Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The benefits of neuroinflammation for the repair of the injured central nervous system

Abstract

Inflammation of the nervous system (neuroinflammation) is now recognized as a hallmark of virtually all neurological disorders. In neuroinflammatory conditions such as multiple sclerosis, there is prominent infiltration and a long-lasting representation of various leukocyte subsets in the central nervous system (CNS) parenchyma. Even in classic neurodegenerative disorders, where such immense inflammatory infiltrates are absent, there is still evidence of activated CNS-intrinsic microglia. The consequences of excessive and uncontrolled neuroinflammation are injury and death to neural elements, which manifest as a heterogeneous set of neurological symptoms. However, it is now readily acknowledged, due to instructive studies from the peripheral nervous system and a large body of CNS literature, that aspects of the neuroinflammatory response can be beneficial for CNS outcomes. The recognized benefits of inflammation to the CNS include the preservation of CNS constituents (neuroprotection), the proliferation and maturation of various neural precursor populations, axonal regeneration, and the reformation of myelin on denuded axons. Herein, we highlight the benefits of neuroinflammation in fostering CNS recovery after neural injury using examples from multiple sclerosis, traumatic spinal cord injury, stroke, and Alzheimer’s disease. We focus on CNS regenerative responses, such as neurogenesis, axonal regeneration, and remyelination, and discuss the mechanisms by which neuroinflammation is pro-regenerative for the CNS. Finally, we highlight treatment strategies that harness the benefits of neuroinflammation for CNS regenerative responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Takeuchi, H. Neurotoxicity by microglia: mechanisms and potential therapeutic strategy. Clin. Exp. Neuroimmunol. 1, 12–21 (2010).

    Article  CAS  Google Scholar 

  2. Yong, V. W. Inflammation in neurological disorders: a help or a hindrance? Neuroscientist 16, 408–420 (2010).

    Article  CAS  Google Scholar 

  3. Czeh, M., Gressens, P. & Kaindl, A. M. The yin and yang of microglia. Dev. Neurosci. 33, 199–209 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Kerschensteiner, M., Meinl, E. & Hohlfeld, R. Neuro-immune crosstalk in CNS diseases. Neuroscience 158, 1122–1132 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Glass, C. K., Saijo, K., Winner, B., Marchetto, M. C. & Gage, F. H. Mechanisms underlying inflammation in neurodegeneration. Cell 140, 918–934 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thompson, A. J., Baranzini, S. E., Geurts, J., Hemmer, B. & Ciccarelli, O. Multiple sclerosis. Lancet 391, 1622–1636 (2018).

    Article  PubMed  Google Scholar 

  7. Faroni, A., Mobasseri, S. A., Kingham, P. J. & Reid, A. J. Peripheral nerve regeneration: experimental strategies and future perspectives. Adv. Drug Deliv. Rev. 82-83, 160–167 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Schwartz, M., Moalem, G., Leibowitz-Amit, R. & Cohen, I. R. Innate and adaptive immune responses can be beneficial for CNS repair. Trends Neurosci. 22, 295–299 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Bollaerts, I., Van Houcke, J., Andries, L., De Groef, L. & Moons, L. Neuroinflammation as fuel for axonal regeneration in the injured vertebrate central nervous system. Mediat. Inflamm. 2017, 9478542 (2017).

    Article  CAS  Google Scholar 

  10. Labzin, L. I., Heneka, M. T. & Latz, E. Innate immunity and neurodegeneration. Annu. Rev. Med. 69, 437–449 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Norris, G. T. & Kipnis, J. Immune cells and CNS physiology: microglia and beyond. J. Exp. Med. 216, 60–70 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ziv, Y. et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat. Neurosci. 9, 268–275 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Derecki, N. C. et al. Regulation of learning and memory by meningeal immunity: a key role for IL-4. J. Exp. Med. 207, 1067–1080 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rolls, A. et al. Toll-like receptors modulate adult hippocampal neurogenesis. Nat. Cell Biol. 9, 1081–1088 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Walton, N. M. et al. Microglia instruct subventricular zone neurogenesis. Glia 54, 815–825 (2006).

    Article  PubMed  Google Scholar 

  16. Yuan, J. et al. M2 microglia promotes neurogenesis and oligodendrogenesis from neural stem/progenitor cells via the PPARgamma signaling pathway. Oncotarget 8, 19855–19865 (2017).

    PubMed  PubMed Central  Google Scholar 

  17. Danilov, A. I. et al. Neurogenesis in the adult spinal cord in an experimental model of multiple sclerosis. Eur. J. Neurosci. 23, 394–400 (2006).

    Article  PubMed  Google Scholar 

  18. Imitola, J. et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc. Natl. Acad. Sci. USA 101, 18117–18122 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lei, C., Wu, B., Cao, T., Liu, M. & Hao, Z. Brain recovery mediated by toll-like receptor 4 in rats after intracerebral hemorrhage. Brain Res. 1632, 1–8 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Baron, R. et al. IFN-gamma enhances neurogenesis in wild-type mice and in a mouse model of Alzheimer’s disease. FASEB J. 22, 2843–2852 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Bosak, V., Murata, K., Bludau, O. & Brand, M. Role of the immune response in initiating central nervous system regeneration in vertebrates: learning from the fish. Int. J. Dev. Biol. 62, 403–417 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Dietrich, J. et al. Bone marrow drives central nervous system regeneration after radiation injury. J. Clin. Invest. 128, 2651 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. David, S., Bouchard, C., Tsatas, O. & Giftochristos, N. Macrophages can modify the nonpermissive nature of the adult mammalian central nervous system. Neuron 5, 463–469 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Prewitt, C. M., Niesman, I. R., Kane, C. J. & Houle, J. D. Activated macrophage/microglial cells can promote the regeneration of sensory axons into the injured spinal cord. Exp. Neurol. 148, 433–443 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Popovich, P. G. et al. Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp. Neurol. 158, 351–365 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Barrette, B. et al. Requirement of myeloid cells for axon regeneration. J. Neurosci. 28, 9363–9376 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. O’Shea, T. M., Burda, J. E. & Sofroniew, M. V. Cell biology of spinal cord injury and repair. J. Clin. Invest. 127, 3259–3270 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yin, Y. et al. Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nat. Neurosci. 9, 843–852 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Yin, Y. et al. Oncomodulin links inflammation to optic nerve regeneration. Proc. Natl. Acad. Sci. USA 106, 19587–19592 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chagas, L. D. S. et al. Rapid plasticity of intact axons following a lesion to the visual pathways during early brain development is triggered by microglial activation. Exp. Neurol. 311, 148–161 (2019).

    Article  PubMed  Google Scholar 

  31. Chen, Q., Smith, G. M. & Shine, H. D. Immune activation is required for NT-3-induced axonal plasticity in chronic spinal cord injury. Exp. Neurol. 209, 497–509 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Torres-Espin, A. et al. Eliciting inflammation enables successful rehabilitative training in chronic spinal cord injury. Brain 141, 1946–1962 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mishra, M. K. & Yong, V. W. Myeloid cells—targets of medication in multiple sclerosis. Nat. Rev. Neurol. 12, 539–551 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Kigerl, K. A. et al. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J. Neurosci. 29, 13435–13444 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ma, S. F. et al. Adoptive transfer of M2 macrophages promotes locomotor recovery in adult rats after spinal cord injury. Brain Behav. Immun. 45, 157–170 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Francos-Quijorna, I., Amo-Aparicio, J., Martinez-Muriana, A. & Lopez-Vales, R. IL-4 drives microglia and macrophages toward a phenotype conducive for tissue repair and functional recovery after spinal cord injury. Glia 64, 2079–2092 (2016).

    Article  PubMed  Google Scholar 

  37. Gadani, S. P., Walsh, J. T., Smirnov, I., Zheng, J. & Kipnis, J. The glia-derived alarmin IL-33 orchestrates the immune response and promotes recovery following CNS injury. Neuron 85, 703–709 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Hauben, E. et al. Passive or active immunization with myelin basic protein promotes recovery from spinal cord contusion. J. Neurosci. 20, 6421–6430 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ishii, H. et al. Adoptive transfer of Th1-conditioned lymphocytes promotes axonal remodeling and functional recovery after spinal cord injury. Cell Death Dis. 3, e363 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schwartz, M. & Raposo, C. Protective autoimmunity: a unifying model for the immune network involved in CNS repair. Neuroscientist 20, 343–358 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Kipnis, J. Multifaceted interactions between adaptive immunity and the central nervous system. Science 353, 766–771 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Goldstein, E. Z., Church, J. S., Hesp, Z. C., Popovich, P. G. & McTigue, D. M. A silver lining of neuroinflammation: beneficial effects on myelination. Exp. Neurol. 283, 550–559 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Rawji, K. S., Mishra, M. K. & Yong, V. W. Regenerative capacity of macrophages for remyelination. Front. Cell Dev. Biol. 4, 47 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Triarhou, L. C. & Herndon, R. M. Effect of macrophage inactivation on the neuropathology of lysolecithin-induced demyelination. Br. J. Exp. Pathol. 66, 293–301 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kotter, M. R., Setzu, A., Sim, F. J., Van Rooijen, N. & Franklin, R. J. Macrophage depletion impairs oligodendrocyte remyelination following lysolecithin-induced demyelination. Glia 35, 204–212 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Mason, J. L., Suzuki, K., Chaplin, D. D. & Matsushima, G. K. Interleukin-1beta promotes repair of the CNS. J. Neurosci. 21, 7046–7052 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Arnett, H. A. et al. TNF alpha promotes proliferation of oligodendrocyte progenitors and remyelination. Nat. Neurosci. 4, 1116–1122 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Setzu, A. et al. Inflammation stimulates myelination by transplanted oligodendrocyte precursor cells. Glia 54, 297–303 (2006).

    Article  PubMed  Google Scholar 

  49. Glezer, I., Lapointe, A. & Rivest, S. Innate immunity triggers oligodendrocyte progenitor reactivity and confines damages to brain injuries. FASEB J. 20, 750–752 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Butovsky, O. et al. Induction and blockage of oligodendrogenesis by differently activated microglia in an animal model of multiple sclerosis. J. Clin. Invest. 116, 905–915 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Laflamme, N. et al. mCSF-induced microglial activation prevents myelin loss and promotes its repair in a mouse model of multiple sclerosis. Front. Cell Neurosci. 12, 178 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Miron, V. E. & Franklin, R. J. Macrophages and CNS remyelination. J. Neurochem. 130, 165–171 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Miron, V. E. et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci. 16, 1211–1218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wolswijk, G. Oligodendrocyte precursor cells in the demyelinated multiple sclerosis spinal cord. Brain 125, 338–349 (2002).

    Article  PubMed  Google Scholar 

  55. Patani, R., Balaratnam, M., Vora, A. & Reynolds, R. Remyelination can be extensive in multiple sclerosis despite a long disease course. Neuropathol. Appl. Neurobiol. 33, 277–287 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Bieber, A. J., Kerr, S. & Rodriguez, M. Efficient central nervous system remyelination requires T cells. Ann. Neurol. 53, 680–684 (2003).

    Article  PubMed  Google Scholar 

  57. Hvilsted Nielsen, H., Toft-Hansen, H., Lambertsen, K. L., Owens, T. & Finsen, B. Stimulation of adult oligodendrogenesis by myelin-specific T cells. Am. J. Pathol. 179, 2028–2041 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Baxi, E. G., et al. Transfer of myelin-reactive th17 cells impairs endogenous remyelination in the central nervous system of cuprizone-fed mice. J. Neurosci35, 8626–8639 (2015).

  59. Zhang, Y. et al. Glatiramer acetate-reactive T lymphocytes regulate oligodendrocyte progenitor cell number in vitro: role of IGF-2. J. Neuroimmunol. 227, 71–79 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dombrowski, Y. et al. Regulatory T cells promote myelin regeneration in the central nervous system. Nat. Neurosci. 20, 674–680 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yong, V. W. & Rivest, S. Taking advantage of the systemic immune system to cure brain diseases. Neuron 64, 55–60 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Sousa-Victor, P., Jasper, H. & Neves, J. Trophic factors in inflammation and regeneration: the role of MANF and CDNF. Front. Physiol. 9, 1629 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. O’Donnell, S. L., Frederick, T. J., Krady, J. K., Vannucci, S. J. & Wood, T. L. IGF-I and microglia/macrophage proliferation in the ischemic mouse brain. Glia 39, 85–97 (2002).

    Article  PubMed  Google Scholar 

  64. Higashiyama, S., Abraham, J. A., Miller, J., Fiddes, J. C. & Klagsbrun, M. A heparin-binding growth factor secreted by macrophage-like cells that is related to EGF. Science 251, 936–939 (1991).

    Article  CAS  PubMed  Google Scholar 

  65. Ruckh, J. M. et al. Rejuvenation of regeneration in the aging central nervous system. Cell Stem Cell 10, 96–103 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. McMorris, F. A., Smith, T. M., DeSalvo, S. & Furlanetto, R. W. Insulin-like growth factor I/somatomedin C: a potent inducer of oligodendrocyte development. Proc. Natl. Acad. Sci. USA 83, 822–826 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Scafidi, J. et al. Intranasal epidermal growth factor treatment rescues neonatal brain injury. Nature 506, 230–234 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Woodruff, R. H., Fruttiger, M., Richardson, W. D. & Franklin, R. J. Platelet-derived growth factor regulates oligodendrocyte progenitor numbers in adult CNS and their response following CNS demyelination. Mol. Cell. Neurosci. 25, 252–262 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Armstrong, R. C., Le, T. Q., Frost, E. E., Borke, R. C. & Vana, A. C. Absence of fibroblast growth factor 2 promotes oligodendroglial repopulation of demyelinated white matter. J. Neurosci. 22, 8574–8585 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yuen, T. J. et al. Identification of endothelin 2 as an inflammatory factor that promotes central nervous system remyelination. Brain 136, 1035–1047 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Anderson, M. A. et al. Required growth facilitators propel axon regeneration across complete spinal cord injury. Nature 561, 396–400 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Giera, S., et al. Microglial transglutaminase-2 drives myelination and myelin repair via GPR56/ADGRG1 in oligodendrocyte precursor cells. Elife 7, e33385 (2018).

  73. Kotter, M. R., Zhao, C., van Rooijen, N. & Franklin, R. J. Macrophage-depletion induced impairment of experimental CNS remyelination is associated with a reduced oligodendrocyte progenitor cell response and altered growth factor expression. Neurobiol. Dis. 18, 166–175 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Neumann, H., Kotter, M. R. & Franklin, R. J. Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 132, 288–295 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Rawji, K. S. et al. Deficient surveillance and phagocytic activity of myeloid cells within demyelinated lesions in aging mice visualized by ex vivo live multiphoton imaging. J. Neurosci. 38, 1973–1988 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kotter, M. R., Li, W. W., Zhao, C. & Franklin, R. J. Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J. Neurosci. 26, 328–332 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Larsen, P. H., Wells, J. E., Stallcup, W. B., Opdenakker, G. & Yong, V. W. Matrix metalloproteinase-9 facilitates remyelination in part by processing the inhibitory NG2 proteoglycan. J. Neurosci. 23, 11127–11135 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Siebert, J. R. & Osterhout, D. J. The inhibitory effects of chondroitin sulfate proteoglycans on oligodendrocytes. J. Neurochem. 119, 176–188 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Lau, L. W. et al. Chondroitin sulfate proteoglycans in demyelinated lesions impair remyelination. Ann. Neurol. 72, 419–432 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Keough, M. B. et al. An inhibitor of chondroitin sulfate proteoglycan synthesis promotes central nervous system remyelination. Nat. Commun. 7, 11312 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Morgenstern, D. A., Asher, R. A. & Fawcett, J. W. Chondroitin sulphate proteoglycans in the CNS injury response. Prog. Brain. Res. 137, 313–332 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Tran, A. P., Warren, P. M. & Silver, J. The biology of regeneration failure and success after spinal cord injury. Physiol. Rev. 98, 881–917 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Stephenson, E. L. & Yong, V. W. Proinflammatory roles of chondroitin sulfate proteoglycans in disorders of the central nervous system. Matrix Biol. 71-72, 432–442 (2018).

    Article  CAS  PubMed  Google Scholar 

  84. Simard, A. R., Soulet, D., Gowing, G., Julien, J. P. & Rivest, S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 49, 489–502 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Naert, G. & Rivest, S. CC chemokine receptor 2 deficiency aggravates cognitive impairments and amyloid pathology in a transgenic mouse model of Alzheimer’s disease. J. Neurosci. 31, 6208–6220 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Michaud, J. P. et al. Toll-like receptor 4 stimulation with the detoxified ligand monophosphoryl lipid A improves Alzheimer’s disease-related pathology. Proc. Natl. Acad. Sci. USA 110, 1941–1946 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  87. ElAli, A. & Rivest, S. Microglia in Alzheimer’s disease: a multifaceted relationship. Brain Behav. Immun. 55, 138–150 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Sarlus, H. & Heneka, M. T. Microglia in Alzheimer’s disease. J. Clin. Invest. 127, 3240–3249 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Hamelin, L. et al. Distinct dynamic profiles of microglial activation are associated with progression of Alzheimer’s disease. Brain 141, 1855–1870 (2018).

    Article  PubMed  Google Scholar 

  90. Stephenson, E., Nathoo, N., Mahjoub, Y., Dunn, J. F. & Yong, V. W. Iron in multiple sclerosis: roles in neurodegeneration and repair. Nat. Rev. Neurol. 10, 459–468 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Corna, G. et al. Polarization dictates iron handling by inflammatory and alternatively activated macrophages. Haematologica 95, 1814–1822 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Recalcati, S. et al. Differential regulation of iron homeostasis during human macrophage polarized activation. Eur. J. Immunol. 40, 824–835 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Schonberg, D. L. et al. Ferritin stimulates oligodendrocyte genesis in the adult spinal cord and can be transferred from macrophages to NG2 cells in vivo. J. Neurosci. 32, 5374–5384 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zarruk, J. G. et al. Expression of iron homeostasis proteins in the spinal cord in experimental autoimmune encephalomyelitis and their implications for iron accumulation. Neurobiol. Dis. 81, 93–107 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Kroner, A. et al. TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord. Neuron 83, 1098–1116 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Jha, A. K. et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419–430 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Rinholm, J. E. et al. Regulation of oligodendrocyte development and myelination by glucose and lactate. J. Neurosci. 31, 538–548 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Shechter, R. & Schwartz, M. Harnessing monocyte-derived macrophages to control central nervous system pathologies: no longer ‘if’ but ‘how’. J. Pathol. 229, 332–346 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Yong, V. W. Differential mechanisms of action of interferon-beta and glatiramer aetate in MS. Neurology 59, 802–808 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Lalive, P. H. et al. Glatiramer acetate in the treatment of multiple sclerosis: emerging concepts regarding its mechanism of action. CNS Drugs 25, 401–414 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Aharoni, R. Immunomodulation neuroprotection and remyelination—the fundamental therapeutic effects of glatiramer acetate: a critical review. J. Autoimmun. 54, 81–92 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Aharoni, R. et al. The immunomodulator glatiramer acetate augments the expression of neurotrophic factors in brains of experimental autoimmune encephalomyelitis mice. Proc. Natl. Acad. Sci. USA 102, 19045–19050 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. From, R. et al. Oligodendrogenesis and myelinogenesis during postnatal development effect of glatiramer acetate. Glia 62, 649–665 (2014).

    Article  PubMed  Google Scholar 

  104. Skihar, V. et al. Promoting oligodendrogenesis and myelin repair using the multiple sclerosis medication glatiramer acetate. Proc. Natl. Acad. Sci. USA 106, 17992–17997 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Cohen, M. et al. Chronic exposure to TGFbeta1 regulates myeloid cell inflammatory response in an IRF7-dependent manner. EMBO J. 33, 2906–2921 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Yamanaka, M. et al. PPARgamma/RXRalpha-induced and CD36-mediated microglial amyloid-beta phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice. J. Neurosci. 32, 17321–17331 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang, B. et al. Azithromycin drives alternative macrophage activation and improves recovery and tissue sparing in contusion spinal cord injury. J. Neuroinflamm. 12, 218 (2015).

    Article  CAS  Google Scholar 

  108. Gensel, J. C., Kopper, T. J., Zhang, B., Orr, M. B. & Bailey, W. M. Predictive screening of M1 and M2 macrophages reveals the immunomodulatory effectiveness of post spinal cord injury azithromycin treatment. Sci. Rep. 7, 40144 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zabala, A., et al. P2X4 receptor controls microglia activation and favors remyelination in autoimmune encephalitis. EMBO Mol. Med. 10, e8743 (2018).

  110. Doring, A. et al. Stimulation of monocytes, macrophages, and microglia by amphotericin B and macrophage colony-stimulating factor promotes remyelination. J. Neurosci. 35, 1136–1148 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Natrajan, M. S., et al. Retinoid X receptor activation reverses age-related deficiencies in myelin debris phagocytosis and remyelination. Brain 2, 1071–1084 (2015).

  112. Frenkel, D. et al. Scara1 deficiency impairs clearance of soluble amyloid-beta by mononuclear phagocytes and accelerates Alzheimer’s-like disease progression. Nat. Commun. 4, 2030 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Fawcett, J. W. The extracellular matrix in plasticity and regeneration after CNS injury and neurodegenerative disease. Prog. Brain. Res. 218, 213–226 (2015).

    Article  PubMed  Google Scholar 

  114. Orr, M. B. & Gensel, J. C. Spinal cord injury scarring and inflammation: therapies targeting glial and inflammatory responses. Neurotherapeutics 15, 541–553 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Biber, K., Moller, T., Boddeke, E. & Prinz, M. Central nervous system myeloid cells as drug targets: current status and translational challenges. Nat. Rev. Drug Discov. 15, 110–124 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. Zhang, C. et al. Cromolyn reduces levels of the Alzheimer’s disease-associated amyloid beta-protein by promoting microglial phagocytosis. Sci. Rep. 8, 1144 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Rawji, K. S. et al. Immunosenescence of microglia and macrophages: impact on the ageing central nervous system. Brain 139, 653–661 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  118. DiSabato, D. J., Quan, N. & Godbout, J. P. Neuroinflammation: the devil is in the details. J. Neurochem. 139(Suppl 2), 136–153 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge operating grant support from the Canadian Institutes of Health Sciences and the Multiple Sclerosis Society of Canada (to V.W.Y.) and from the National Natural Science Foundation of China (grants no: 81870942, 81471174, and 81520108011) and Innovation Scientists and Technicians Troop Constructions Projects of Henan Province of China (for M.X.).

Author information

Authors and Affiliations

Authors

Contributions

All coauthors provided sections of the first draft, with the majority being contributed by H.Y.F.Y. and K.S.R. All authors edited the manuscript, and V.W.Y. approved the final version.

Corresponding author

Correspondence to V. Wee Yong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yong, H.Y.F., Rawji, K.S., Ghorbani, S. et al. The benefits of neuroinflammation for the repair of the injured central nervous system. Cell Mol Immunol 16, 540–546 (2019). https://doi.org/10.1038/s41423-019-0223-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-019-0223-3

This article is cited by

Search

Quick links