Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NKR-P1B expression in gut-associated innate lymphoid cells is required for the control of gastrointestinal tract infections

Abstract

Helper-type innate lymphoid cells (ILC) play an important role in intestinal homeostasis. Members of the NKR-P1 gene family are expressed in various innate immune cells, including natural killer (NK) cells, and their cognate Clr ligand family members are expressed in various specialized tissues, including the intestinal epithelium, where they may play an important role in mucosal-associated innate immune responses. In this study, we show that the inhibitory NKR-P1B receptor, but not the Ly49 receptor, is expressed in gut-resident NK cells, ILC, and a subset of γδT cells in a tissue-specific manner. ILC3 cells constitute the predominant cell subset expressing NKR-P1B in the gut lamina propria. The known NKR-P1B ligand Clr-b is broadly expressed in gut-associated cells of hematopoietic origin. The genetic deletion of NKR-P1B results in a higher frequency and number of ILC3 and γδT cells in the gut lamina propria. However, the function of gut-resident ILC3, NK, and γδT cells in NKR-P1B-deficient mice is impaired during gastrointestinal tract infection by Citrobacter rodentium or Salmonella typhimurium, resulting in increased systemic bacterial dissemination in NKR-P1B-deficient mice. Our findings highlight the role of the NKR-P1B:Clr-b recognition system in the modulation of intestinal innate immune cell functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Leach, M. W., Bean, A. G., Mauze, S., Coffman, R. L. & Powrie, F. Inflammatory bowel disease in C.B-17 scid mice reconstituted with the CD45RBhigh subset of CD4+T cells. Am. J. Pathol. 148, 1503–1515 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Pene, J. et al. Chronically inflamed human tissues are infiltrated by highly differentiated Th17 lymphocytes. J. Immunol. 180, 7423–7430 (2008).

    CAS  PubMed  Google Scholar 

  3. Artis, D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat. Rev. Immunol. 8, 411–420 (2008).

    CAS  PubMed  Google Scholar 

  4. Spits, H. & Di Santo, J. P. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat. Immunol. 12, 21–27 (2011).

    CAS  PubMed  Google Scholar 

  5. Eberl, G. et al. An essential function for the nuclear receptor RORgamma(t) in the generation of fetal lymphoid tissue inducer cells. Nat. Immunol. 5, 64–73 (2004).

    CAS  PubMed  Google Scholar 

  6. Hwang, Y. Y. & McKenzie, A. N. Innate lymphoid cells in immunity and disease. Adv. Exp. Med. Biol. 785, 9–26 (2013).

    CAS  PubMed  Google Scholar 

  7. Yang, H., Antony, P. A., Wildhaber, B. E. & Teitelbaum, D. H. Intestinal intraepithelial lymphocyte gamma delta-T cell-derived keratinocyte growth factor modulates epithelial growth in the mouse. J. Immunol. 172, 4151–4158 (2004).

    CAS  PubMed  Google Scholar 

  8. Inagaki-Ohara, K. et al. Mucosal T cells bearing TCRgammadelta play a protective role in intestinal inflammation. J. Immunol. 173, 1390–1398 (2004).

    CAS  PubMed  Google Scholar 

  9. Halary, F. et al. Shared reactivity of V{delta}2(neg) {gamma}{delta} T cells against cytomegalovirus-infected cells and tumor intestinal epithelial cells. J. Exp. Med. 201, 1567–1578 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Yokoyama, W. M. & Plougastel, B. F. Immune functions encoded by the natural killer gene complex. Nat. Rev. Immunol. 3, 304–316 (2003).

    CAS  PubMed  Google Scholar 

  11. Carlyle, J. R. et al. Evolution of the Ly49 and Nkrp1 recognition systems. Semin. Immunol. 20, 321–330 (2008).

    CAS  PubMed  Google Scholar 

  12. Belanger, S. et al. Impaired natural killer cell self-education and “missing-self” responses in Ly49-deficient mice. Blood 120, 592–602 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Rahim, M. M. A. et al. The mouse NKR-P1B:Clr-b recognition system is a negative regulator of innate immune responses. Blood 125, 2217–2227 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Aldemir, H. et al. Cutting edge: lectin-like transcript 1 is a ligand for the CD161 receptor. J. Immunol. 175, 7791–7795 (2005).

    CAS  PubMed  Google Scholar 

  15. Rosen, D. B. et al. Cutting edge: lectin-like transcript-1 is a ligand for the inhibitory human NKR-P1A receptor. J. Immunol. 175, 7796–7799 (2005).

    CAS  PubMed  Google Scholar 

  16. Lanier, L. L., Chang, C. & Phillips, J. H. Human NKR-P1A. A disulfide-linked homodimer of the C-type lectin superfamily expressed by a subset of NK and T lymphocytes. J. Immunol. 153, 2417–2428 (1994).

    CAS  PubMed  Google Scholar 

  17. Takahashi, T., Dejbakhsh-Jones, S. & Strober, S. Expression of CD161 (NKR-P1A) defines subsets of human CD4 and CD8 T cells with different functional activities. J. Immunol. 176, 211–216 (2006).

    CAS  PubMed  Google Scholar 

  18. Iiai, T. et al. CD161+T (NT) cells exist predominantly in human intestinal epithelium as well as in liver. Clin. Exp. Immunol. 129, 92–98 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Maggi, L. et al. CD161 is a marker of all human IL-17-producing T-cell subsets and is induced by RORC. Eur. J. Immunol. 40, 2174–2181 (2010).

    CAS  PubMed  Google Scholar 

  20. Pesenacker, A. M. et al. CD161 defines the subset of FoxP3+T cells capable of producing proinflammatory cytokines. Blood 121, 2647–2658 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mjosberg, J. M. et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat. Immunol. 12, 1055–1062 (2011).

    PubMed  Google Scholar 

  22. Crellin, N. K., Trifari, S., Kaplan, C. D., Cupedo, T. & Spits, H. Human NKp44+IL-22+cells and LTi-like cells constitute a stable RORC+lineage distinct from conventional natural killer cells. J. Exp. Med. 207, 281–290 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Allan, D. S. et al. An in vitro model of innate lymphoid cell function and differentiation. Mucosal Immunol. 8, 340–351 (2015).

    CAS  PubMed  Google Scholar 

  24. Leibelt, S. et al. Dedicated immunosensing of the mouse intestinal epithelium facilitated by a pair of genetically coupled lectin-like receptors. Mucosal Immunol. 8, 232–242 (2015).

    CAS  PubMed  Google Scholar 

  25. Zhang, Q. et al. Mouse Nkrp1-Clr gene cluster sequence and expression analyses reveal conservation of tissue-specific MHC-independent immunosurveillance. PLoS ONE 7, e50561 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rutkowski, E. et al. Clr-a: a novel immune-related C-type lectin-like molecule exclusively expressed by mouse gut epithelium. J. Immunol. 198, 916–926 (2017).

    CAS  PubMed  Google Scholar 

  27. Kartsogiannis, V. et al. Osteoclast inhibitory lectin, an immune cell product that is required for normal bone physiology in vivo. J. Biol. Chem. 283, 30850–30860 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Carlyle, J. R. et al. Missing self-recognition of Ocil/Clr-b by inhibitory NKR-P1 natural killer cell receptors. Proc. Natl Acad. Sci. USA 101, 3527–3532 (2004).

    CAS  PubMed  Google Scholar 

  29. Mortha, A. et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 343, 1249288 (2014).

    PubMed  PubMed Central  Google Scholar 

  30. Kim, S. H., Cho, B. H., Kiyono, H. & Jang, Y. S. Microbiota-derived butyrate suppresses group 3 innate lymphoid cells in terminal ileal Peyer’s patches. Sci. Rep. 7, 3980 (2017).

    PubMed  PubMed Central  Google Scholar 

  31. Gury-BenAri, M. et al. The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome. Cell 166, 1231–1246 (2016).

    CAS  PubMed  Google Scholar 

  32. Chen, P. et al. Genetic investigation of MHC-independent missing-self recognition by mouse NK cells using an in vivo bone marrow transplantation Model. J. Immunol. 194, 2909–2918 (2015).

    CAS  PubMed  Google Scholar 

  33. Luci, C. & Reynders, A. & Ivanov, II & Cognet, C. & Chiche, L. & Chasson, L. et al. Influence of the transcription factor RORgammat on the development of NKp46+cell populations in gut and skin. Nat. Immunol. 10, 75–82 (2009).

    CAS  PubMed  Google Scholar 

  34. Sanos, S. L. et al. RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+cells. Nat. Immunol. 10, 83–91 (2009).

    CAS  PubMed  Google Scholar 

  35. Satoh-Takayama, N. et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29, 958–970 (2008).

    CAS  PubMed  Google Scholar 

  36. Ashkar, A. A., Reid, S., Verdu, E. F., Zhang, K. & Coombes, B. K. Interleukin-15 and NK1.1+ cells provide innate protection against acute Salmonella enterica serovar Typhimurium infection in the gut and in systemic tissues. Infect. Immun. 77, 214–222 (2009).

    CAS  PubMed  Google Scholar 

  37. Sonnenberg, G. F., Monticelli, L. A., Elloso, M. M., Fouser, L. A. & Artis, D. CD4(+) lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity 34, 122–134 (2011).

    CAS  PubMed  Google Scholar 

  38. Kupz, A. et al. Contribution of Thy1+NK cells to protective IFN-gamma production during Salmonella typhimurium infections. Proc. Natl Acad. Sci. USA 110, 2252–2257 (2013).

    CAS  PubMed  Google Scholar 

  39. Dolowschiak, T. et al. IFN-gamma hinders recovery from mucosal inflammation during antibiotic therapy for Salmonella gut infection. Cell Host Microbe 20, 238–249 (2016).

    CAS  PubMed  Google Scholar 

  40. Spits, H. et al. Innate lymphoid cells—a proposal for uniform nomenclature. Nat. Rev. Immunol. 13, 145–149 (2013).

    CAS  PubMed  Google Scholar 

  41. Inngjerdingen, M., Kveberg, L. & Vaage, J. T. A novel NKR-P1B(bright) NK cell subset expresses an activated CD25(+)CX(3)CR1(+)CD62L(−)CD11b(−)CD27(−) phenotype and is prevalent in blood, liver, and gut-associated lymphoid organs of rats. J. Immunol. 188, 2499–2508 (2012).

    CAS  PubMed  Google Scholar 

  42. Ganal, S. C. et al. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity 37, 171–186 (2012).

    CAS  PubMed  Google Scholar 

  43. Buonocore, S., Ahern, P. P., Uhlig, H. H., Ivanov, I. I., Littman, D. R. & Maloy, K. J. et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464, 1371–1375 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Cella, M. et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457, 722–725 (2009).

    CAS  PubMed  Google Scholar 

  45. Sonnenberg, G. F., Fouser, L. A. & Artis, D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat. Immunol. 12, 383–390 (2011).

    CAS  PubMed  Google Scholar 

  46. Hoshina, T., Kusuhara, K., Saito, M., Mizuno, Y. & Hara, T. NKRP1A+gammadelta and alphabeta T cells are preferentially induced in patients with Salmonella infection. Hum. Immunol. 73, 623–628 (2012).

    CAS  PubMed  Google Scholar 

  47. Joncker, N. T., Fernandez, N. C., Treiner, E., Vivier, E. & Raulet, D. H. NK cell responsiveness is tuned commensurate with the number of inhibitory receptors for self-MHC class I: the rheostat model. J. Immunol. 182, 4572–4580 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Tai, L. H. et al. Positive regulation of plasmacytoid dendritic cell function via Ly49Q recognition of class I MHC. J. Exp. Med. 205, 3187–3199 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Satoh-Takayama, N. et al. The chemokine receptor CXCR6 controls the functional topography of interleukin-22 producing intestinal innate lymphoid cells. Immunity 41, 776–788 (2014).

    CAS  PubMed  Google Scholar 

  50. Seo, S. U. et al. Intestinal macrophages arising from CCR2(+) monocytes control pathogen infection by activating innate lymphoid cells. Nat. Commun. 6, 8010 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Aguilar, O. A. et al. A viral immunoevasin controls innate immunity by targeting the prototypical natural killer cell receptor family. Cell 169, 58–71 (2017).

    CAS  PubMed  Google Scholar 

  52. Rahim, M. M. et al. Expansion and protection by a virus-specific NK cell subset lacking expression of the inhibitory NKR-P1B receptor during murine cytomegalovirus infection. J. Immunol. 197, 2325–2337 (2016).

    CAS  PubMed  Google Scholar 

  53. Onyeagocha, C. et al. Latent cytomegalovirus infection exacerbates experimental colitis. Am. J. Pathol. 175, 2034–2042 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs. Vicky Kartsogiannis and Matthew T. Gillespie (Monash Medical Centre, Clayton, VIC, Australia) for providing the Clr-b-deficient (Ocil–/–) mice, Dr. Koho Iizuka (University of Minnesota, Minneapolis, MN, USA) for providing the anti-NKR-P1B (2D12) hybridoma, and Dr. Subash Sad (University of Ottawa, Ottawa, Canada) for providing S. typhimurium bacterium. We further thank Drs. Philpott and Banks (University of Toronto) at the germ-free core facility for providing germ-free animals. This work was supported by Operating Grants from the Canadian Institutes of Health Research (CIHR 86630 to A.P.M. and J.R.C. and CIHR 388337 to A.M.).

Author information

Authors and Affiliations

Authors

Contributions

E.A.-S., Z.H., J.F., O.A.A., M.S., A.B.M., M.M.T., S.P., A.M., and M.M.A.R. performed the experiments and analyzed the data. E.A.-S., J.R.C., A.M., M.M.A.R., and A.P.M. designed the experiments, analyzed the data, and wrote the manuscript. A.P.M. supervised the study.

Corresponding authors

Correspondence to Mir Munir A. Rahim or Andrew P. Makrigiannis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abou-Samra, E., Hickey, Z., Aguilar, O.A. et al. NKR-P1B expression in gut-associated innate lymphoid cells is required for the control of gastrointestinal tract infections. Cell Mol Immunol 16, 868–877 (2019). https://doi.org/10.1038/s41423-018-0169-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-018-0169-x

Key words

This article is cited by

Search

Quick links