Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DAPK1 (death associated protein kinase 1) mediates mTORC1 activation and antiviral activities in CD8+ T cells

Abstract

Mechanistic target of rapamycin complex 1 (mTORC1) regulates CD8+ T-cell differentiation and function. Despite the links between PI3K-AKT and mTORC1 activation in CD8+ T cells, the molecular mechanism underlying mTORC1 activation remains unclear. Here, we show that both the kinase activity and the death domain of DAPK1 are required for maximal mTOR activation and CD8+ T-cell function. We found that TCR-induced activation of calcineurin activates DAPK1, which subsequently interacts with TSC2 via its death domain and phosphorylates TSC2 to mediate mTORC1 activation. Furthermore, both the kinase domain and death domain of DAPK1 are required for CD8+ T-cell antiviral responses in an LCMV infection model. Together, our data reveal a novel mechanism of mTORC1 activation that mediates optimal CD8+ T-cell function and antiviral activity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chi, H. Regulation and function of mTOR signalling in T cell fate decisions. Nat. Rev. Immunol. 12, 325–338 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Powell, J. D., Pollizzi, K. N., Heikamp, E. B. & Horton, M. R. Regulation of immune responses by mTOR. Annu. Rev. Immunol. 30, 39–68 (2012).

    CAS  PubMed  Google Scholar 

  3. Saxton, R. A. & Sabatini, D. M. mTOR Signaling in growth, metabolism, and disease. Cell 169, 361–371 (2017).

    CAS  PubMed  Google Scholar 

  4. Delgoffe, G. M., Kole, T. P., Zheng, Y., Zarek, P. E., Matthews, K. L. & Xiao, B. et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30, 832–844 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Delgoffe, G. M., Pollizzi, K. N., Waickman, A. T., Heikamp, E., Meyers, D. J. & Horton, M. R. et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat. Immunol. 12, 295–303 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Xu, L., Huang, Q., Wang, H., Hao, Y., Bai, Q. & Hu, J. et al. The kinase mTORC1 promotes the generation and suppressive function of follicular regulatory T cells. Immunity 47, 538–551 (2017).

    CAS  PubMed  Google Scholar 

  7. Zeng, H., Yang, K., Cloer, C., Neale, G., Vogel, P. & Chi, H. mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function. Nature 499, 485–490 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zeng, H., Cohen, S., Guy, C., Shrestha, S., Neale, G. & Brown, S. A. et al. mTORC1 and mTORC2 kinase signaling and glucose metabolism drive follicular helper T cell differentiation. Immunity 45, 540–554 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ray, J. P., Staron, M. M., Shyer, J. A., Ho, P. C., Marshall, H. D. & Gray, S. M. et al. The interleukin-2-mTORc1 kinase axis defines the signaling, differentiation, and metabolism of T helper 1 and follicular B helper T cells. Immunity 43, 690–702 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Rao, R. R., Li, Q., Odunsi, K. & Shrikant, P. A. The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and eomesodermin. Immunity 32, 67–78 (2010).

    PubMed  PubMed Central  Google Scholar 

  11. Pollizzi, K. N., Sun, I. H., Patel, C. H., Lo, Y. C., Oh, M. H. & Waickman, A. T. et al. Asymmetric inheritance of mTORC1 kinase activity during division dictates CD8(+) T cell differentiation. Nat. Immunol. 17, 704–711 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Araki, K., Turner, A. P., Shaffer, V. O., Gangappa, S., Keller, S. A. & Bachmann, M. F. et al. mTOR regulates memory CD8 T-cell differentiation. Nature 460, 108–112 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Li, Q., Rao, R. R., Araki, K., Pollizzi, K., Odunsi, K. & Powell, J. D. et al. A central role for mTOR kinase in homeostatic proliferation induced CD8+ T cell memory and tumor immunity. Immunity 34, 541–553 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sowell, R. T., Rogozinska, M., Nelson, C. E., Vezys, V. & Marzo, A. L. Cutting edge: generation of effector cells that localize to mucosal tissues and form resident memory CD8 T cells is controlled by mTOR. J. Immunol. 193, 2067–2071 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Pollizzi, K. N., Patel, C. H., Sun, I. H., Oh, M. H., Waickman, A. T. & Wen, J. et al. mTORC1 and mTORC2 selectively regulate CD8(+) T cell differentiation. J. Clin. Investig. 125, 2090–2108 (2015).

    PubMed  Google Scholar 

  16. Zhang, J., Kim, J., Alexander, A., Cai, S., Tripathi, D. N. & Dere, R. et al. A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS. Nat. Cell Biol. 15, 1186–1196 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang, K., Shrestha, S., Zeng, H., Karmaus, P. W., Neale, G. & Vogel, P. et al. T cell exit from quiescence and differentiation into Th2 cells depend on Raptor-mTORC1-mediated metabolic reprogramming. Immunity 39, 1043–1056 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaech, S. M. & Cui, W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat. Rev. Immunol. 12, 749–761 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Boyman, O. & Sprent, J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat. Rev. Immunol. 12, 180–190 (2012).

    CAS  PubMed  Google Scholar 

  20. Liao, W., Lin, J. X. & Leonard, W. J. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 38, 13–25 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Jones, R. G. & Pearce, E. J. MenTORing immunity: mTOR signaling in the development and function of tissue-resident immune cells. Immunity 46, 730–742 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Pollizzi, K. N. & Powell, J. D. Regulation of T cells by mTOR: the known knowns and the known unknowns. Trends Immunol. 36, 13–20 (2015).

    CAS  PubMed  Google Scholar 

  23. Macintyre, A. N., Finlay, D., Preston, G., Sinclair, L. V., Waugh, C. M. & Tamas, P. et al. Protein kinase B controls transcriptional programs that direct cytotoxic T cell fate but is dispensable for T cell metabolism. Immunity 34, 224–236 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Finlay, D. K., Rosenzweig, E., Sinclair, L. V., Feijoo-Carnero, C., Hukelmann, J. L. & Rolf, J. et al. PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. J. Exp. Med. 209, 2441–2453 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hamilton, K. S., Phong, B., Corey, C., Cheng, J., Gorentla, B. & Zhong, X. et al. T cell receptor-dependent activation of mTOR signaling in T cells is mediated by Carma1 and MALT1, but not Bcl10. Sci. Signal 7, ra55 (2014).

    PubMed  PubMed Central  Google Scholar 

  26. Deiss, L. P., Feinstein, E., Berissi, H., Cohen, O. & Kimchi, A. Identification of a novel serine/threonine kinase and a novel 15-kD protein as potential mediators of the gamma interferon-induced cell death. Genes Dev. 9, 15–30 (1995).

    CAS  PubMed  Google Scholar 

  27. Singh, P., Ravanan, P. & Talwar, P. Death associated protein kinase 1 (DAPK1): a regulator of apoptosis and autophagy. Front. Mol. Neurosci. 9, 46 (2016).

    PubMed  PubMed Central  Google Scholar 

  28. Shohat, G., Spivak-Kroizman, T., Cohen, O., Bialik, S., Shani, G. & Berrisi, H. et al. The pro-apoptotic function of death-associated protein kinase is controlled by a unique inhibitory autophosphorylation-based mechanism. J. Biol. Chem. 276, 47460–47467 (2001).

    CAS  PubMed  Google Scholar 

  29. Shohat, G., Shani, G., Eisenstein, M. & Kimchi, A. The DAP-kinase family of proteins: study of a novel group of calcium-regulated death-promoting kinases. Biochim. Biophys. Acta 1600, 45–50 (2002).

    CAS  PubMed  Google Scholar 

  30. Stevens, C., Lin, Y., Harrison, B., Burch, L., Ridgway, R. A. & Sansom, O. et al. Peptide combinatorial libraries identify TSC2 as a death-associated protein kinase (DAPK) death domain-binding protein and reveal a stimulatory role for DAPK in mTORC1 signaling. J. Biol. Chem. 284, 334–344 (2009).

    CAS  PubMed  Google Scholar 

  31. Shiloh, R., Bialik, S. & Kimchi, A. The DAPK family: a structure-function analysis. Apoptosis 19, 286–297 (2014).

    CAS  PubMed  Google Scholar 

  32. Zhao, J., Zhao, D., Poage, G. M., Mazumdar, A., Zhang, Y. & Hill, J. L. et al. Death-associated protein kinase 1 promotes growth of p53-mutant cancers. J. Clin. Investig. 125, 2707–2720 (2015).

    PubMed  Google Scholar 

  33. Chuang, Y. T., Fang, L. W., Lin-Feng, M. H., Chen, R. H. & Lai, M. Z. The tumor suppressor death-associated protein kinase targets to TCR-stimulated NF-kappa B activation. J. Immunol. 180, 3238–3249 (2008).

    CAS  PubMed  Google Scholar 

  34. Chou, T. F., Chuang, Y. T., Hsieh, W. C., Chang, P. Y., Liu, H. Y. & Mo, S. T. et al. Tumour suppressor death-associated protein kinase targets cytoplasmic HIF-1alpha for Th17 suppression. Nat. Commun. 7, 11904 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. McGargill, M. A., Wen, B. G., Walsh, C. M. & Hedrick, S. M. A deficiency in Drak2 results in a T cell hypersensitivity and an unexpected resistance to autoimmunity. Immunity 21, 781–791 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pei, L., Wang, S., Jin, H., Bi, L., Wei, N. & Yan, H. et al. A novel mechanism of spine damages in stroke via DAPK1 and Tau. Cereb. Cortex 25, 4559–4571 (2015).

    PubMed  PubMed Central  Google Scholar 

  37. Shu, S., Zhu, H., Tang, N., Chen, W., Li, X. & Li, H. et al. Selective degeneration of entorhinal-CA1 synapses in Alzheimer’s disease via activation of DAPK1. J. Neurosci. 36, 10843–10852 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hukelmann, J. L., Anderson, K. E., Sinclair, L. V., Grzes, K. M., Murillo, A. B. & Hawkins, P. T. et al. The cytotoxic T cell proteome and its shaping by the kinase mTOR. Nat. Immunol. 17, 104–112 (2016).

    CAS  PubMed  Google Scholar 

  39. Ross, S. H., Rollings, C., Anderson, K. E., Hawkins, P. T., Stephens, L. R. & Cantrell, D. A. Phosphoproteomic analyses of interleukin 2 signaling reveal integrated JAK kinase-dependent and -independent networks in CD8(+) T cells. Immunity 45, 685–700 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Potter, C. J., Pedraza, L. G. & Xu, T. Akt regulates growth by directly phosphorylating Tsc2. Nat. Cell Biol. 4, 658–665 (2002).

    CAS  PubMed  Google Scholar 

  41. Salmond, R. J., Emery, J., Okkenhaug, K. & Zamoyska, R. MAPK, phosphatidylinositol 3-kinase, and mammalian target of rapamycin pathways converge at the level of ribosomal protein S6 phosphorylation to control metabolic signaling in CD8 T cells. J. Immunol. 183, 7388–7397 (2009).

    CAS  PubMed  Google Scholar 

  42. Salmond, R. J., Brownlie, R. J., Meyuhas, O. & Zamoyska, R. Mechanistic target of rapamycin complex 1/S6 kinase 1 signals influence T cell activation independently of ribosomal protein S6 phosphorylation. J. Immunol. 195, 4615–4622 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu, W. L., Yang, H. C., Hsu, C. S., Wang, C. C., Wang, T. S. & Kao, J. H. et al. Pegylated IFN-alpha suppresses hepatitis C virus by promoting the DAPK-mTOR pathway. Proc. Natl Acad. Sci. USA 113, 14799–14804 (2016).

    CAS  PubMed  Google Scholar 

  44. Zeng, H. & Chi, H. mTOR signaling in the differentiation and function of regulatory and effector T cells. Curr. Opin. Immunol. 46, 103–111 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Scientific Foundation of China to X.-P.Y. (81671539, 31470851, and 31870892) and Z.H.T. (81873870), and the Integrated Innovative Team for Major Human Diseases Program of Tongji Medical College, HUST (2019kfyXKJC066) to X.-P.Y.

Author information

Authors and Affiliations

Authors

Contributions

Z.W., P.L., and X.-P.Y. conceived and designed the study and wrote the manuscript with critical input from G.W., Y.L., Z.L., and A.L.; Z.W., P.L., R.H., H.C.L., N.L., Y.X., G.B., Q.D., M.X., J.W., L.P., and Z.-H.T. performed the experiments and analyzed the data; Z.L. and A.L. helped analyze the data and assisted with the experimental design; X.C., H.B.L., and Y.L. provided essential reagents and assisted with experimental design and data analysis. X.-P.Y. wrote the paper and supervised the project.

Corresponding author

Correspondence to Xiang-Ping Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Z., Li, P., He, R. et al. DAPK1 (death associated protein kinase 1) mediates mTORC1 activation and antiviral activities in CD8+ T cells. Cell Mol Immunol 18, 138–149 (2021). https://doi.org/10.1038/s41423-019-0293-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-019-0293-2

Keywords

This article is cited by

Search

Quick links