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Abstract
Developing highly efficient and durable electrocatalysts plays a central role in realizing a broad range of fuel cell
application. Palladium (Pd)-nonmetal nanostructures, as a special class of Pd-based alloys, have exhibited diversified
advantages for fuel cell reactions. In this minireview, the most recent progress in the synthesis of Pd-nonmetal
nanostructures and their applications in fuel cells are reviewed. First, the merits and advantages of Pd-nonmetal
nanostructures are clarified. Next, strategies for enhancing the performance of Pd-nonmetal nanostructures are
summarized by demonstrating the most typical examples. It is expected that this review will generate more research
interest in the development of more advanced Pd-nonmetal nanocatalysts.

Introduction
Fuel cells, as a kind of attractive renewable energy con-

version device, hold great promise for alleviating the ever-
increasing concerns about the energy crisis and environ-
mental issues1–5. Highly active, cost-effective, and durable
electrocatalysts are indispensable for driving fuel cell-related
reactions, such as the oxygen reduction reaction (ORR) and
alcohol oxidation reactions (AORs) (e.g., the methanol/
ethanol/formic acid oxidation reactions (MOR/EOR/
FAOR))6–12. Platinum (Pt) and its related materials are
regarded as state-of-the-art catalysts for enhancing the
reaction kinetics of fuel cell reactions, but the scarcity of Pt
has restricted its extensive application in fuel cells13–16. As
the most promising candidate for replacing Pt, palladium
(Pd) has gained ever-increasing attention and research
interest for its application in fuel cells9,17–20. However, the
intrinsic electronic structure of Pd is not beneficial for
achieving an excellent catalytic performance. For example,

the binding strength of Pd–O is too strong to achieve a
superior catalytic activity for the ORR21,22.
To address the abovementioned issues, diversified

strategies have been adopted to modulate the electronic
structures of Pd for catalytic property enhancement,
including alloying, strain engineering, defect engineering,
and facet control23–26. Recently, the alloying of Pd with
nonmetals, such as H, P, S, B, Se, and Te, has received
intensive attention for fuel cell applications because of the
fascinating merits of Pd-nonmetal nanocatalysts27–34. To
date, a wide range of Pd-nonmetal nanostructures has
been designed for fuel cell-related reactions (e.g., ORR,
MOR/EOR, and FAOR) by adopting different strategies
(Fig. 1)32,35,36. This minireview aims to summarize the
most recent progress in Pd-nonmetal nanostructure
development for fuel cell applications, where the merits of
Pd-nonmetal nanocatalysts are first clarified, and then
strategies for achieving enhanced catalytic properties of
Pd-nonmetal nanostructures are demonstrated.

Why Pd and nonmetals?
The merits of alloying Pd with nonmetals have made

it an attractive research topic. First, Pd-nonmetal alloys
possess rich phases (e.g., Pd8Se, Pd7Se, Pd4Se, Pd3Se,
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Pd7Se4, PdSe2, and Pd17Se15 for Pd–Se37) compared to
Pd-metal alloys, and it is, therefore, possible to tune the
catalytic properties by controlling the phases. Second,
amorphous phases, featuring abundant surface dangling
bonds and defects, can be obtained for Pd-nonmetals
under certain synthesis conditions. Third, the nonmetal
atoms, for example, H, can be inserted into the crystal
lattice of Pd, which can significantly modify its elec-
tronic structures and thereby give rise to enhanced
catalytic performance38. Finally, the abundant resour-
ces, easy access, and low cost of nonmetals are bene-
ficial for the cost reduction of Pd-based electrocatalysts.
With the abovementioned merits and advantages, sig-
nificant progress has been made in the design and
synthesis of advanced Pd-nonmetal nanocatalysts for
fuel cell applications (Fig. 2). In the following sections,
the strategies adopted for the development of advanced
Pd-nonmetal catalysts are introduced in detail.

Phase engineering
Different phases/compositions lead to different elec-

tronic structures and physicochemical properties, as
represented by the Pd–Se and Pd–S systems39–44. The
phase engineering of Pd-nonmetals has provided a
platform for catalytic performance tuning. A typical
example is the crystal phase-dependent ORR perfor-
mance of the Pd–Se system reported by our group45.
The Pd17Se15 phase exhibited a much higher activity
and more durable stability for the ORR than the Pd7Se4
phase, which could be ascribed to the stronger
adsorption of oxygenated species and a greater amount
of charge transfer from the Pd17Se15 surface to the
*OOH intermediate (Fig. 3a–c). Sampath et al. prepared
different phases of Pd–Se (Pd4Se, Pd7Se4, and Pd17Se15)
and compared their ORR properties, where Pd4Se
showed the highest ORR activity with fast reaction
kinetics40. A study on the Pd–S system showed that
Pd4S exhibited the highest catalytic activity toward the
ORR among Pd16S7, Pd4S, and PdS, which could be
ascribed to the optimal oxygen-binding ability of
Pd4S

41.
Similar to Pd–Se, the Pd–Te system also possesses rich

phases, such as Pd17Te4, Pd3Te, Pd20Te7, Pd8Te3, Pd7Te3,
Pd9Te4, Pd3Te2, PdTe and PdTe2

46–48. Different Pd-Te
phases with different Pd/Te ratios possess varied catalytic
properties. Controlling the crystal phase to adjust the spe-
cific atom arrangement can realize extraordinarily different
physicochemical and catalytic properties. For instance, our
group synthesized hexagonal Pd20Te7 nanoplates (Pd–Te
HPs) as a catalyst for the ORR (Fig. 3d–f)49. Benefiting from
the specific arrangement of the Pd atoms, the Pd20Te7
nanoplates displayed superior ORR performance with a
high methanol tolerance. Theoretical calculations show that
the linear relationship between OOH* and OH* was over-
come, leaving room for activity enhancement and methanol
oxidation suppression. Methanol tolerance is very impor-
tant for the application of direct methanol fuel cells, and
Pd-nonmetals usually possess high methanol tolerance, as
also indicated in the Pd–Se system (PdSe, Pd3Se, and
PdSe2)

50 and other materials (e.g., Pd3P, PdxSey, PdxSy,
PdP10)11,29,51–53.

Fig. 1 Design and applications. Design and fuel cell applications of
Pd-nonmetal nanostructures.

Fig. 2 Development schedule. Timeline for the development of Pd-nonmetal nanostructures.
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Amorphization
Amorphous materials with short-range ordering are an

attractive class of materials with abundant randomly
oriented bonds, surface unsaturated atoms, and rich defects,
which may benefit catalytic property enhancement54–57.
Furthermore, amorphous materials are proven to be highly
corrosion-resistant owing to their isotropic properties58–61,
which hold great potential for serving as highly active and
durable catalysts. Regarding amorphous Pd-nonmetal
nanocatalysts, Wang and coworkers prepared ultrasmall
amorphous Pd–Ni–P nanoparticles (~5 nm) for electro-
oxidation (Fig. 4a–c)62. Prolonged phosphorization time
induced the formation of amorphous Pd–Ni–P nano-
particles. Although it was stated that the shortened distance
between Pd and Ni active sites and optimized Pd/Ni ratio
contributed greatly to the superior EOR performance of
Pd40Ni43P17, the amorphous nature of the nanoparticles
with a disordered structure is believed to play a critical role
in enabling the high activity and durable stability. Amor-
phous materials have been proven to be highly corrosion-
resistant, which would be one of the reasons for the
enhanced stability. Very recently, an amorphous/crystalline
core/shell nanostructure was prepared by Jin et al. for an
enhanced ORR with a high activity and ultrastable dur-
ability (Fig. 4d–g)63. Pt shells were deposited onto the
amorphous Pd@a-Pd-P core, where the number of Pt layers
can be tuned. By comparison, Pd@a-Pd-P@Pt2L exhibited
the highest activity and most durable stability. It was found

that the amorphous a-Pd-P core is indispensable for rea-
lizing the durability of Pd@a-Pd-P@Pt2L. In addition to the
abovementioned examples, there are also other reports that
demonstrated the effectiveness of amorphous materials in
enabling high activity and durability. For example, Asao and
coworkers prepared Pd–Ni–P metallic glass (amorphous)
nanoparticles for methanol electro-oxidation. The amor-
phous Pd–Ni–P nanoparticles showed a high stability with
only 3.5% activity loss after 400 cycles12. In addition, Sato
et al. synthesized amorphous Pd–P nanoparticles, which
also displayed high specific and mass activities toward the
ORR compared to crystalline Pd nanoparticles36. All the
examples above have clearly demonstrated the power of
designing amorphous Pd-nonmetal nanostructures for
realizing highly active and durable electrocatalysts.

Strain engineering
Strain, caused by lattice expansion or contraction, can be

used to modify electronic structures, such as the d-band
center position, which influences the adsorption of inter-
mediates and catalytic properties64–68. The nonmetals,
especially those with small atomic radii, can be “inserted”
into the lattice of Pd to tune catalytic performance. Studies
of strain engineering for Pd-nonmetals have covered Pd–H,
Pd–B, Pd–P, Pb–BP, etc. The H atom, as the smallest
nonmetal atom, can be easily implanted into the lattice of Pd
to modify physicochemical properties. For example, our
group reported H-implanted Pd icosahedra for enhanced

Fig. 3 Phase engineering and its applications. a Scheme showing the enhanced ORR over Pd17Se15 and Pd7Se4. b STEM image of Pd17Se15. The
inset shows the energy-dispersive X-ray spectroscopy (EDS) mapping. c ORR polarization curves. Adapted with permission from ref. 45. Copyright ©
2021 American Chemical Society. d STEM image and e EDS mapping of Pd20Te7 nanoplates. f ORR polarization curves of Pd20Te7 nanoplates under
different concentrations of methanol. Adapted with permission from ref. 49. Copyright © 2020 American Association for the Advancement of Science.
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oxygen reduction (Fig. 5a–f)38. The inserted H atoms
expanded the lattice and decreased the electron density of
Pd, which weakened the Pd–O binding strength. The Pd-H
icosahedra showed a much higher activity and more durable
stability for the ORR than the bare Pd icosahedra. It was also
found that the coordination number of Pd was reduced, and
the twinned facet of the Pd–H icosahedra provided an
optimal OH binding strength, which worked synergistically
to give rise to the superior ORR performance of the Pd–H
icosahedra. In addition to H, much work has been done
regarding the use of other nonmetals for strain-enhanced
catalytic performance, mostly focused on Pd–P, Pd–B, and
Pd–P–B69–74. For instance, Chen et al.74 and Sato et al.75

both reported that B doping expanded the Pd lattice and

weakened O binding, leading to an enhanced ORR perfor-
mance. In addition, Liu et al. developed a procedure for the
synthesis of ternary PdBP mesoporous nanospheres with a
highly expanded lattice of Pd for significantly enhanced ORR
and MOR (Fig. 5g, h)72. The synthesis procedure was also
extended to the synthesis of PdMBP (M=Cu, Ag, Pt)
mesoporous nanospheres.
More interesting work was performed by Jin et al., where

thin Pt shells with tunable lattice strain were deposited on
Pd–P cores with different phosphorization degrees (Fig. 6)76.
In detail, increased tensile strain was created in the deposited
Pt shells by increasing the phosphorization degree of the Pd
core. At the same time, compressive strain was also gener-
ated in the Pt shells by controlling the dephosphorization

Fig. 4 Amorphization and its applications. a Scheme showing the preparation of amorphous Pd–Ni–P nanoparticles. b TEM image of Pd40Ni43P17.
c CVs of Pd-Ni-P nanoparticles with different compositions and Pd/C for the EOR. Adapted with permission from ref. 62. Copyright © 2017 Nature
Publishing Group. d Scheme showing the preparation of amorphous-crystalline Pd@a-PdP@Pt. e STEM image of a single Pd@a-PdP@Pt nanocube.
f ORR polarization curves. g Polarization curves of Pd@a-PdP@Pt2L after different numbers of accelerated durability test cycles. Adapted with
permission from ref. 63. Copyright © 2021 American Chemical Society.
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degree of the Pd-P core. The tensile and compressive strains
in the Pt shells both highly enhanced the HER activity with a
volcano relationship for both cases. For MOR, however, the
tensile strain improved the catalytic activity, while the com-
pressive strain decreased the activity, showing a volcano
relationship across the compressive and tensile strain range.
This work has well demonstrated the power of strain engi-
neering in Pd-nonmetal systems.

Summary and outlook
To conclude, the latest progress in the design and synthesis

of Pd-nonmetal nanocatalysts for fuel cell applications is
summarized in this minireview. The Pd-nonmetal nanos-
tructures hold great advantages over pure Pd, such as opti-
mized oxygen binding strength, methanol tolerance,

enhanced durability, and reduced cost. It can be summarized
that Pd-nonmetal (such as S, Se, Te, H, B, and P) nanos-
tructures are promising candidates for the ORR. The Pd–P
and Pd–B structures can also be used as effective EOR/MOR
catalysts. Nevertheless, the study of Pd-nonmetal nanocata-
lysts is far from sufficient. There are still some disadvantages
in their synthesis and applications. For example, it is a
challenge to find a suitable method for achieving the trans-
formation of the crystal phase or for implanting atoms within
the Pd lattice to generate strain while maintaining mor-
phology. More importantly, some nanostructures, such as
metastable phases, are usually unstable during catalytic
reactions, and the dissolution of atoms from the lattice
during catalysis resulting in the disappearance of the strain
effect is also an urgent problem to be solved. For the future

Fig. 5 Strain engineering and its applications. a Crystal models showing the lattice expansion of Pd after H-implantation. TEM images of b Pd
icosahedra and c Pd-H icosahedra. d ORR polarization curves. e ORR polarization curves of Pd–H tested after 5 months. f Volcano plot of the
relationship between the calculated ΔGOH and limiting potential. Adapted with permission from ref. 38. Copyright © 2020 Chinese Chemical Society.
g TEM image of PdBP alloy. h XRD patterns of Pd, PdB, and PdBP. Adapted with permission from ref. 72. Copyright © 2020 American Chemical Society.
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development of Pd-nonmetal nanocatalysts, efforts could be
devoted to the following aspects (Fig. 7). First, it is suggested
to develop more Pd-nonmetal nanostructures, especially for
Pd–S, Pd–Se, Pd–Te, and Pd–P, which have rich phases.
Second, efforts could be devoted to developing more amor-
phous Pd-nonmetal nanostructures that may serve as highly
active and durable nanocatalysts. Third, the coalloying of two
nonmetals with Pd deserves more attention, which may
produce unexpected catalytic performance.
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