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Abstract
Conventional methods for the synthesis and analysis of chemical and biological materials often utilize homogeneous bulk
environments or surface immobilization on a substrate. Homogeneous bulk environments, however, require large quantities
of samples and reagents as well as significant effort to functionalize materials. Liquid–substrate interfaces can also pose
problems because adsorption can hinder diffusion and reagent transport during bioanalyses, and sensitive materials, such as
proteins, experience denaturation, or other types of deformation. Here, we describe the construction and use of droplet
microenvironments created through a combination of surface modification, water-in-oil systems, and aqueous two-phase
systems (ATPSs). This integration of an immobilization-free droplet microenvironment with liquid–liquid interfaces,
material compartmentalization, directional reagent transport, and small volumes enables unique material functions. Specific
examples include ATPS-assisted fabrication of functional microparticles for drug delivery, microscale determination of
ATPS phase diagrams, dendritic self-assembly of semiconductive nanoparticles, multiplex immunoassays, and analysis of
breast cancer cell migration.

Microanalysis at a liquid–substrate interface
and recapitulation of the cellular
microenvironment

The scale of reactions affects reaction kinetics [1]. When a
reactor is microscale, the rapid diffusion of molecules
eliminates the need for an external device to expedite
mixing and reaction [2, 3]. However, rapid diffusion at the
microscale is a double-edged sword for biological systems.
For example, thousands of biomolecules in living cells go
through chemical and biological processes without a sig-
nificant loss of material. The cells exploit rapid signaling
reactions while simultaneously compartmentalizing the
involved biomolecules within organelles to prevent
unwanted cross-talk [4]. In other words, the cells can syn-
thesize and functionalize biomaterials in a spatiotemporally
controlled manner. In vitro studies, however, often use
large-scale homogeneous reactions that may lack the unique
effects of microscale compartmentalization [5]. By utilizing
microscale compartmentalization, engineered cell-mimetic

microenvironments can enhance in vitro material synthesis
and bioanalysis.

Meanwhile, surface microanalysis techniques, including
labeled and label-free methods, provide useful information
on molecular and cellular interactions and often serve as the
gold-standard for analytical platforms. Fluorescence-based
detection techniques such as enzyme-linked immunosorbent
assay (ELISA) [6] are commonly employed in biological
studies. Label-free sensing techniques such as a quartz
crystal microbalance [7–9] and surface plasmon resonance
[10, 11] have also been developed to quantify biomolecular
interactions with small quantities of samples. These tech-
niques, however, often involve molecular immobilization
on a substrate and require precise control of the molecular
orientation and patterning to avoid misinterpretation of the
data due to molecule-scale disorganization and signal cross-
talk [12]. To overcome these challenges and properly
interrogate physiological, biochemical, and cellular inter-
actions, it would be useful to have the ability to reduce the
reaction size, provide compartmentalization, and recon-
stitute appropriate microenvironments. This review
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describes unique droplet-based analytical platforms that
recapitulate the cellular microenvironment using
liquid–liquid separation and surface modification and
enable novel material synthesis and bioanalysis.

Microanalysis in liquid microenvironments
using microscale self-organization

Microenvironments can be constructed through a combi-
nation of bottom-up and top-down technologies (Fig. 1a).
The bottom-up strategy utilizes attraction, repulsion, and
self-organization at the molecular scale to establish micro-
environments [13, 14], while the top-down strategy estab-
lishes macro-scale guidance. This review focuses on droplet
microenvironments prepared from aqueous two-phase sys-
tems (ATPS) and oil–water systems. ATPSs are generally
comprised of aqueous solutions of two immiscible polymers
that spontaneously phase separate above critical con-
centrations (Fig. 1b) [15]. ATPSs demonstrate distinct
molecular partitioning and up to 1000-fold lower interfacial
tension than conventional organic solvent–water-based
extraction systems. These beneficial characteristics of
ATPSs have been widely utilized for the separation of soft
materials such as nucleic acids, proteins, and cells [16].
Recent studies demonstrated that ATPS-based micro-
compartments facilitate chemical reactions [17, 18] and site-
specific reagent delivery to cells [19, 20]. Moreover, ATPSs
have been exploited for the synthesis of drug carriers with
novel properties that conventional methods fail to achieve
[21, 22]. These reports highlight the ATPS-based micro-
environment as a new platform for material synthesis and
analysis that utilizes immiscible liquid–liquid interfaces.

In this context, we developed a dextran (DEX: Mw=
500 kgmol−1)—pluronic F127 (F127: Mw= 12.6 kg mol−1)
system and characterized the unique poly(lactide-co-glyco-
lide) (PLGA) microparticles synthesized in the system
(Fig. 2a) [23]. PLGA has been utilized to generate nano-to-
microscale drug carrier particles that exhibit excellent bio-
degradability and biocompatibility [24, 25]. The micro-
particles form both single and multiple core domains
depending on the PLGA concentration. When emulsified in
a DEX—F127 mixture at room temperature, PLGA (Mw=
12 kgmol−1) formed core-shell microparticles with a DEX-
rich shell and F127-rich core. The particle diameter ranged
from 2 to 10 µm with an average size of ~7 µm. The PLGA
microparticles encapsulated hydrophilic and hydrophobic
model drugs, rhodamine B and coumarin-6, respectively.
The loading efficacy could be adjusted based on the con-
centration of PLGA. The ability to alter the microparticle
morphology and obtain high dual loading levels of hydro-
philic and hydrophobic compounds are some of the advan-
tages the ATPS-based method provides over conventional
microparticle preparation protocols [26, 27].

Another interesting feature of microparticles is that F127
containing a poly(propylene oxide) backbone changes from
a hydrated state into a liquid crystalline state above the
lower critical solution temperature (LCST). When the
temperature increases above the LCST (30 °C), the F127

Fig. 1 Construction of microenvironments using bottom-up and top-
down technologies. a Schematic illustration of a hybrid construction
approach. b Photographs and binodal curves for aqueous two-phase
systems (ATPSs) comprised of two immiscible polymers in aqueous
solutions. Modified and used with permission from ref. 30

700 T. Kojima, S. Takayama



core collapses, and the PLGA microparticles release the
encapsulated compounds, demonstrating the potential for
temperature change-triggered drug delivery (Fig. 2c). The
extent of the temperature-triggered drug release was higher
for rhodamine B (20% release) than coumarin-6 (10%
release). We speculate that the hydrophilic DEX-rich shell
facilitates the release of the hydrophilic rhodamine B. The
generated microparticles showed no significant cytotoxicity.
We envision that this ATPS-based microparticle synthesis
will be applicable to other drug carrier materials.

Microscale dehydration using soybean oil
and FC-40

Oil and water are generally immiscible. Cells utilize the
immiscibility and produce oil droplets in cytoplasm. The
droplets associate with other intracellular organelles and
presumably possess biological functions [28, 29]. Interest-
ingly, some organic oils absorb small amounts of water into
the oil phase due to the presence of acylglyceride groups
[30]. For instance, soybean oil dissolves 0.3 (v/v)% water
and has been adopted for microscale dehydration [31]. To

Fig. 2 Synthesis of PLGA microparticles in DEX–pluronic F127
ATPS. a Emulsification of PLGA (Mw= 12 kDa) in pluronic F127
(Mw= 13 kDa) and DEX (Mw= 500 kDa). b The generated PLGA
microparticles (purple) with DEX-rich shells (red) and F127-rich cores

(green) showing the different loading of Rhodamine B and Coumarin-
6. c Temperature-dependent release of Rhodamine B at 4, 24, and 37 °
C. Modified and used with permission from ref. 23
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take advantage of this unique property, we developed a
microscale dehydration system that comprises two immis-
cible oils: Fluorinert™ FC-40 (FC-40) and soybean oil
(Fig. 3a) [32]. Based on the density of FC-40 (1.8 g ml−1),
soybean oil (0.92 g ml−1), and water (1.0 g ml−1), a sus-
pended microdroplet (~0.1 µl) stays at the interface of the
two oils in a plastic dish. FC-40, a fluorinated water-
repellent oil, prevents droplet wetting on the dish surface,
while the soybean oil continuously dehydrates the micro-
droplets at a slow rate (Fig. 3b). As a consequence, the
solutes gradually condense as the microdroplet shrinks. A
cross-section image taken by a conventional microscope
provides the precise volume and solute concentration of the
droplet at specific time points.

We demonstrated the microscale determination of phase
diagrams for the following ATPSs: 500 k DEX—35k
polyethylene glycol (PEG: Mw= 35 kg mol−1), 10k DEX
—8 k PEG, 500 k DEX—105 k polyvinyl alcohol (PVA:
Mw= 105 kg mol−1), 35 k PEG—105 k PVA, and 66 k
bovine serum albumin (BSA: Mw= 66 kg mol−1)—35 k
PEG systems. In this method, a microdroplet containing

dilute phase-forming polymers was dispensed at the oil
interface. Because of the dilute concentrations of the poly-
mers, there is no phase separation at this stage. The
microdroplet slowly shrinks as a function of time, and the
microscale phase separation begins when the droplet
reaches a critical concentration (Fig. 3c). The critical
concentration was estimated based on a cross-sectional
image of the microdroplet. This microscale method pro-
duced phase diagrams that agreed well with those generated
using conventional macroscopic techniques but used sig-
nificantly less material (a few micrograms versus grams of
material). The reduction in materials by six orders of
magnitude opens the door to test the phase formation of
precious biomolecules only available in small quantities.
Recent studies revealed that ATPSs comprised of biomo-
lecules in vivo play an important role in biological events
such as transcription [33, 34] and translation [35, 36]. Since
such biomolecules are often precious and available only in
limited quantities, microanalysis techniques shed light on
the quantification of biological ATPSs.

Fig. 4 Self-assembly of CdTe
nanoparticles in a microscale
dehydration system. a
Fluorescent images of the
compact and extended dendrites
observed in bulk and in a droplet
on day 3. The emission spectra
of compact and extended
dendrites collected at t= 0 and
day 3. The excitation
wavelength was 480 nm. b TEM
observation of the compact and
extended dendrites. c SEM
observation of the extended
dendrites in the presence of 500
mM NaCl (left) and light (right)
on day 3. d SEM observation of
a bulk mixture of soybean oil
and CdTe solution on day 3.
Modified from ref. 36
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Self-assembly of semiconductive
nanoparticles in a dehydration system

Next, we hypothesized that a shrinking microenvironment
could facilitate the self-assembly of inorganic nanoparticles.
We subjected a dilute solution of semiconductive cadmium
telluride (CdTe) nanoparticles [37] to a dehydration system
and compared the nanoparticle self-assembly in a droplet
and bulk solution (Fig. 4a) [38]. Interestingly, the nano-
particles in the droplet solution first aggregated at the

droplet interface (day 1) and slowly evolved into branched
dendrites with sizes from 50 µm to 1000 µm (day 3). In
contrast, the bulk solution formed compact dendrites with-
out a branched extension (day 3). A spectroscopic analysis
revealed that the extended dendrites exhibited a distinct
blueshift (λem= 515 nm) compared with that of the prepared
CdTe solution (λem= 550 nm). In contrast, the compact
dendrites showed a slight redshift (λem= 555 nm). The
microscopic analysis showed that the fractal dimension of
the extended dendrites in the droplet was higher (D= 1.9)

Fig. 5 Multiplex ELISA in
DEX-PEG ATPS. a
Compartmentalization of the
capture and detection antibodies
in the DEX phase in the
presence (left) and absence
(right) of PEG. b Multiplex
detection of cytokines. Antigens
in a BSA solution showing no
signal (left) and antigens in a
PEG solution providing a
distinct signal (right).
Comparison of the signal-to-
noise ratio between ATPS
ELISA and conventional
ELISA. c Detection of cytokine
release from macrophage cell
culture samples with/without
LPS-induced activation.
Modified and used with
permission from ref. 44
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than that of the compact dendrites (D= 1.7) in the bulk
solution (Fig. 4b). The EDX analysis implied that the dis-
tinguishable optical property was probably due to different
chemical compositions in the extended and compact
dendrites.

We also showed that the dendritic morphogenesis was
sensitive to the droplet microenvironment (Fig. 4c). When
the ionic strength increased, dendritic evolution failed to
occur, and the compact dendrite remained, presumably due
to reduced interparticle repulsion. Conversely, when we
irradiated the microdroplet with light, the extended den-
drites disassembled piece-by-piece. We assumed that the
irradiation process removes the surface stabilizers on the
nanoparticles and causes repulsions between the nano-
particles, resulting in the disassembly. To understand the
underlying mechanism, we mixed soybean oil in the bulk
solution and observed the dendritic extension (Fig. 4d).
Inspired by the fatty acid transfer between cell organelles,
we speculated that residual fatty acids are transferred to the

droplet through the large surface-to-volume droplet inter-
face and attach to the nanoparticle surface, prompting
dendritic evolution by increasing the steric hindrance. The
obtained semiconductive dendrites with a high fractal
dimension and large surface area can be attractive light-
harvesting materials. More broadly, the developed micro-
scale dehydration system is a versatile platform for micro-
scale self-assembly.

Microanalysis at surface-assisted
liquid–liquid interfaces

Microfabrication through the generation of microchannels
or micropatterning also assists in the construction of
microenvironments [39, 40]. Since biological events usually
occur under compliant conditions, soft lithography [41]
using elastomers has commonly been employed. In parti-
cular, polydimethylsiloxane (PDMS), a transparent, gas-
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permeable, biocompatible polymer, prevails in soft litho-
graphy and enables both chemical and physical modifica-
tions to create customized PDMS platforms [42–44]. We
adopted this technique to implement liquid–liquid pattern-
ing and create surface-assisted bioanalytical platforms.

First, we developed immobilization-free and cross-talk-free
multiplexed ELISA using a 500k DEX—35 k PEG system
[45–47]. DEX microdroplets (~1 µl) containing capture and
detection antibodies were pre-dehydrated in each micro-basin
in a customized microwell plate fabricated through micro-
fabrication (Fig. 5a). The rehydration of the DEX phase
facilitates reagent mixing through spontaneous convection
once PEG solutions containing antigens are added. The DEX
phase compartmentalizes the antibodies while allowing the
small antigens to diffuse in. As a result, fluorescent signals are
detected only in the dedicated DEX droplet containing the
proper antibodies (Fig. 5b). In contrast, reagent cross-talk
routinely occurs with conventional multiplexed ELISA in the
absence of DEX-PEG ATPS because the antibodies are not
compartmentalized in droplets. This technique successfully
detected multiple cytokines from a standard dilution series
and analyzed a macrophage cell culture supernatant in a single
assay (Fig. 5c). These results not only illustrate practical

biosensing, they also demonstrate the benefits of compart-
mentalized cellular bioreactions.

Reconstruction of a cancer
microenvironment using surface-assisted
hydrogel patterning

In tumor microenvironments, cancer cells sense chemokine
gradients and migrate along the gradients in a process
known as chemotaxis [48]. In the example of the chemokine
CXCL12 in breast cancer cell migration, CXCR4 (CXCL12
receptor)-expressing cells migrate toward CXCL12-
expressing cells [49]. CXCL12 has several isoforms,
CXCL12-α, -β, and -γ, with positive C-terminal amino acids
that strongly bind to oppositely charged glycosaminogly-
cans (affinity strength: CXCL12-α < -β < -γ) [50]. Interest-
ingly, the expression of CXCL12-β and -γ may be
correlated to later stages of breast cancer [51]. Previous
studies utilizing PDMS microchannels addressed the role of
each isoform in 2D cell migration [52, 53]. However, the
role of each isoform in cancer chemotaxis in the presence of
3D chemical gradients was elusive. We interrogated the role

Fig. 7 Migration assay of
CXCR4-expressing cells in 3D
gel matrices. a Comparison of
the migration in collagen gel—
Matrigel™ on day 1 in the
presence of CXCL12 isoforms.
CXCR4+ cells (green) and
CXCL12-secreting cells (red) on
day 0 and day 1. b Comparison
of the migration under various
conditions. c Comparison of the
binding affinity of CXCL12
isoforms for collagen gel and
Matrigel™. Statistical
demarcations above a bar
indicate a pairwise comparison
to all others in that group. The
bar indicates individual pairwise
differences (*p value <0.05, **p
value <0.001, ***p value
<0.005, and ****p value
<0.0001). Modified with
permission from ref. 52

706 T. Kojima, S. Takayama



of CXCL12-α and -β in the migration of breast cancer cells
using a droplet-patterning strategy [54, 55].

Non-adhesive polyacryamide (PAA)-coated PDMS sur-
faces were fabricated using a heterogeneous surface coating
technique [56]. Cell-laden hydrogel droplets were guided to
adjacent positions with a defined spacing between the dro-
plets (Fig. 6a). The system enables the control of three
parameters: the spacing between groups of patterned cells,
gel composition, and cell type (Fig. 6b). The attachment
assay showed significantly reduced cell attachment on the
PAA-coated regions and ensured that the patterned cells
migrated through the 3D hydrogel matrix rather than onto
the 2D PDMS surface (Fig. 6c). Moreover, the 3D gel
matrix allowed the formation and maintenance of 3D che-
mical gradients when a chemokine-binding component such
as MatrigelTM was included. We patterned both CXCL12-
secreting and CXCR4-expressing variants of human breast
cancer cells (MDA-MB-231) in a collagen I – MatrigelTM

matrix and measured the migration rate at day 1 (Fig. 7a).
CXCL12-β showed a higher migration rate than CXCL12-
α, while the rate of both CXCL12 isoforms was statistically
distinct from that of the control. Notably, the migration rate
of CXCL12-β was indistinguishable among non-secreting
cells in the absence of Matrigel (Fig. 7b). The CXCL12-
binding assay showed that CXCL12-β has a significantly
stronger binding affinity for Matrigel than CXCL12-α and
no differential binding affinity for collagen I (Fig. 7c). The
results are consistent with the observed migration behavior.
We inferred that heparan sulfate, a negatively charged
glycosaminoglycan contained in MatrigelTM, boosts the
binding of CXCL12-β through electrostatic interactions and
facilitates the gradient formation and maintenance.

A computational model revealed the differences in the
gradient advancement between different CXCL12 isoforms
(Fig. 8). The gradient of CXCL12-β is maintained in the
relevant regions longer than that of CXCL12-α. The
micropatterning capability of this procedure also allowed
testing of the role of gel-to-gel spacing. When the spacing
was doubled, no significant migration was directed for
either CXCL12 isoform, further demonstrating the impor-
tance of the microenvironment in regulating cell behavior.
These results not only corroborate prior 2D studies of the
importance of CXCL12 isoforms, but also emphasize the
critical role of 3D chemical gradient formation through
chemokine–matrix interactions. That is, in the presence of
MatrigelTM binding of CXCL12-β, there is no need for
chemokine scavenger cells that express CXCR7 [57] to
generate and maintain gradients sufficient for chemotaxis.
Altogether, the results address important questions about
physiological roles of CXCL12 isoform and matrix inter-
actions as well as illustrate the versatility of our patterning
strategy.

Summary and outlook

These developed platforms provide unique research
opportunities ranging from microscale self-assembly to
biomedical applications. We leveraged top-down and
bottom-up technologies to design sophisticated liquid-based
platforms. The liquid-based microenvironments allowed
microscale characterizations of ATPS phase diagrams and
syntheses of functional materials that conventional bulk
conditions fail to achieve. The surface-assisted micro-
environments revealed the underlying mechanism of
liquid–liquid patterning and addressed the role of CXCL12
isoforms in cancer migration.

Fig. 8 Gradient evolution of CXCL12 isoforms in the presence of
Matrigel™. Concentrations of CXC12-α (top) and CXCL12-β (bot-
tom) as a function of the distance from the patterned position every 8
h. Modified and used with permission from ref. 52
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We envision future microscale analytical and reaction
platforms moving further toward bio-inspired micro-
environments. As we work to reconstruct more sophisti-
cated and higher-order physiology in vitro, e.g., the immune
system, and as diagnostics become more information-rich
and multiplexed, we believe compartmentalized micro-
environments enabled by novel methods and materials will
be critical. This review described several strategies that
combine top-down and bottom-up technologies to approach
that goal.
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