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Role of interleukins in the pathogenesis of
pulmonary fibrosis

Yi Xin She', Qing Yang Yu' and Xiao Xiao Tang®'

Abstract

Interleukins, a group of cytokines participating in inflammation and immune response, are proved to be involved in
the formation and development of pulmonary fibrosis. In this article, we reviewed the relationship between
interleukins and pulmonary fibrosis from the clinical, animal, as well as cellular levels, and discussed the underlying
mechanisms in vivo and in vitro. Despite the effects of interleukin-targeted treatment on experimental pulmonary
fibrosis, clinical applications are lacking and unsatisfactory. We conclude that intervening in one type of interleukins
with similar functions in IPF may not be enough to stop the development of fibrosis as it involves a complex network
of regulation mechanisms. Intervening interleukins combined with other existing therapy or targeting interleukins
affecting multiple cells/with different functions at the same time may be one of the future directions. Furthermore, the
intervention time is critical as some interleukins play different roles at different stages. Further elucidation on these
aspects would provide new perspectives on both the pathogenesis mechanism, as well as the therapeutic strategy

and drug development.

Introduction

Interleukins (ILs) are a type of cytokines with immu-
noregulatory functions and derived from a variety of cells,
including macrophages, T lymphocytes, mast cells, stro-
mal cells, epithelial cells, and neutrophils, etc.2. In 1977,
IL-1 was first discovered and at least 38 interleukins have
been found thereafter. According to the sequence
homology, as well as their main functions and receptors,
interleukins are divided into IL-1 family, yc family, che-
mokine family, IL-10 family, IL-6/IL-12 family, and IL-17
family". They are classified as type-1 (Th1-like) and type-2
(Th2-like) cytokines based on their immune responses as
well®>. Their functions are also complex and diverse.
Generally speaking, interleukins regulate the immune
system by participating in innate immune responses,
promoting the proliferation and differentiation of
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immune cells, and specifically recruiting inflammatory
cells*®. In addition, some interleukins are also critical for
inflammation responses and hematopoiesis’'>. A num-
ber of studies have evidenced that interleukins are asso-
ciated with some autoimmune diseases (e.g., rheumatoid
arthritis) and tumorigenesis'®.

Pulmonary fibrosis (PF) is a chronic, progressive fibrotic
lung pathological change that can be observed in idio-
pathic pulmonary fibrosis (IPF), systemic sclerosis, sili-
cosis, and other lung diseases, characterized by damage to
the alveolar structure and the replacement of normal lung
tissue by deposited extracellular matrix, which resulted in
respiratory failure and death'®'®. The most common
idiopathic interstitial pneumonia is IPF, which manifests
as usual interstitial pneumonia (UIP) with temporal and
spatial heterogeneity'”'®, Incidence of IPF is estimated to
range between 2 and 30 cases per 100,000 people per year,
with a median survival of 2—-3 years from diagnosis'®*’.
The treatment for IPF is very limited. Although Pirfeni-
done and Nintedanib have been recommended for clinical
use, the efficacy is still insufficient to cure the disease®.
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Therefore, clarifying the pathogenesis of IPF is of great
significance to therapeutic strategy.

Damage, aberrant senescence, and apoptosis of alveolar
epithelial cells (AECs), as well as dysfunctional repair after
injury leading to tissue fibrotic changes, is regarded as the
core pathogenesis of IPF'®**72°, The immune response is
also involved in the development of IPF*"?%, Under the
action of chemokines, circulating immune cells are recrui-
ted to lesions, where there are abnormal AECs and accu-
mulated fibroblasts. Th1/Th2 imbalance promotes
pulmonary fibrosis through pro-fibrotic factors and
inflammatory cytokines®’. Furthermore, immune regulatory
mechanisms dominated by macrophages and/or dendritic
cells (DCs) have also been documented in IPF?°~>*, These
phenomena caused by immune cells seem to be closely
associated with cytokines. A hypothesis called the “phago-
cytosis-secretion-immunity” network of macrophages
explained the relationship between immune cells, cytokines,
and pulmonary fibrosis®. Therefore, the unbalanced
secretion of cytokines may be the key cause of aberrant cell
function that results in immunologic derangement in pul-
monary fibrosis.

Interleukins and pulmonary fibrosis in clinical
research

Interleukin levels in lung tissue, bronchoalveolar lavage
fluid (BALF), or blood are altered in patients with pul-
monary fibrosis (Table 1). IL-1p and IL-17A in BALF, as
well as IL-2, IL-10, IL-12 in serum, were higher in IPF
patients as compared to healthy subjects®®*”. Interleukin
levels not only change between subjects with and without
pulmonary fibrosis, but also between different stages of
pulmonary fibrosis. For example, peripheral blood levels
of IL-6 and IL-9 increased in patients with acute

Table 1 Changes of interleukin levels in patients with
pulmonary fibrosis.

Interleukin Group Sample Method Fold change Ref.
IL-1B IPF vs. HC BALF ELISA 1,223 *
IL-2 IPF vs. HC Serum ELISA 1,10 ¥
IL-6 AE-IPF vs. HC ~ Serum Protein 1,136 *
AE-IPF vs. Serum m‘clf oarray 1,119 .
stable IPF analysis
IL-8 IPF vs. HC Serum ELISA 1,267 ¥
IPF vs. HC Serum ELISA 1, >10 “
and BALF
IL-9 AE-IPF vs. Serum Protein 1,150 *
stable IPF microarray
analysis
IL-10 IPF vs. HC Serum ELISA 1,10.12 ¥
IL-12 IPF vs. HC Serum ELISA 1,692 ¥
IL-17A IPF vs. HC BALF ELISA 1,967 %
IL-33 IPF vs. HC BALF ELISA 1,359 a2

AE-IPF acute exacerbation-idiopathic pulmonary fibrosis, BALF bronchoalveolar
lavage fluid, HC healthy control, IPF idiopathic pulmonary fibrosis.
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exacerbation IPF (AE-IPF), compared with those with
stable IPF**?°,

Conversely, interleukin levels reflect the degree of
inflammation and poor prognosis in pulmonary fibrosis
and can be used to assess disease progression and severity.
For instance, IL-8 (a member of the CXC chemokine
family) level in serum reflects the degree of neutrophilic
alveolitis in IPF, and its level in lung tissue is negatively
correlated with lung function®*°. Moreover, high and
low concentrations of IL-8 in plasma are correlated with a
median survival of 1.9 and 5.1 years, respectively*'. And
mortality was increased by 6.7% for each 1pg/mL in
serum concentrations of IL-8*%°°,

Disorders of interleukins might affect the formation and
development of pulmonary fibrosis. IL-33 (a member of the
IL-1 family) and thymic stromal lymphopoietin co-stimulate
the upstream and downstream signals of IL-13 *. An
increased IL-13 level and its inducible proteins and factors
(such as periostin and CCL2) in IPF may accelerate the
process of pulmonary fibrosis by inhibiting epithelial wound
healing®.

Interleukins and pulmonary fibrosis in animal
models

The level and function of interleukins are also altered in
animal models of pulmonary fibrosis (Fig. 1 and Table 2).
Interleukins can promote inflammation by regulating
immune cell aggregation, thereby affecting pulmonary
fibrosis. In bleomycin-treated mice, IL-1B (an IL-1 sub-
type with pro-inflammatory activity), induced and acti-
vated by inflammasome in damaged lung tissue, promotes
recruitment of neutrophils and lymphocytes, leading to
inflammation at the injury site, as well as pulmonary
fibrosis**. Similarly, IL-5 (a type-2 cytokine) is increased
in lung tissue of bleomycin-induced mice and promotes
eosinophil recruitment, as well as pulmonary fibrosis™.

Altered interleukin levels in animals with pulmonary
fibrosis could impact their weight, survival rate, etc. As an
anti-inflammatory and anti-fibrotic cytokine, IL-10 inhi-
bits the downregulation of IFN-y and upregulation of
TGEF-B1 in bleomycin-induced pulmonary fibrosis mice,
thereby reducing the number of infiltrated inflammatory
cells and development of lung fibrosis. Overexpression of
IL-10 reduces weight loss and survival rate drop in
bleomycin-instillation mice*®, IL-17A, a pro-
inflammatory cytokine also known as IL-17, inhibits the
activation of autophagy and autophagy-related cell death
in bleomycin-induced lung injury to promote fibrosis.
Intravenous anti-IL-17A neutralizing antibody increased
survival of bleomycin-injured mice*’.

Interleukins influence pulmonary fibrosis mainly
through inflammation and immune response, but also via
other ways. In bleomycin mice models, IL-18, a pro-
inflammatory cytokine, induces the senescence of lung
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Fig. 1 Interleukins affect the morphology and functions of various cells in pulmonary fibrosis. (1) Mesenchymal stem cells: IL-8 facilitates the
migration and proliferation of mesenchymal stem cells. (2) Macrophages: IL-8 also induces migration of macrophages. IL-4, IL-13, IL-10, and IL-33
promote macrophages to transform into M2 phenotype, which is further promoted by IL-4, IL-6, and IL-13 to transform into a hyper-profibrotic

phenotype. (3) Other immune cells: IL-13 induces recruitment of lymphocytes and neutrophils, while IL-5 induces recruitment of eosinophils. (4)

Alveolar epithelial cells: IL-17A inhibits autophagy of alveolar epithelial cells, and IL-6 suppresses apoptosis of alveolar type Il cells (AT Il). IL-6, IL-17A,
and IL-18 promote EMT of AT II, whereas IL-22 inhibits this process. (5) Fibroblasts: IL-6 and IL-25 promote the proliferation of fibroblasts. IL-4, IL-11, IL-
13, and IL-25 induce differentiation of fibroblasts, whereas IL-27 suppresses both events. IL-18 contributes to the senescence of fibroblasts, and IL-37
facilitates autophagy of fibroblasts. IL-1(, IL-4, IL-6, IL-11, IL-13, IL-17A, IL-25, and IL-33 promote collagen synthesis, while IL-7, IL-12, and IL-27 inhibit
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fibroblasts by downregulating the anti-senescence protein
Klotho®®. Besides, IL-18 induces EMT by upregulating
a-SMA, transcription factor Snail-1, and downregulating
E-cadherin, thus participating in the development of
bleomycin-induced pulmonary fibrosis*. After bleomycin
treatment, intranasal instillation of IL-37 (an anti-
inflammatory interleukin) plays an anti-fibrotic effect via
promoting the expression of autophagy activation marker
LC3II and inducing autophagy in fibroblasts. But,
regrettably, expression of IL-37 decreases in the lung
tissue of IPF patients and mouse models°.

IL-6 (acts as both a pro-inflammatory and an anti-
inflammatory cytokine) is a member of the IL-6/IL-12
cytokine family. In bleomycin-treated mice, M2-like
macrophages induce the formation of the IL-6/sIL-6Ra
complex, which stimulates IL-6 trans-signaling in lung
fibroblasts and other cells to promote ECM production
and cell proliferation®? In the bleomycin-induced
fibrotic microenvironment, M2 macrophages polarize
and secrete IL-6, which, together with IL-4 and IL-13
(both are type-2 cytokines produced by Th2 cells),
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activates M2-like macrophages possessing hyper-
profibrotic phenotype, then the hyper-profibrotic macro-
phages accumulate and finally induce extracellular matrix
deposition and aggravate pulmonary fibrosis®®. Also, the
elevated IL-6 level may be related to decreased lung
function®”.

The above studies suggested that interleukins exacer-
bate or alleviate pulmonary fibrosis via a variety of ways.
And some interleukins may serve a dual role in pul-
monary fibrosis. For example, IL-6 may act on ATIIs and
is anti-fibrotic in the early stage, but act on fibroblasts, as
well as macrophages and play a pro-fibrotic role in the late
stage®. IL-4 was initially thought to be pro-fibrotic and
then was believed to have no effect on pulmonary fibrosis,
while Huaux et al. reported that it has different roles
between early and late stages, similar to IL-6 **~°°. The
role of IL-4 in pulmonary fibrosis may be controversial
and needs further investigation.

IL-9 is a secreted protein that belongs to the yc family
and type-2 cytokines. The role of IL-9 in pulmonary
fibrosis is also controversial. Arras et al. found that IL-9
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exerts an anti-inflammatory activity and a protective role
in bleomycin-induced pulmonary fibrosis®'. Furthermore,
overexpression of IL-9 promotes PGE2 production of
macrophages to inhibit silica-induced pulmonary fibro-
sis®2. However, Sugimoto et al. showed that neutralization
of IL-9 by a specific Ab reduces silica-induced lung
inflammation and fibrosis in mice®’.

Main target cells of interleukins in pulmonary
fibrosis
Fibroblasts

Fibroblasts play an essential role in the progression of
pulmonary fibrosis. Cytokines induce excessive secretion
of collagen from fibroblasts and promote the differentia-
tion from fibroblasts to myoﬁbroblasts64’65. Recently,
evidence suggested that interleukins directly interact with
fibroblasts to promote or inhibit pulmonary fibrosis.

In vitro study has demonstrated that IL-la (a pro-
inflammatory subtype of the IL-1 family) secreted by the
alveolar epithelia under stress directly promotes the for-
mation of pro-inflammatory phenotypes of fibroblasts,
which further secrete other cytokines to promote pul-
monary fibrosis®. IL-1B, another IL-1 subtype released by
lung macrophages, stimulates fibroblasts to synthesize
collagen and produce fibrin®"°%,

A study demonstrates that IL-37, an anti-inflammatory
interleukin, decreases collagen deposition by fibroblasts
and alleviates pulmonary fibrosis via inhibiting TGF-3
signal transduction. In addition, IL-37 also promotes the
autophagy of fibroblasts and regulates cell proliferation, as
well as metabolism by inhibiting PI3K/AKT, ERK, and
MAPK signaling pathways to protect against fibrosis°.

IL-7, a member of the yc family, can induce the
synthesis of inflammatory mediators by monocytes and
also has anti-fibrotic effects. It appears to have different
sensitivities to abnormal and normal fibroblasts. In pul-
monary fibrosis, TGF-p signaling induces fibroblast acti-
vation and collagen synthesis, while Smad7 can block this
process by inhibiting TGF-p signaling. IL-7 mediates the
increase of Smad7 through JAK/STAT signaling and
exerts an anti-fibrotic effect. Especially, IL-7 only works
this way in fibroblasts from IPF patients, not from healthy
subjects69. Besides, IL-7 was found to inhibit TGE-
[-mediated phosphorylation of PKC-8 (protein kinase C-
0) in fibroblasts from fibrotic lung, but not from the
normal counterpart”’.

IL-4 may play a dual role in pulmonary fibrosis. On the
one hand, it induces the gene expression of collagen in
lung fibroblasts and promotes the differentiation of
fibroblasts to myofibroblasts via activation of the JNK/
ERK pathway in a time-dependent and dose-dependent
manner. The differentiation is also related to the reduc-
tion of COX gene expression in fibroblasts and the
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inhibition of PGE2 production’’. On the other hand, IL-4
inhibits T cell inflammation and limits lung injury®®.

As mentioned above, IL-6 plays different roles via acting
on different cells at different stages. Also, IL-6 plays
opposing roles between fibroblasts from normal subjects
and IPF patients. IL-6 is anti-proliferative in normal lung
fibroblasts, whereas is strongly pro-proliferative in IPF
fibroblasts’%. In addition, IL-6 upregulates the expression
of pro-apoptotic protein Bax and promotes Fas-induced
apoptosis through the STAT-3 signaling pathway in
normal fibroblasts, while it induces the expression of anti-
apoptotic molecule Bcl-2 and proliferation of IPF fibro-
blasts by ERK signaling pathway’®. Also, IL-6 promotes
the proliferation of IPF lung fibroblasts via the IL-6/
STATS3 axis and trans-signaling®"”*7°,

Similar to IL-6, IL-13 has different sensitivities to
fibroblasts from normal people and IPF patients. Murray
et al. found that IL-13 significantly promotes the expres-
sion of a-SMA and collagen I in IPF lung fibroblasts,
while the normal fibroblasts do not respond to IL-13 7°.
Moreover, IL-13 induces differentiation of fibroblasts to
myofibroblasts via multiple mechanisms: (1) Regulating
the JNK signal. (2) Promoting fibroblast proliferation by
inhibiting COX expression and PGE2 production. (3)
Promoting differentiation of fibroblasts via upregulating
YY1 (Yin Yang 1) expression in AKT signaling®””""’.

IL-11, a member of the IL-6/IL-12 family, can be
secreted by multiple cells. Studies have shown that human
primary fibroblasts specifically express IL-11 and its
receptor IL-11RA. IL-11 promotes fibrin synthesis and
fibrosis via transduction of non-classical ERK signal in an
autocrine way78, In addition, IL-11 stimulates fibroblast
phenotype transformation and promotes collagen synth-
esis regulated by ERK kinase in vitro, thereby promoting
the development of pulmonary fibrosis””.

IL-25, also known as IL-17E because of the homology
with IL-17 family members, is a type-2 cytokine and pro-
fibrotic factor. It is secreted by AECs and can promote
proliferation, differentiation, and collagen synthesis of
fibroblasts by binding to IL-17BR®%%!,

IL-27, a heterodimeric cytokine that belongs to the IL-
6/IL-12 family, is generally believed to be anti-fibrotic®*. It
inhibits the proliferation and differentiation of fibroblasts
via inactivating JAK/STAT and TGF-p1/Smad signaling.
In addition, IL-27 promotes fibroblasts to secrete MMP2
(matrix metalloproteinase 2) and MMP9, as well as inhi-
bits the expression of TIMP1 (tissue inhibitor of metal-
loproteinase 1) to resist pulmonary fibrosis®.

IL-32 can induce the production of several pro-
inflammatory mediators. Hong et al. showed that
recombinant IL-32y exerts an anti-fibrotic effect by
inhibiting integrin-mediated activation of FAK/paxillin, a
critical pathway in fibroblast activation®*,
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Macrophages

Under the effect of cytokines, macrophages are involved
in the inflammatory response and fibrotic diseases by
changing cell phenotypes’. Studies have shown that IL-8,
IL-33, and IL-10 contribute to pulmonary fibrosis by
targeting macrophages.

Macrophages infiltration occurs in IPF lungs. Macro-
phages migrate to lesion regions under the action of
chemokines. Polarization of M1 macrophages to M2
macrophages, promoted by IL-33 via IL-33/ST2 signal®,
is one of the pathological features in IPF. Besides, long-
term overexpression of IL-10 (considered to be anti-
fibrotic) can promote fibrosis by activating M2
macrophages®®®’.

Alveolar epithelia

Alveolar epithelial are critical cells in the pathogenesis
of pulmonary fibrosis. Therefore, cytokines that affect the
repair or apoptosis of alveolar epithelia have a definite
effect on the development of pulmonary fibrosis. The
activated Wnt/p-catenin signaling pathway induces type II
alveolar cells (ATIIs) to secrete IL-1P, which enhances
TGF-p signaling and promotes the release of IL-6 . IL-
1B and IL-6 induce EMT to promote fibrosis via TGF-f3
signaling and STATS3 signaling, respectively®®®’. IL-1pB
also induces epithelial wound repair™.

In bleomycin mice models, endogenous IL-6 regulates
ATIIs through STAT3/Akt signaling in an autocrine or
paracrine manner. It originates from ATIIs at the
inflammatory stage after bleomycin administration.
Blocking IL-6 at this stage accelerates pulmonary fibrosis,
possibly by enhancing apoptosis of ATIIs>*,

In vitro evidence suggested that IL-18 and IL-17A both
induce EMT**!, Also, in pulmonary fibrosis, IL-22 (an
anti-inflammatory cytokine of the IL-10 family) exerts an
anti-fibrotic effect via inhibiting EMT by targeting
alveolar epithelia, which is the only target cell type of IL-
22 in the lung”>*.

Other types of cells

In addition to the target cells described above, other
types of cells can also be targeted by interleukins and
affect the progression of pulmonary fibrosis’. For
example, IL-8, secreted by mesenchymal progenitor cells
(MPCs), promotes MPCs of IPF lungs to proliferate, dif-
ferentiate and migrate in an autocrine manner. Besides,
IL-8 stimulates macrophages to migrate to the fibroblastic
foci through receptors CXCR1/2%.

IL-12 (a type-1 cytokine) may induce the transformation of
Th2 cells to Thl cells, thereby upregulating IFN-y expres-
sion, inhibiting collagen production by fibroblasts to suppress
fibrosis™. IL-33 from fibroblasts and innate immune cells
was found to increase IL-13 production by Th2 cells, mac-
rophages, and type II congenital lymphocytes (ILC2) to
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promote lung fibrosis”’. Besides, in vivo or in vitro studies
demonstrated that IL-25 targets [LC2, while IL-23 and IL-27
(members of the IL-6/IL-12 family) target T lymphocytes to
regulate pulmonary fibrosis”®* ', The specific mechanisms
are listed in Table 2.

Conclusion and future perspectives

In vivo and in vitro studies have shown that altered
interleukin levels participate in the formation and devel-
opment of pulmonary fibrosis by regulating inflammation,
immune response, autophagy, senescence, EMT, etc. (Fig.
1). And the target cells of interleukins are mainly fibro-
blasts, macrophages, and epithelial cells (Table 3).

Most interleukins exert either anti-fibrotic or pro-
fibrotic effects, whereas few show a dual role or are still
controversial as we mentioned above. The sources, signal
pathways, and target cells of interleukins, as well as their
stability and metabolism in pulmonary fibrosis, need to be
clarified. Also, it is important to keep the experimental
conditions consistent with previous studies, so that the
results and conclusions are comparable. Moreover, some
studies were using interleukin overexpressing transgenic
mice to investigate the role of a particular interleukin in
pulmonary fibrosis, however, the extreme abundance of
an individual factor will affect the entire cytokine network
and immune regulation, the results from such models
may therefore not totally reflect the real state.

Despite the effects of interleukin-targeted treatment on
experimental pulmonary fibrosis, clinical applications are
lacking and unsatisfactory. Phase II clinical trials
(NCT01266135; NCT01629667; NCT01872689;
NCT02345070) showed that although IL-13 monoclonal
antibodies QAX-576, Tralokinumab, and Lebrikizumab
had acceptable safety and tolerability, and Romilkimab
(SAR156597, a bispecific Ig-G4 antibody that binds and
neutralizes both circulating IL-4 and IL-13) appeared to
reduce the occurrence of acute exacerbations in IPF
patients, none of these drugs reached the expected
efficacy'®* %%, These clinical trials suggest that interven-
ing in one type of interleukins with similar functions in
IPF may not be enough to stop the development of
fibrosis as it involves a complex network of regulation
mechanisms. Intervening interleukins combined with
other existing therapy (add-on trial) or targeting inter-
leukins affecting multiple cells/with different functions at
the same time may be one of the future directions. For
example, therapies that inducing IL-22 production to
promote lung epithelial regeneration and using IL-12 to
inhibit collagen production by fibroblasts may be able to
help improve pulmonary fibrosis. VEGF, FGF, and PDGF
signaling pathways or Wnt/B-catenin signaling pathways
may be targeted in synergy with ILs. Furthermore, the
intervention time is critical as some interleukins play
different roles at different stages. These should be tested



She et al. Cell Death Discovery (2021)7:52

Table 3 Target cells of interleukins in pulmonary fibrosis.

Target cell Interleukins

Fibroblasts IL-1q, IL-1B, IL-4, IL-6, IL-7, IL-11, IL-13, IL-18, IL-
25, IL-27, IL-32y, IL-37
Mesenchymal stem cells  IL-8

Alveolar epithelial cells IL-18, IL-6, IL-17A, IL-18, IL-22

Macrophages IL-4, IL-6, IL-8, IL-10, IL-13 1I-33
T cells IL-12, IL-23, IL-27, IL-33
ILC2s IL-25

in experimental animal models first before going to the
clinical setting.
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