAS  Google Scholar 

  23. Hamada H, Iwai T, Hayashi K, Okamura S. Radiation induced polymerization of isocyanic acid. Kobunshi Kagaku. 1965;22:639–45.

    Article  CAS  Google Scholar 

  24. Chen J, Zhao P, Liu Y, Liu H, Zhu F. Clean and facile synthesis of triuret from urea and dimethyl carbonate (DMC) under mild conditions. Korean J Chem Eng. 2012;29:288–90.

    Article  CAS  Google Scholar 

  25. Hoffmann R. An extended Hückel theory I. Hydrocarbons. J Phys Chem. 1963;39:1397–412.

    Article  CAS  Google Scholar 

  26. Stewart JJP. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J Mol Model. 2013;19:1–32.

    Article  CAS  Google Scholar 

  27. te Velde G, Baerends EJ. Phys Rev B. 1991;44:7888–903.

    Article  Google Scholar 

  28. Philipsen PHT, te Velde G, Baerends EJ, Berger JA, de Boeij PL, Franchini M, et al. BAND 2019.3, SCM, Theoretical chemistry. Amsterdam: Vrije Universiteit. 2019. http://www.scm.com.

  29. Altomare A, Cuocci C, Giacovazzo C, Moliterni A, Rizzi R, Corriero N, et al. EXPO2013: a kit of tools for phasing crystal structures from powder data. J Appl Cryst. 2013;46:1231–5.

    Article  CAS  Google Scholar 

  30. Shirakawa H, Ikeda S. Infrared spectra of poly(acetylene). Polym J. 1971;2:231–44.

    Article  CAS  Google Scholar 

  31. Borden WT, Davidson ER. Effects of electron repulsion in conjugated hydrocarbon diradicals. J Am Chem Soc. 1977;99:4587–94.

    Article  CAS  Google Scholar 

  32. Hatanaka M. Stability criterion for organic ferromagnetism. Theor Chem Acc. 2011;129:151–60.

    Article  CAS  Google Scholar 

  33. Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A. 1988;38:3098–100.

    Article  CAS  Google Scholar 

  34. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37:785–9.

    Article  CAS  Google Scholar 

  35. Fukui K, Morokuma K, Yonezawa T, Nagata C. A further study of simple LCAO MO perturbation treatment of conjugated molecules. Bull Chem Soc Jpn. 1960;33:963–73.

    Article  CAS  Google Scholar 

  36. Perdew JP. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B. 1986;33:8822–4.

    Article  CAS  Google Scholar 

  37. Gu J, Wu W, Stuyver T, Danovich D, Hoffmann R, Tsuji Y, et al. Cross conjugation in polymers and related hydrocarbons: What can be learned from valence bond theory about single-molecule conductance? J Am Chem Soc. 2019;141:6030–47.

    Article  CAS  Google Scholar 

  38. Haworth RC, Mann FG. Some properties of urea, biuret, and triuret. J Chem Soc. 1943;603–6.

  39. Trinquier G, Suaud N, Guihéry N, Malrieu J-P. Designing magnetic organic lattices from high-spin polycyclic units. ChemPhysChem. 2011;12:3020–36.

    Article  CAS  Google Scholar 

  40. Hatanaka. M. Role of topological charge stabilization in protomeric tautomerism. J Phys Chem A. 2015;119:1074–86.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP19K05392.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Hatanaka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Hatanaka, M. & Miyasaka, M. Structural aspects and electronic states of polyuret—construction of robust extended systems with nonbonding flat bands. Polym J 52, 1067–1076 (2020). https://doi.org/10.1038/s41428-020-0349-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0349-2

Search

Quick links