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Abstract
Direct arylation polycondensation has been investigated to develop efficient methods for the preparation of conjugated
polymeric materials for use in optoelectronic applications. The reaction conditions have been examined to achieve high
molecular weights and minimal structural defects in the recurring structures. Under optimal conditions, the direct arylation
method has several advantages over conventional methods, e.g., it has fewer synthetic steps and yields a high-molecular-
weight and high-purity polymer. The high-quality polymeric materials that were obtained exhibited superior performance to
those obtained using a conventional method when used in optoelectronic devices such as organic photovoltaics and field-
effect transistors. Recent developments in C–H/C–H coupling polycondensation are also described.

Introduction

Conjugated polymers are expected to serve as the main
materials in optoelectronic devices such as organic photo-
voltaics (OPVs) [1], organic light-emitting diodes (OLEDs)
[2], and organic field-effect transistors (OFETs) [3–5].
High-performance polymers have been developed by logi-
cal molecular designs [6, 7] and the development of con-
jugated polymeric materials will allow practical applications
in organic optoelectronic devices. For use in wide practical
applications, mass production of conjugated polymeric
materials is required, while also satisfying demands con-
cerning cost and environmental issues [8, 9]. As a practical
method for the production of conjugated polymeric mate-
rials, polycondensation using C–H direct arylation [10–12]
is a promising candidate, because this method does not
require the use of organometallic monomers that are
essential in polycondensation methods that use

conventional cross-coupling reactions. The elimination of
organometallic monomers reduces the number of synthetic
steps for monomer preparation and undesirable metal-
containing waste after polymerization. Having fewer syn-
thetic steps, the process is less expensive and the reduction
in waste reduces the environmental burden and increases the
purity of the product [8, 9]. To take advantage of this
approach in material production, direct arylation poly-
condensation must fulfill the following three requirements
[13]:

1. High molecular weight: A synthetic method should
afford a high-molecular-weight polymer that, in general,
exhibits better performance regarding carrier mobility and
photoelectric conversion [14–17]. To achieve a high
molecular weight, the conversion of the coupling reaction
must be high.

2. High selectivity: Selectivity in bond formation must be
nearly perfect, because structural defects in polymers cannot
be removed, even by purification. The structural defects act
as carrier trapping sites, thereby lowering device perfor-
mance [18, 19].

3. High purity: Impurities from metal catalysts or
byproducts should be easily removed from the polymeric
materials, because impurities lower the initial performance
of the polymer and long-term stability [20, 21]. A reduced
amount of catalyst and easily separable byproducts are
required for obtaining high-purity materials through simple
purification processes. Incorporation of decomposed phos-
phine ligands at chain ends [22] should be avoided, because
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the terminal defect may act as an impurity, which cannot be
removed in purification steps.

In addition to satisfying these demands, the synthetic
method must be broadly applicable for preparation of
state-of-the-art polymeric materials. As several review
papers on direct arylation polycondensation have been
published in recent years [23–25], this review describes
the recent results of the author and the author’s
collaborators.

Initial development of direct arylation
polycondensation

Direct arylation polycondensation of alkylthiophenes was
reported in 1999 [26]. Although the idea was quite inno-
vative, the polymerization results did not satisfy the
demands mentioned above; the molecular weight and
selectivity of the bond formation (head-to-tail content) were
somewhat lower than those obtained using conventional
methods. In 2010, Ozawa and colleagues [27] reported the
successful synthesis of poly(3-hexylthiophene) (P3HT) via
Pd-catalyzed direct arylation (Scheme 1). This method
afforded high-molecular-weight P3HT and a high head-to-
tail content, as well as a good yield. Mori and colleagues
[28, 29] reported on the synthesis of P3HT using the same
monomer and a Knochel–Hauser base by formation of a
Grignard reagent, which afforded high head-to-tail content,
a controlled molecular weight, and a narrow molecular
weight distribution.

Shortly after Ozawa and Mori’s report, we reported on
the direct arylation polycondensation of tetra-
fluorobenzene with a dibromofluorene derivative
(Scheme 2) [30]. The reaction with Pd(OAc)2 and
PtBu2Me·HBF4 produced the corresponding polymer with
a high molecular weight in a good yield. The molecular

weight and the yield were higher than those obtained for
the polymer prepared by polycondensation using the
conventional Suzuki–Miyaura coupling reaction (Mn=
16500, 74% yield) [31]. In addition, the high purity of the
obtained polymer was confirmed by elemental analysis.
The high purity was presumably due to the easily separ-
able byproducts (H2O, CO2, and KBr) in the direct ary-
lation polycondensation reaction. In addition, the pure
polymer acted as a hole-blocking material in OLEDs [32].
These initial examples demonstrate the high potential of
direct arylation polycondensation for the preparation of
optoelectronic materials [33].

Direct arylation polycondensation of bithiophenes

We have investigated the direct arylation polycondensation
of thiophene, bithiophene, and their analogs, because thio-
phene is the most promising unit for preparing excellent
semiconducting materials. An initial assessment of catalytic
systems revealed that a Pd precatalyst (Pd(OAc)2) with no
phosphine ligand is the most effective catalyst for the direct
arylation polycondensation of alkylated bithiophenes
(Scheme 3). This highly active catalytic system allows the
preparation of the corresponding polymer with a high
molecular weight (Mn= 31800) in 3 h [34]. In addition to
bithiophene derivatives, this reaction system can be used for
the polycondensation of bithiazole, thienothiophene, mono-
thiophene derivatives, and naphthalene diimide-based
monomers (Scheme 3, Table S1 in Supplementary Infor-
mation) [35–43]. This simple catalytic system has been used
for the preparation of a variety of conjugated polymers by
other groups [44–47], presumably because of its high reac-
tivity and ease of use. It is important to note that this highly
reactive system can induce side reactions that cause struc-
tural defects; a direct arylation reaction can occur at
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undesired C–H bonds [34, 35, 45]. An appropriate choice of
monomers and the optimization of reaction conditions are
essential in order to avoid side reactions [43, 48].

Evaluation of polymers prepared by direct arylation
polycondensation

For the further development of direct arylation poly-
condensation, the reaction conditions were investigated in a
model reaction using 3,4-ethylenedioxythiophene (EDOT)
[49], which possesses highly reactive C–H bonds for direct
arylation (Scheme 4) [37, 50, 51]. The target polymer can
be prepared using a conventional cross-coupling method
(Scheme 4a, S-PEDOTF) [51]. An investigation of the
reaction conditions for the direct arylation polycondensation
of EDOT revealed that 1-adamantanecarboxylic acid (1-
AdCOOH) is an effective additive that assists the C–H bond
cleavage process. The reaction with 1-AdCOOH afforded
the corresponding polymer (Scheme 4b, L-PEDOTF) in the
presence of only 1 mol% of the Pd precatalyst [37]. The
molecular weight of L-PEDOTF (Mn= 47500) is higher
than that of S-PEDOTF (Mn= 17100), which was prepared
using the conventional method. In addition, direct arylation
polycondensation under microwave heating produced the
corresponding polymer with an extraordinarily high mole-
cular weight (Scheme 4c, H-PEDOTF) [50]. It is possible
that the uniform heating produced under microwave irra-
diation promoted efficient coupling. These results demon-
strate that optimized direct arylation polycondensation can
produce higher molecular weight polymers than those
obtained using conventional methods. One reason for the
high molecular weights of L- and H-PEDOTF is the high
tolerance of the C–H bonds to the reaction conditions. The
lack of degradation of the reactive point is advantageous,

especially compared with the monomers used in the con-
ventional method. For example, the C-Br moiety in the
brominated EDOT in Scheme 4a is known to be unstable
[52] and the boronate ester moiety can be decomposed via
protodeboronation [53].

The purity and semiconducting properties of PEDOTFs
were investigated to confirm the advantages of the direct
arylation method (Table 1). The results of the elemental
analysis of H-PEDOTF matched well to the values calcu-
lated from the formula of the repeating unit. Bromine was
not detected by elemental analysis, even though the fluorene
terminal units may, in principle, possess a Br moiety. The
absence of Br termini may be attributed to the small number
of the terminal units as well as minor debromination reac-
tions in the later stage of polymerization. In contrast, the
analytical results indicate that L- and S-PEDOTF contain
impurities and Br termini. Inductively coupled plasma
atomic emission spectrometry (ICP-AES) measurements
reveal that direct arylation polycondensation achieved lower
levels of Pd residues in the polymers than the conventional
method, which is due to the low loading of Pd (1 mol%) in
the direct arylation method. It should be noted that high-
molecular-weight and high-purity H-PEDOTF was obtained
through simple purification steps, requiring only washing
with several solvents and re-precipitation. Soxhlet extrac-
tion and high-performance liquid chromatography pur-
ification were not required. H-PEDOTF exhibited better
semiconducting properties in OPVs and OFETs than did the
other samples that were evaluated (Table 1) [51]. Bulk
heterojunction (BHJ) solar cells with H-PEDOTF and
PC70BM reached 4% power conversion efficiency (PCE),
although that with S-PEDOTF was only 0.48%. As the PCE
correlates with hole mobility in the polymers in OFETs, the
better performance of H-PEDOTF in the OPV may be due
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Table 1 Purity and material
properties of the polymers

Polymer Mn
a Elemental analysis

[%]
ICP-AES
[p.p.m.]

PCEb

[%]
μh

c

[cm2 V−1 s−1]

C H Br Pd

S-PEDOTF 17,100 77.48 8.42 0.08 4390 0.48 3.2 ± 0.2 × 10-5

L-PEDOTF 47,500 78.52 8.01 0.34 2300 2.55 7.7 ± 0.4 × 10-4

H-PEDOTF 147,000 79.44 8.33 0 1590 4.08 1.2 ± 0.1 × 10-3

79.50d 8.39d 0d

aEstimated by gel permeation chromatography calibrated with polystyrene standards. bOPV configuration:
ITO/PEDOT:PSS (40 nm)/polymer:PC70BM (1:4)/LiF (1 nm)/Al (80 nm). Illuminated at 100 mW cm−2 AM
1.5 simulated solar light. cThe average values with SE were calculated from the results from six or more
OFET samples. OFET configuration: Glass/Au gate electrode/Parylene-C insulator/polymer/Au source–drain
electrodes. dThe values were calculated from the formula of the constituting repeating unit

Table 2 Effects of terminal
units, Pd residue, and molecular
weight on material properties

Br [%]a Pd [p.p.m.]b Mn
c PCE [%] μh [cm

2 V−1 s−1]

P1 0.34 2300 47,500 2.9 ± 0.1 0.77 ± 0.04 × 10−3

P2 < 0.20d 1400 40,300 4.66 ± 0.04 1.3 ± 0.1 × 10−3

P3 < 0.20d 3.0 38,000 4.7 ± 0.2 1.3 ± 0.2 × 10−3

P4 < 0.20d 1.7 140,000 4.6 ± 0.2 1.3 ± 0.2 × 10−3

aResidual amount of Br determined by elemental analysis. bResidual amount of Pd determined by ICP-MS or
ICP-AES. cEstimated by GPC calibrated with polystyrene standards. dLess than 0.20%. GPC, gel permeation
chromatography; ICP-AES, inductively coupled plasma atomic emission spectrometry; MS, mass
spectrometry
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to the high hole mobility in the polymer. As H-PEDOT has
a higher molecular weight and purity than the other sam-
ples, the dominant factor responsible for the improvement is
unknown. Therefore, the effects on terminal structure, the
residual amount of Pd, and the molecular weight were
investigated for the model polymers. Thus, PEDOTF sam-
ples with different terminal structures (Br or H), the amount
of residual Pd, and the molecular weights were tabulated for
comparison (Table 2) [54]. P1 is the same sample as L-
PEDOTF. P2 has very little Br termini because of the
treatment of the C-Br moiety at the end of polymerization.
The amount of Pd residue was reduced to 3 p.p.m. in P3 by
washing the polymer with an aqueous solution of sodium N,
N-diethyldithiocarbamate. P4 has a purity that is similar to
P3, but with a higher molecular weight. Regarding both the
PCE and hole mobility, P1 has lower values than those of
P2–P4, indicating that the terminal structure is the most
dominant factor in this case. The Br terminals may act as
hole-trapping sites [55]. In contrast, the Pd residue and
molecular weight had a negligible effect on the initial per-
formance of the OPVs and OFETs. The stability tests of the
OPV devices showed that Pd residue and the molecular
weight of the polymer affect the lifetime of the device; the
device containing P4 has the longest lifetime among the

P2–P4 group, although the initial performances were very
similar [54].

Synthesis of donor–acceptor polymer

Direct arylation polycondensation for the synthesis of
donor–acceptor (D–A) polymers was investigated after the
establishment of the model reactions because D–A polymers
often exhibit high levels of performance in OPVs; the D–A
structure possesses a narrow highest energy occupied mole-
cular orbital/lowest unoccupied molecular orbital gap,
enabling wide light absorption and high hole mobility because
of the strong interchain interactions [1]. For the synthesis of
D–A polymers, a new reaction system was required, because
the conditions mentioned above are not applicable to C–H
bonds in the acceptor monomers, although donor monomers,
such as EDOT, can be readily polymerized. An investigation
of the reaction conditions for acceptor C–H monomers
revealed that the addition of PCy3 ligands and the selection of
a low polar solvent (toluene) are effective for the smooth
polycondensation of acceptor monomers [56] such as thie-
nopyrroledione derivatives [57, 58]. In addition, a Pd(0)
precatalyst (Pd(PCy3)2) has been found to be a suitable pre-
catalyst by mechanistic studies of direct arylation, thereby
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avoiding side reactions, such as the homocoupling reaction
[42, 59]. Based on these findings, the polycondensation of
thienopyrroledione and dibromocyclopentadithiophene deri-
vatives was conducted using Pd(PCy3)2 as the catalyst and
toluene as the solvent (Scheme 5) [60]. The reaction produced
the corresponding D–A polymer with a molecular weight of
25,000 in 82% yield, which was higher than previously
reported values for the Migita–Kosugi–Stille coupling poly-
condensation [61]. Nuclear magnetic resonance and mass
spectrometry analyses indicated that the polymer possessed
no structural defects and no Br termini, which might be due to
a minor debromination reaction that occurred during the
polycondensation reaction. Elemental analysis demonstrated
the high purity of the polymer. This D–A polymer served as
the p-type semiconducting material in BHJ solar cells with
PC70BM. The maximum PCE of the solar cell was 6.8% after
optimization of the device’s structure. The PCEs of the
devices were comparable to those of the polymer obtained
from the Migita–Kosugi–Stille coupling polycondensation
[61], thus confirming that the direct arylation polycondensa-
tion yields high-performance semiconducting materials.

In-depth studies by other groups have also enabled the
synthesis of high-performance polymers without structural
defects [62–64]. Further development of this method will
enable the synthesis of state-of-the-art materials that can
lead to practical applications.

Polycondensation using C–H/C–H coupling reactions
has been investigated to develop next-generation methods
[65–68]. One example is the aerobic oxidation poly-
condensation of thiazole monomers (Scheme 6) [69]. This
polymerization proceeds with a catalytic amount of Cu
(OAc)2 and oxygen from the air and yields a bithiazole-
based conjugated polymer along with the formation of H2O,
which is a green by-product. The thiophene-thiazole poly-
mer served as a semiconducting material in OFETs. As the
monomer is synthesized by direct arylation of thiazole at the
5-position, this strategy skips the preparation of an orga-
nometallic reagent and reduces the overall number of
reaction steps.
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