Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The chemokine receptor CCR7 is a promising target for rheumatoid arthritis therapy

Abstract

The chemokine receptor CCR7 and its ligands CCL19 and CCL21 guide the homing and positioning of dendritic and T cells in lymphoid organs, thereby contributing to several aspects of adaptive immunity and immune tolerance. In the present study, we investigated the role of CCR7 in the pathogenesis of collagen-induced arthritis (CIA). By using a novel anti-human CCR7 antibody and humanized CCR7 mice, we evaluated CCR7 as a target in this autoimmune model of rheumatoid arthritis (RA). Ccr7-deficient mice were completely resistant to CIA and presented severely impaired antibody responses to collagen II (CII). Selective CCR7 expression on dendritic cells restored arthritis severity and anti-CII antibody titers. Prophylactic and therapeutic treatment of humanized CCR7 mice with anti-human CCR7 mAb 8H3-16A12 led to complete resistance to CIA and halted CIA progression, respectively. Our data demonstrate that CCR7 signaling is essential for the induction of CIA and identify CCR7 as a potential therapeutic target in RA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Smolen, J. S., Aletaha, D. & McInnes, I. B. Rheumatoid arthritis. Lancet 388, 2023–2038 (2016).

    Article  CAS  Google Scholar 

  2. Schulz, O., Hammerschmidt, S. I., Moschovakis, G. L. & Forster, R. Chemokines and chemokine receptors in lymphoid tissue dynamics. Annu Rev. Immunol. 34, 203–242 (2016).

    Article  CAS  Google Scholar 

  3. Comerford, I. et al. A myriad of functions and complex regulation of the CCR7/CCL19/CCL21 chemokine axis in the adaptive immune system. Cytokine Growth Factor Rev. 24, 269–283 (2013).

    Article  CAS  Google Scholar 

  4. Forster, R., Davalos-Misslitz, A. C. & Rot, A. CCR7 and its ligands: balancing immunity and tolerance. Nat. Rev. Immunol. 8, 362–371 (2008).

    Article  Google Scholar 

  5. Hjelmstrom, P., Fjell, J., Nakagawa, T., Sacca, R., & Cuff, C. A., & Ruddle, N.H. Lymphoid tissue homing chemokines are expressed in chronic inflammation. Am. J. Pathol. 156, 1133–1138 (2000).

    Article  CAS  Google Scholar 

  6. Weninger, W. et al. Naive T cell recruitment to nonlymphoid tissues: a role for endothelium-expressed CC chemokine ligand 21 in autoimmune disease and lymphoid neogenesis. J. Immunol. 170, 4638–4648 (2003).

    Article  CAS  Google Scholar 

  7. Burman, A. et al. A chemokine-dependent stromal induction mechanism for aberrant lymphocyte accumulation and compromised lymphatic return in rheumatoid arthritis. J. Immunol. 174, 1693–1700 (2005).

    Article  CAS  Google Scholar 

  8. Page, G., Lebecque, S. & Miossec, P. Anatomic localization of immature and mature dendritic cells in an ectopic lymphoid organ: correlation with selective chemokine expression in rheumatoid synovium. J. Immunol. 168, 5333–5341 (2002).

    Article  CAS  Google Scholar 

  9. Bruhl, H. et al. Functional expression of the chemokine receptor CCR7 on fibroblast-like synoviocytes. Rheumatol. (Oxf.) 47, 1771–1774 (2008).

    Article  CAS  Google Scholar 

  10. Pickens, S. R. et al. Characterization of CCL19 and CCL21 in rheumatoid arthritis. Arthritis Rheum. 63, 914–922 (2011).

    Article  CAS  Google Scholar 

  11. Pickens, S. R. et al. Role of the CCL21 and CCR7 pathways in rheumatoid arthritis angiogenesis. Arthritis Rheum. 64, 2471–2481 (2012).

    Article  CAS  Google Scholar 

  12. Wengner, A. M. et al. CXCR5- and CCR7-dependent lymphoid neogenesis in a murine model of chronic antigen-induced arthritis. Arthritis Rheum. 56, 3271–3283 (2007).

    Article  CAS  Google Scholar 

  13. Schneider, M. A., Meingassner, J. G., Lipp, M., Moore, H. D. & Rot, A. CCR7 is required for the in vivo function of CD4 + CD25 + regulatory T cells. J. Exp. Med 204, 735–745 (2007).

    Article  CAS  Google Scholar 

  14. Mori, S. et al. Mice lacking expression of the chemokines CCL21-ser and CCL19 (plt mice) demonstrate delayed but enhanced T cell immune responses. J. Exp. Med 193, 207–218 (2001).

    Article  CAS  Google Scholar 

  15. Stuart, J. M. & Dixon, F. J. Serum transfer of collagen-induced arthritis in mice. J. Exp. Med 158, 378–392 (1983).

    Article  CAS  Google Scholar 

  16. Ivanov, S. et al. CCR7 and IRF4-dependent dendritic cells regulate lymphatic collecting vessel permeability. J. Clin. Invest 126, 1581–1591 (2016).

    Article  Google Scholar 

  17. Wendland, M. et al. Lymph node T cell homeostasis relies on steady state homing of dendritic cells. Immunity 35, 945–957 (2011).

    Article  CAS  Google Scholar 

  18. Chatenoud, L., Ferran, C. & Bach, J. F. The anti-CD3-induced syndrome: a consequence of massive in vivo cell activation. Curr. Top. Microbiol Immunol. 174, 121–134 (1991).

    CAS  PubMed  Google Scholar 

  19. Ferran, C. et al. Cytokine-related syndrome following injection of anti-CD3 monoclonal antibody: further evidence for transient in vivo T cell activation. Eur. J. Immunol. 20, 509–515 (1990).

    Article  CAS  Google Scholar 

  20. Maude, S. L., Barrett, D., Teachey, D. T. & Grupp, S. A. Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J. 20, 119–122 (2014).

    Article  CAS  Google Scholar 

  21. Kocks, J. R., Davalos-Misslitz, A. C., Hintzen, G., Ohl, L. & Forster, R. Regulatory T cells interfere with the development of bronchus-associated lymphoid tissue. J. Exp. Med 204, 723–734 (2007).

    Article  CAS  Google Scholar 

  22. Mzinza, D. T., et al. Application of light sheet microscopy for qualitative and quantitative analysis of bronchus-associated lymphoid tissue in mice. Cell. Mol. Immunol. (2018). https://doi.org/10.1038/cmi.2017.150

  23. Davalos-Misslitz, A. C. et al. Generalized multi-organ autoimmunity in CCR7-deficient mice. Eur. J. Immunol. 37, 613–622 (2007).

    Article  CAS  Google Scholar 

  24. Winter, S. et al. Manifestation of spontaneous and early autoimmune gastritis in CCR7-deficient mice. Am. J. Pathol. 179, 754–765 (2011).

    Article  CAS  Google Scholar 

  25. Ganguly, D., Haak, S., Sisirak, V. & Reizis, B. The role of dendritic cells in autoimmunity. Nat. Rev. Immunol. 13, 566–577 (2013).

    Article  CAS  Google Scholar 

  26. Forster, R. et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99, 23–33 (1999).

    Article  CAS  Google Scholar 

  27. Moschovakis, G. L. et al. Deficient CCR7 signaling promotes TH2 polarization and B-cell activation in vivo. Eur. J. Immunol. 42, 48–57 (2012).

    Article  CAS  Google Scholar 

  28. Morgan, M. E. et al. CD25 + cell depletion hastens the onset of severe disease in collagen-induced arthritis. Arthritis Rheum. 48, 1452–1460 (2003).

    Article  Google Scholar 

  29. Kohm, A. P., Carpentier, P. A., Anger, H. A. & Miller, S. D. Cutting edge: CD4 + CD25 + regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J. Immunol. 169, 4712–4716 (2002).

    Article  CAS  Google Scholar 

  30. Morgan, M. E. et al. Effective treatment of collagen-induced arthritis by adoptive transfer of CD25 + regulatory T cells. Arthritis Rheum. 52, 2212–2221 (2005).

    Article  CAS  Google Scholar 

  31. Mottet, C., Uhlig, H. H. & Powrie, F. Cutting edge: cure of colitis by CD4 + CD25 + regulatory T cells. J. Immunol. 170, 3939–3943 (2003).

    Article  CAS  Google Scholar 

  32. Isaacs, J. D. Therapeutic T-cell manipulation in rheumatoid arthritis: past, present and future. Rheumatol. (Oxf.) 47, 1461–1468 (2008).

    Article  CAS  Google Scholar 

  33. Epstein, W. V. Expectation bias in rheumatoid arthritis clinical trials. The anti-CD4 monoclonal antibody experience. Arthritis Rheum. 39, 1773–1780 (1996).

    Article  CAS  Google Scholar 

  34. Strand, V., Kimberly, R. & Isaacs, J. D. Biologic therapies in rheumatology: lessons learned, future directions. Nat. Rev. Drug Discov. 6, 75–92 (2007).

    Article  CAS  Google Scholar 

  35. Depis, F. et al. Long-term amelioration of established collagen-induced arthritis achieved with short-term therapy combining anti-CD3 and anti-tumor necrosis factor treatments. Arthritis Rheum. 64, 3189–3198 (2012).

    Article  CAS  Google Scholar 

  36. Penaranda, C., Tang, Q. & Bluestone, J. A. Anti-CD3 therapy promotes tolerance by selectively depleting pathogenic cells while preserving regulatory T cells. J. Immunol. 187, 2015–2022 (2011).

    Article  CAS  Google Scholar 

  37. Ohl, L. et al. CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 21, 279–288 (2004).

    Article  CAS  Google Scholar 

  38. Zietara, N. et al. Multicongenic fate mapping quantification of dynamics of thymus colonization. J. Exp. Med 212, 1589–1601 (2015).

    Article  CAS  Google Scholar 

  39. Inglis, J. J. et al. Collagen-induced arthritis in C57BL/6 mice is associated with a robust and sustained T-cell response to type II collagen. Arthritis Res Ther. 9, R113 (2007).

    Article  Google Scholar 

  40. Moschovakis, G. L. et al. T cell specific Cxcr5 deficiency prevents rheumatoid arthritis. Sci. Rep. 7, 8933 (2017).

    Article  Google Scholar 

  41. Pfeifle, R. et al. Regulation of autoantibody activity by the IL-23-TH17 axis determines the onset of autoimmune disease. Nat. Immunol. 18, 104–113 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Linda Oberdörfer, Kerstin Daemen, and Jana Keil for excellent technical assistance and Svetlana Piter for excellent animal care. This work was supported by Deutsche Forschungsgemeinschaft (DFG) grant KFO 250-FO 334/2-1 to R. Förster.

Author information

Authors and Affiliations

Authors

Contributions

G.L.M., A.B., M.F., and J.R. performed experiments; G.L.M. and C.S.F. analyzed experiments; J.W.B. and E.K. provided essential reagents for the study; G.L.M. and R.F. designed experiments and wrote the paper. The manuscript was approved by all authors.

Corresponding authors

Correspondence to Georgios L. Moschovakis or Reinhold Förster.

Ethics declarations

Competing interests

G.L.M., A.B., M.F., J.R., C.S.F., E.K., and R.F. declare no conflicts of interest. J.W.B. is an employee of Pepscan and was named inventor on a patent disclosing anti-CCR7 antibodies.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moschovakis, G.L., Bubke, A., Friedrichsen, M. et al. The chemokine receptor CCR7 is a promising target for rheumatoid arthritis therapy. Cell Mol Immunol 16, 791–799 (2019). https://doi.org/10.1038/s41423-018-0056-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-018-0056-5

This article is cited by

Search

Quick links