Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IL-10-producing regulatory B cells restrain the T follicular helper cell response in primary Sjögren’s syndrome

Abstract

Increased numbers of T follicular helper (Tfh) cells have been implicated in the development of autoimmune diseases including primary Sjögren’s syndrome (pSS), but how the Tfh cell response is regulated during autoimmune pathogenesis remains largely unclear. Here, we first found negative correlations between IL-10+ regulatory B (Breg) cell numbers and Tfh cell responses and disease activity in patients with pSS and mice with experimental Sjögren’s syndrome (ESS). Moreover, we detected high expression of IL-10 receptor on Tfh cells and their precursors in both humans and mice. In culture, IL-10 suppressed human and murine Tfh cell differentiation by promoting STAT5 phosphorylation. By using an adoptive transfer approach and two-photon live imaging, we found significantly increased numbers of Tfh cells with enhanced T cell homing into B cell follicles in the draining cervical lymph nodes of RAG-2−/− mice transferred with IL-10-deficient B cells during ESS development compared with those of RAG-2−/− mice transferred with wild-type B cells. In ESS mice, CD19+CD1dhiCD5+ Breg cells with decreased IL-10 production exhibited severely impaired suppressive effects on T cell proliferation. Consistently, CD19+CD24+CD38hi Breg cells from pSS patients showed significantly reduced IL-10 production with defective inhibitory function in the suppression of autologous Tfh cell expansion. Furthermore, the adoptive transfer of IL-10-producing Breg cells markedly suppressed the Tfh cell response and ameliorated ESS progression in ESS mice. Together, these findings demonstrate a critical role for IL-10-producing Breg cells in restraining the effector Tfh cell response during pSS development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fox, R. I. Sjogren’s syndrome. Lancet 366, 321–331 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Nocturne, G. & Mariette, X. Advances in understanding the pathogenesis of primary Sjogren’s syndrome. Nat. Rev. Rheumatol. 9, 544–556 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Pflugfelder, S. C. & de Paiva, C. S. The pathophysiology of dry eye disease: what we know and future directions for research. Ophthalmology 124, S4–S13 (2017).

    Article  PubMed  Google Scholar 

  4. Mingueneau, M. et al. Cytometry by time-of-flight immunophenotyping identifies a blood Sjogren’s signature correlating with disease activity and glandular inflammation. J Allergy Clin. Immunol. 137, 1809–1821 e1812 (2016).

    Article  PubMed  Google Scholar 

  5. Szabo, K. et al. Follicular helper T cells may play an important role in the severity of primary Sjogren’s syndrome. Clin. Immunol. 147, 95–104 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Brokstad, K. A., et al. T follicular-like helper cells in the peripheral blood of patients with primary Sjogren’s syndrome. Scand. J. Immunol. 88, e12679 (2018).

  7. Alunno, A. et al. CD4(-)CD8(-) T-cells in primary Sjogren’s syndrome: association with the extent of glandular involvement. J. Autoimmun. 51, 38–43 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Lin, X. et al. Th17 cells play a critical role in the development of experimental Sjogren’s syndrome. Ann. Rheum. Dis. 74, 1302–1310 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Lin, X. et al. The role of T helper 17 cell subsets in Sjogren’s syndrome: similarities and differences between mouse model and humans. Ann. Rheum. Dis. 73, e43 (2014).

    Article  PubMed  Google Scholar 

  10. Fu, W. et al. Deficiency in T follicular regulatory cells promotes autoimmunity. J. Exp. Med. 215, 815–825 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nurieva, R. I. et al. Bcl6 mediates the development of T follicular helper cells. Science 325, 1001–1005 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ueno, H., Banchereau, J. & Vinuesa, C. G. Pathophysiology of T follicular helper cells in humans and mice. Nat. Immunol. 16, 142–152 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. He, J. et al. Circulating precursor CCR7(lo)PD-1(hi) CXCR5(+) CD4(+) T cells indicate Tfh cell activity and promote antibody responses upon antigen reexposure. Immunity 39, 770–781 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Simpson, N. et al. Expansion of circulating T cells resembling follicular helper T cells is a fixed phenotype that identifies a subset of severe systemic lupus erythematosus. Arthritis Rheum. 62, 234–244 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Liu, D. et al. T-B-cell entanglement and ICOSL-driven feed-forward regulation of germinal centre reaction. Nature 517, 214–218 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Ou, X., Xu, S. & Lam, K. P. Deficiency in TNFRSF13B (TACI) expands T-follicular helper and germinal center B cells via increased ICOS-ligand expression but impairs plasma cell survival. Proc. Natl Acad. Sci. USA 109, 15401–15406 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Maynard, C. L. & Weaver, C. T. Diversity in the contribution of interleukin-10 to T-cell-mediated immune regulation. Immunol. Rev. 226, 219–233 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Candando, K. M., Lykken, J. M. & Tedder, T. F. B10 cell regulation of health and disease. Immunol. Rev. 259, 259–272 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Katz, S. I., Parker, D. & Turk, J. L. B-cell suppression of delayed hypersensitivity reactions. Nature 251, 550–551 (1974).

    Article  CAS  PubMed  Google Scholar 

  20. Flores-Borja, F. et al. CD19+CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 differentiation. Sci. Transl. Med. 5, 173ra123 (2013).

    Article  CAS  Google Scholar 

  21. Daien, C. I. et al. Regulatory B10 cells are decreased in patients with rheumatoid arthritis and are inversely correlated with disease activity. Arthritis Rheumatol. 66, 2037–2046 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Wu, H. et al. Epigenetic regulation in B-cell maturation and its dysregulation in autoimmunity. Cell Mol. Immunol. 15, 676–684 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Blair, P. A. et al. CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic lupus erythematosus patients. Immunity 32, 129–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Yanaba, K. et al. A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity 28, 639–650 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Yang, M. et al. IL-10-producing regulatory B10 cells ameliorate collagen-induced arthritis via suppressing Th17 cell generation. Am. J. Pathol. 180, 2375–2385 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Achour, A. et al. Human regulatory B cells control the TFH cell response. J. Allergy Clin. Immunol. 140, 215–222 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Tian, Y., Mollo, S. B., Harrington, L. E. & Zajac, A. J. IL-10 regulates memory T cell development and the balance between Th1 and follicular Th cell responses during an acute viral infection. J. Immunol. 197, 1308–1321 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Xiao, F. et al. Proteasome inhibition suppresses Th17 cell generation and ameliorates autoimmune development in experimental Sjogren’s syndrome. Cell Mol. Immunol. 14, 924–934 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  29. Fisher, B. A. et al. Standardisation of labial salivary gland histopathology in clinical trials in primary Sjogren’s syndrome. Ann. Rheum. Dis. 76, 1161–1168 (2017).

    Article  PubMed  Google Scholar 

  30. Xu, H. et al. Follicular T-helper cell recruitment governed by bystander B cells and ICOS-driven motility. Nature 496, 523–527 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Vitali, C. et al. Classification criteria for Sjogren’s syndrome: a revised version of the European criteria proposed by the American-European Consensus Group. Ann. Rheum. Dis. 61, 554–558 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kamanaka, M. et al. Memory/effector (CD45RB(lo)) CD4 T cells are controlled directly by IL-10 and cause IL-22-dependent intestinal pathology. J. Exp. Med. 208, 1027–1040 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Choi, Y. S. et al. LEF-1 and TCF-1 orchestrate T(FH) differentiation by regulating differentiation circuits upstream of the transcriptional repressor Bcl6. Nat. Immunol. 16, 980–990 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu, X. et al. Transcription factor achaete-scute homologue 2 initiates follicular T-helper-cell development. Nature 507, 513–518 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Singer-Lahat, D., Liu, J., Wess, J. & Felder, C. C. The third intracellular domain of the m3 muscarinic receptor determines coupling to calcium influx in transfected Chinese hamster ovary cells. FEBS Lett. 386, 51–54 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Ishikawa, Y. et al. Identification of AQP5 in lipid rafts and its translocation to apical membranes by activation of M3 mAChRs in interlobular ducts of rat parotid gland. Am. J. Physiol. Cell Physiol. 289, C1303–C1311 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Kruse, A. C. et al. Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482, 552–556 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nguyen, K. H. et al. Evidence for antimuscarinic acetylcholine receptor antibody-mediated secretory dysfunction in nod mice. Arthritis Rheum. 43, 2297–2306 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Robinson, C. P. et al. Transfer of human serum IgG to nonobese diabetic Igmu null mice reveals a role for autoantibodies in the loss of secretory function of exocrine tissues in Sjogren’s syndrome. Proc. Natl Acad. Sci. USA 95, 7538–7543 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang, M. et al. Novel function of B cell-activating factor in the induction of IL-10-producing regulatory B cells. J. Immunol. 184, 3321–3325 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Linterman, M. A. et al. Foxp3+ follicular regulatory T cells control the germinal center response. Nat. Med. 17, 975–982 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nus, M. et al. Marginal zone B cells control the response of follicular helper T cells to a high-cholesterol diet. Nat. Med. 23, 601–610 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Sage, P. T., Francisco, L. M., Carman, C. V. & Sharpe, A. H. The receptor PD-1 controls follicular regulatory T cells in the lymph nodes and blood. Nat. Immunol. 14, 152–161 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Yang, M., Rui, K., Wang, S. & Lu, L. Regulatory B cells in autoimmune diseases. Cell Mol. Immunol. 10, 122–132 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Arnold, C. N., Campbell, D. J., Lipp, M. & Butcher, E. C. The germinal center response is impaired in the absence of T cell-expressed CXCR5. Eur. J. Immunol. 37, 100–109 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. He, J. et al. Low-dose interleukin-2 treatment selectively modulates CD4(+) T cell subsets in patients with systemic lupus erythematosus. Nat. Med. 22, 991–993 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Galeazzi, M. et al. OP0099 Safety, tolerability and initial signs of efficacy of the fully human immunocytokine DEKAVIL (F8IL10): a novel therapeutic approach for rheumatoid arthritis. Ann. Rheumat. Dis. 76, 92–93 (2017).

    Google Scholar 

  48. Marlow, G. J., van Gent, D. & Ferguson, L. R. Why interleukin-10 supplementation does not work in Crohn’s disease patients. World J. Gastroenterol. 19, 3931–3941 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Mosanya, C. H. & Isaacs, J. D. Tolerising cellular therapies: what is their promise for autoimmune disease? Ann. Rheumat. Dis. 78, 297–310 (2018).

    Article  PubMed  CAS  Google Scholar 

  50. Psianou, K. et al. Clinical and immunological parameters of Sjogren’s syndrome. Autoimmun. Rev. 17, 1053–1064 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Kwun, J. et al. Successful desensitization with proteasome inhibition and costimulation blockade in sensitized nonhuman primates. Blood Adv. 1, 2115–2119 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Helen Zhi from the Biostatistics and Clinical Research Methodology Unit, The University of Hong Kong, who provided valuable suggestions for the statistical analysis. We thank the professional service provided by the Faculty Core facility, The University of Hong Kong. This work was supported by grants from the National Natural Science Foundation of China (81771761 and 91842304); Chinese National Key Technology R&D Program, Ministry of Science and Technology (2017YFC0907601 and 2017YFC0907605); General Research Fund, Hong Kong Research Grants Council (17114515 and 17149716); Hong Kong Croucher Foundation (260960116); and Sanming Project of Medicine in Shenzhen (SZSM201512019).

Author information

Authors and Affiliations

Authors

Contributions

L.L. and X.L. designed and conceived the experiments. X.L. performed the experiments. X.W., F.X., K.M., X.W., L.L., D.X., F.W., X.S., Y.Z. and D.L. provided patient samples and analyzed data. All of the authors interpreted the data and discussed the results. L.L. and X.L. prepared the manuscript.

Corresponding authors

Correspondence to Dongzhou Liu, Yan Zhao or Liwei Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Wang, X., Xiao, F. et al. IL-10-producing regulatory B cells restrain the T follicular helper cell response in primary Sjögren’s syndrome. Cell Mol Immunol 16, 921–931 (2019). https://doi.org/10.1038/s41423-019-0227-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-019-0227-z

Keywords

This article is cited by

Search

Quick links