Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TRAF3IP3 at the trans-Golgi network regulates NKT2 maturation via the MEK/ERK signaling pathway

Abstract

Thymic natural killer T (NKT)2 cells are a subset of invariant NKT cells with PLZFhiGATA3hiIL-4+. The differentiation of NKT2 cells is not fully understood. In the present study, we report an important role of TRAF3-interacting protein 3 (TRAF3IP3) in the functional maturation and expansion of committed NKT2s in thymic medulla. Mice with T-cell-specific deletion of TRAF3IP3 had decreased thymic NKT2 cells, decreased IL-4-producing peripheral iNKTs, and defects in response to α-galactosylceramide. Positive selection and high PLZF expression in CD24+CD44 and CCR7+CD44 immature iNKTs were not affected. Only CD44hiNK1.1 iNKTs in Traf3ip3−/− mice showed reduced expression of Egr2, PLZF, and IL-17RB, decreased proliferation, and reduced IL-4 production upon stimulation. This Egr2 and IL-4 expression was augmented by MEK1/ERK activation in iNKTs, and TRAF3IP3 at the trans-Golgi network recruited MEK1 and facilitated ERK phosphorylation and nuclear translocation. LTβR-regulated bone marrow-derived nonlymphoid cells in the medullary thymic microenvironment were required for MEK/ERK activation and NKT2 maturation. These data demonstrate an important functional maturation process in NKT2 differentiation that is regulated by MEK/ERK signaling at the trans-Golgi network.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Godfrey, D. I., Uldrich, A. P., McCluskey, J., Rossjohn, J. & Moody, D. B. The burgeoning family of unconventional T cells. Nat. Immunol. 16, 1114–1123 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Kwon, D. I. & Lee, Y. J. Lineage differentiation program of invariant natural killer T Cells. Immune Netw. 17, 365–377 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  3. Watarai, H. et al. Development and function of invariant natural killer T cells producing T(h)2- and T(h)17-cytokines. PLoS Biol. 10, e1001255 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Constantinides, M. G. & Bendelac, A. Transcriptional regulation of the NKT cell lineage. Curr. Opin. Immunol. 25, 161–167 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Lee, Y. J. et al. Lineage-specific effector signatures of invariant NKT cells are shared amongst gammadelta T, innate lymphoid, and Th cells. J. Immunol. 197, 1460–1470 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Georgiev, H., Ravens, I., Benarafa, C., Forster, R. & Bernhardt, G. Distinct gene expression patterns correlate with developmental and functional traits of iNKT subsets. Nat. Commun. 7, 13116 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Kovalovsky, D. et al. The BTB-zinc finger transcriptional regulator PLZF controls the development of invariant natural killer T cell effector functions. Nat. Immunol. 9, 1055–1064 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Weinreich, M. A., Odumade, O. A., Jameson, S. C. & Hogquist, K. A. T cells expressing the transcription factor PLZF regulate the development of memory-like CD8+ T cells. Nat. Immunol. 11, 709–716 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Lee, Y. J. et al. Tissue-specific distribution of iNKT cells impacts their cytokine response. Immunity 43, 566–578 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Franki, A. S. et al. A unique lymphotoxin {alpha}beta-dependent pathway regulates thymic emigration of V{alpha}14 invariant natural killer T cells. Proc. Natl Acad. Sci. USA 103, 9160–9165 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. White, A. J. et al. A type 2 cytokine axis for thymus emigration. J. Exp. Med. 214, 2205–2216 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Vallabhapurapu, S. et al. Rel/NF-kappaB family member RelA regulates NK1.1- to NK1.1+ transition as well as IL-15-induced expansion of NKT cells. Eur. J. Immunol. 38, 3508–3519 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, H. & Hogquist, K. A. CCR7 defines a precursor for murine iNKT cells in thymus and periphery. Elife 7, e34793 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  14. Di Pietro, C. et al. MicroRNA-133b regulation of Th-POK expression and dendritic cell signals affect NKT17 cell differentiation in the thymus. J. Immunol. 197, 3271–3280 (2016).

    Article  PubMed  CAS  Google Scholar 

  15. Gaya, M. et al. Initiation of antiviral B cell immunity relies on innate signals from spatially positioned NKT cells. Cell 172, 517–533.e520 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Wang, Y. & Cardell, S. L. The Yin and Yang of invariant natural killer T cells in tumor immunity-suppression of tumor immunity in the intestine. Front. Immunol. 8, 1945 (2017).

    Article  PubMed  CAS  Google Scholar 

  17. Akbari, O. et al. Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nat. Med. 9, 582–588 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Engel, I. et al. Innate-like functions of natural killer T cell subsets result from highly divergent gene programs. Nat. Immunol. 17, 728–739 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Lee, Y. J., Holzapfel, K. L., Zhu, J., Jameson, S. C. & Hogquist, K. A. Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nat. Immunol. 14, 1146–1154 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Cruz Tleugabulova, M. et al. Discrete TCR binding kinetics control invariant NKT cell selection and central priming. J. Immunol. 197, 3959–3969 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Zhao, M. et al. Altered thymic differentiation and modulation of arthritis by invariant NKT cells expressing mutant ZAP70. Nat. Commun. 9, 2627 (2018).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Savage, A. K. et al. The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity 29, 391–403 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Kimura, M. Y. et al. CD69 prevents PLZF(hi) innate precursors from prematurely exiting the thymus and aborting NKT2 cell differentiation. Nat. Commun. 9, 3749 (2018).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. White, A. J. et al. An essential role for medullary thymic epithelial cells during the intrathymic development of invariant NKT cells. J. Immunol. 192, 2659–2666 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Elewaut, D. et al. NIK-dependent RelB activation defines a unique signaling pathway for the development of V alpha 14i NKT cells. J. Exp. Med. 197, 1623–1633 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Sivakumar, V., Hammond, K. J., Howells, N., Pfeffer, K. & Weih, F. Differential requirement for Rel/nuclear factor kappa B family members in natural killer T cell development. J. Exp. Med. 197, 1613–1621 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Jin, C. & Zhu, M. RelB intrinsically regulates the development and function of medullary thymic epithelial cells. Sci. China Life Sci. 61, 1039–1048 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Zou, Q. et al. T cell development involves TRAF3IP3-mediated ERK signaling in the Golgi. J. Exp. Med. 212, 1323–1336 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Hu, T., Gimferrer, I., Simmons, A., Wiest, D. & Alberola-Ila, J. The Ras/MAPK pathway is required for generation of iNKT cells. PLoS ONE 6, e19890 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Borowski, C. & Bendelac, A. Signaling for NKT cell development: the SAP-FynT connection. J. Exp. Med. 201, 833–836 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Saito, S. et al. RASAL3, a novel hematopoietic RasGAP protein, regulates the number and functions of NKT cells. Eur. J. Immunol. 45, 1512–1523 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Vyrla, D. et al. TPL2 kinase is a crucial signaling factor and mediator of NKT effector cytokine expression in immune-mediated liver injury. J. Immunol. 196, 4298–4310 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Lawson, V. J., Weston, K. & Maurice, D. Early growth response 2 regulates the survival of thymocytes during positive selection. Eur. J. Immunol. 40, 232–241 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Lazarevic, V. et al. The gene encoding early growth response 2, a target of the transcription factor NFAT, is required for the development and maturation of natural killer T cells. Nat. Immunol. 10, 306–313 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Dose, M. et al. Intrathymic proliferation wave essential for Valpha14+ natural killer T cell development depends on c-Myc. Proc. Natl Acad. Sci. USA 106, 8641–8646 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mycko, M. P. et al. Selective requirement for c-Myc at an early stage of V(alpha)14i NKT cell development. J. Immunol. 182, 4641–4648 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Tani-ichi, S. et al. Interleukin-7 receptor controls development and maturation of late stages of thymocyte subpopulations. Proc. Natl Acad. Sci. USA 110, 612–617 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Yu, X. et al. Metabolic control of regulatory T cell stability and function by TRAF3IP3 at the lysosome. J. Exp. Med. 215, 2463–2476 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Wang, H., Feng, D., Park, O., Yin, S. & Gao, B. Invariant NKT cell activation induces neutrophil accumulation and hepatitis: opposite regulation by IL-4 and IFN-gamma. Hepatology 58, 1474–1485 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Seiler, M. P. et al. Elevated and sustained expression of the transcription factors Egr1 and Egr2 controls NKT lineage differentiation in response to TCR signaling. Nat. Immunol. 13, 264–271 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Gleimer, M., von Boehmer, H. & Kreslavsky, T. PLZF controls the expression of a limited number of genes essential for NKT cell function. Front. Immunol. 3, 374 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Yu, J. S. et al. Differentiation of IL-17-producing invariant natural killer T cells requires expression of the transcription factor c-Maf. Front. Immunol. 8, 1399 (2017).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Yamashita, M. et al. Ras-ERK MAPK cascade regulates GATA3 stability and Th2 differentiation through ubiquitin-proteasome pathway. J. Biol. Chem. 280, 29409–29419 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Tripathi, P. et al. A novel mechanism for ERK-dependent regulation of IL4 transcription during human Th2-cell differentiation. Immunol. Cell Biol. 90, 676–687 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Zhu, M., Chin, R. K., Tumanov, A. V., Liu, X. & Fu, Y. X. Lymphotoxin beta receptor is required for the migration and selection of autoreactive T cells in thymic medulla. J. Immunol. 179, 8069–8075 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Chun, T. et al. CD1d-expressing dendritic cells but not thymic epithelial cells can mediate negative selection of NKT cells. J. Exp. Med. 197, 907–918 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Tian, J. et al. The differential roles of mTOR, ERK, and JNK pathways in invariant natural killer T-cell function and survival. Inflammation 37, 2013–2019 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Wainstein, E. & Seger, R. The dynamic subcellular localization of ERK: mechanisms of translocation and role in various organelles. Curr. Opin. Cell Biol. 39, 15–20 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Yao, Z. & Seger, R. The ERK signaling cascade--views from different subcellular compartments. Biofactors 35, 407–416 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Wortzel, I. & Seger, R. The ERK cascade: distinct functions within various subcellular organelles. Genes Cancer 2, 195–209 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Torii, S., Kusakabe, M., Yamamoto, T., Maekawa, M. & Nishida, E. Sef is a spatial regulator for Ras/MAP kinase signaling. Dev. Cell 7, 33–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Maurice, D., Costello, P., Sargent, M. & Treisman, R. ERK signaling controls innate-like CD8(+) T cell differentiation via the ELK4 (SAP-1) and ELK1 transcription factors. J. Immunol. 201, 1681–1691 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Lilin Ye (Army Medical University, China) for kindly providing the Cd4-Cre transgenic mice and Li Bai (University of Science and Technology of China, China) for the DN32.D3 cell line. We also thank Professors Yu Zhang, Jun Zhang, Wenling Han (Peking University Health Science Center, China), and Li Wu (Tsinghua University) for critical comments, helpful discussions, and critical reagents. α-GalCer and unloaded and PBS57-loaded CD1d tetramers conjugated with phycoerythrin or allophycocyanin were supplied by the National Institutes of Health Tetramer Core Facility. This work was supported by grants from the National Key Research and Development Program of China (2017YFA0104500), the National Natural Science Foundation of China (81471525, 31671244, 31872734, Q.G., 31872824, H.Z.), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (81621001), and the Non-Profit Central Research Institute Fund of Chinese Academy of Medical Sciences, 2018PT31039.

Author information

Authors and Affiliations

Authors

Contributions

Q.G., X.Z. and H.Z. designed the research, analyzed the data, and wrote the paper. X.Z. performed the research. Y.W., S.Z. and M.L. performed the research. L.C. J.H., R.J., X.S., X.H. and M.Z. contributed reagents and technical support. H.W. helped with flow cytometry. H.Z. edited the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Hounan Wu, Hongshan Zhao or Qing Ge.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wang, K., Zhao, W. et al. TRAF3IP3 at the trans-Golgi network regulates NKT2 maturation via the MEK/ERK signaling pathway. Cell Mol Immunol 17, 395–406 (2020). https://doi.org/10.1038/s41423-019-0234-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-019-0234-0

Keywords

This article is cited by

Search

Quick links