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Single-cell analysis reveals the intra-tumor
heterogeneity and identifies MLXIPL as a
biomarker in the cellular trajectory of
hepatocellular carcinoma
Xiao Dong1, Fan Wang1, Chuan Liu1, Jing Ling1, Xuebing Jia1, Feifei Shen1, Ning Yang2, Sibo Zhu3, Lin Zhong4 and
Qi Li1

Abstract
Hepatocellular carcinoma (HCC) is a globally prevailing cancer with a low 5-year survival rate. Little is known about its
intricate gene expression profile. Single-cell RNA sequencing is an indispensable tool to explore the genetic
characteristics of HCC at a more detailed level. In this study, we profiled the gene expression of single cells from
human HCC tumor and para-tumor tissues using the Smart-seq 2 sequencing method. Based on differentially
expressed genes, we identified heterogeneous subclones in HCC tissues, including five HCC and two hepatocyte
subclones. We then carried out hub-gene co-network and functional annotations analysis followed pseudo-time
analysis with regulated transcriptional factor co-networks to determine HCC cellular trajectory. We found that MLX
interacting protein like (MLXIPL) was commonly upregulated in the single cells and tissues and associated with a poor
survival rate in HCC. Mechanistically, MLXIPL activation is crucial for promoting cell proliferation and inhibits cell
apoptosis by accelerating cell glycolysis. Taken together, our work identifies the heterogeneity of HCC subclones, and
suggests MLXIPL might be a promising therapeutic target for HCC.

Introduction
Primary liver cancer (PLC) is the seventh most pre-

valent cancer and the third leading cause of cancer-related
death worldwide1. Hepatocellular carcinoma (HCC) is the
dominant pathological type, which accounts for 75–85%
of PLC. HBV, HCV, aflatoxin B1, and alcohol abuse are
the major risk factors for HCC2,3. Therapeutic strategies
have gradually improved the overall survival (OS) rate of
HCC patients, but the prognosis is still poor3,4. Targeting
drugs, such as the multi-tyrosine kinase inhibitors

sorafenib and regorafenib, have shown excellent ther-
apeutic outcomes5,6. However, HCC patients are prone to
suffer intrahepatic tumor recurrence and distant metas-
tasis after surgery7. These characteristics of HCC are
maybe caused by a small number of tumor cell sub-
populations, which carry more aggressive genetic or
phenotypic alterations, thereby escaping conventional
detection4.
Single-cell sequencing is an emerging technology that

provides genomic, transcriptomic, and epigenetic infor-
mation of single cells. It allows heterogeneous cells to be
sequenced individually to reveal the unique and subtle
changes of the population and facilitates the discovery and
definition of new cell subtypes8. Researchers have per-
formed single-cell RNA sequencing (scRNA-seq) of liver
tissue to construct human liver cell maps9,10. In doing so
they have found heterogeneity of in the HCC tumor
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microenvironment (TME) and identified tumor stem
cells11,12. For example, Ma et al.11 found that hetero-
geneity in malignant liver cells contributes to the diverse
landscape of the TME. Ho et al.13 identified a CD24
+/CD44+ enriched cell subpopulation within EPCAM+
cells, which indicates the presence of a novel stemness-
related subclone in HCC.
In this study, we characterize differences between

identified subcellular populations and highlight possible
functional target genes. First, we identified the unique cell
subclones in HCC tumor populations and then measured
their corresponding biomarkers using differentially
expressed genes (DEG) analysis. Hub-gene network ana-
lysis and functional annotations of different subpopula-
tions participating in biological pathways were calculated
to reveal their downstream implications. Next, we infer
the cellular trajectory, a route depicting normal liver cells
and HCC subclones, which may reflect the hepatocellular
transition to malignancy. We discover multiple tran-
scription factors (TF) that dominate this transition path-
way. Among them, MLX interacting protein like
(MLXIPL, Chrebp) was the most remarkable TF, closely
associated with the prognosis of HCC. Our subsequent
experiments demonstrated that the malignant biological
behaviors of MLXIPL were mainly due to an increase in
aerobic glycolysis. Thus, our study reveals an integrated
transcriptomic landscape and identified a specialized
biomarker for the future treatment of HCC.

Results
Clinicopathological feature of patients and the filtration of
single cells
A total of six HCC patients were recruited and the

clinicopathological features are shown in Supplementary
Table 1. We obtained single cells of their liver specimens
and used fluorescence-activated cell sorting (FACS) ana-
lysis to ensure the selection of living cells (Supplementary
Fig. 1). After rigorous quality control and step-by-step
filtration from 521 libraries, we obtained 405 single cells
qualified for further analysis (Supplementary Table 2). A
total of 21,459 genes (of 22,336 genes) that passed the
filtration were used for analysis in further experiments.
The mean number of qualified genes per cell and mean
library size were 4939 (from 2000 to 10,891) and 44,408
(from 10,000 to 273,371), respectively (Supplementary Fig.
2A). The number of qualified genes per cell and library
size from each patient are shown in Supplementary Fig.
2B, C.

Cell subpopulations in the livers of HCC patients
Clustering analysis identified three clusters in para-

tumor tissues, including subclones of hepatocyte 1 (clus-
ter 0), hepatocyte 2 (cluster 1), and Kupffer cell (cluster 2)
(Fig. 1A). To distinguish the cell phenotypes, we selected

the top 10 DEGs from the three identified clusters using a
heatmap (Fig. 1B).
The t-distributed stochastic neighbor embedding (t-

SNE) plot revealed seven main clusters in the HCC tis-
sues, including five HCC subpopulations (clusters 0–4), a
Kupffer cell subpopulation (cluster 5), and a cancer-
associated fibroblast subpopulation (CAFs, cluster 6) (Fig.
1C). We then profiled the top 10 DEGs of the identified
clusters from HCC tissues using a heatmap (Fig. 1D).
We further discriminated malignant cells from non-

malignant cells by inferring chromosomal copy-number
variations (CNV) based on transcriptomes. Chromosomal
deletions and amplifications among our cohort are indi-
cated in Fig. 2A, and the results showed the amplifications
of chromosomes 1, 8, and 17, and deletions of chromo-
somes 4, 11, and 16 of HCC single cells (Fig. 2A). The
inferred CNV profiles are almost consistent with that in
liver cancer from previously published studies14–16.
A t-SNE map showed cells clustered according to

individual tumor tissues, indicating patient-specific clus-
ters (Fig. 2B). Patient 1 (PT01) was dominated by sub-
population HCC2, and Patient 2 (PT02) was dominated
by subpopulation HCC0. When analyzing cell sub-
populations in other patients, we cannot identify sub-
populations that dominated over others. These results
demonstrate the intra-heterogeneity of HCC, as well as
the relatively little inter-tumor heterogeneity across
patients.

Gene co-network and functional annotation of HCC single-
cell subpopulations
To detect the functional abnormalities, which would

guide the direction of the next biological experiments, we
performed co-network and functional annotation analyses
based on Gene Ontology Biological Processes (GOBP)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
databases. The results showed that genes (CDK5R1,
NFASC, APC, and other cluster-specific DEGs) in HCC0
(cluster 0) were enriched. The upregulated genes were
related to cell morphogenesis signaling, and the down-
regulated genes were related to cell death (Fig. 3A and
Supplementary Fig. 3A). The results demonstrated that
genes (CASC3, CTNNB1, and other cluster-specific
DEGs) in HCC1 (cluster 1) were enriched in mesench-
yme development, Wnt signaling, and PI3K-Akt signaling.
The downregulated genes related to mRNA processing
(Fig. 3B and Supplementary Fig. 3B). Genes (ALDH5A1,
ATP5D, and other cluster-specific DEGs) in HCC2
(cluster 2) were enriched in threonine phosphorylation
and MAP kinase activity, and the downregulated genes
related to protein translation and oxidation (Figs. 3C and
S3C). Genes (CACNA1A, CACNA1B, CACNA1E,
ATP1A2, and other cluster-specific DEGs) in HCC3
(cluster 3) were associated with nutrient metabolism,
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including lipid metabolism, amino acid metabolism, and
energy metabolism disorder (cellular respiration and
oxidation phosphorylation) (Fig. 3D and Supplementary
Fig. 3D). Thus, we speculated that HCC3 (cluster 3)
exhibited widespread metabolic disorders. Genes (IL6R,
AHSG, and other cluster-specific DEGs) in HCC4 (cluster
4) were enriched in phosphatase activity and down-
regulated process related to immune disorders (Fig. 3E
and Supplementary Fig. 3E).

Cellular trajectory characteristics of single HCC cells
An unsupervised t-SNE plot revealed the distribution of

hepatocyte-derived cells, including HCC0–HCC4 and
hepatocytes. To investigate the HCC subpopulations cel-
lular trajectory, we applied Monocle R package approach.
We noted that the main cluster of HCC0 and hepatocytes
exhibited a highly merged pattern at origination. The
HCC single-cell trajectory starts from HCC0 (Fig. 4A).

We assumed the path had a tree structure, with a root
state of normal hepatocytes and HCC0, and a leave state
of other HCC subclones. The end of the main branch is
the HCC3 subclone, which is enriched in metabolic
disorder-related pathways (Figs. 3D and S3D). Having
identified the starting point of differentiation, we eluci-
dated the time of differentiation of each cell (unsupervised
pseudo-time). We then obtained the direction of the
trajectory in five HCC subclones as an order of
HCC0–HCC4 (Fig. 4C).
Based on the pseudo-temporal continuum profile, we

identified the TF (ALX4, HINFP, CEBPA, CEBPB,
DMBX1, MLXIPL, ONECUT1, and RBPJL) and depicted
the regulated kernel genes co-networks (Fig. 4D), which
were subjected to the metabolism disorders (Fig. 4E). The
plot showed the trends of expression profiles of eight TF
in different subclones as pseudo-time (Fig. 4F). The
single-cell trajectory-related TF and their regulated genes

Fig. 1 Singles cell subpopulations and specific DEGs identification in HCC tissues. A The t-SNE projected three main subclones of single cells
clusters from para-tumor tissues. Each cluster was labeled with Arabic number. B Heatmap of the normalized top 10 DEGs of single cells clusters in
three main subclones from para-tumor tissues. C The t-SNE projected seven main subclones of single cells clusters from HCC tissues. D Heatmap of
the normalized top 10 DEGs of seven main subclones in HCC tissues.
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are listed in Supplementary Table 3. Thus, our work may
lead to a comprehensive understanding the cellular
metabolism disorders on the paths of subpopulations
in HCC.

MLXIPL is associated with poor prognosis of HCC
A violin plot revealed an elevated expression level of

MLXIPL in the HCC cluster compared to the hepatocyte
cluster (Fig. 5A). Based on the mRNA and protein level in
the six patients used in this study, the expression level of
MLXIPL in cancer tissues was generally higher than in
normal liver tissues (Fig. 5B, C). Then, we performed
qPCR and immunohistochemical (IHC) analyses of 68
primary HCC tumor specimens and their adjacent normal
tissues. We observed that the levels of MLXIPL expres-
sion were substantially higher in the HCC samples than
those in their adjacent normal tissues (Fig. 5D–F). The
disease free and OS curve demonstrated that MLXIPL
low-expressing group had better survival rate than that of
the high-expressing group (Fig. 5G–H, P < 0.001 for both).
The association between MLXIPL expression and clinical
pathological characteristics was shown in Supplementary
Table 4. The Cox proportional hazards model was used
for univariate and multivariate analysis of OS and DFS
(Supplementary Tables 5 and 6). In univariate analysis of
OS and DFS, MLXIPL expression, tumor size, and TNM
stage emerged as significant independent prognostic fac-
tors (Supplementary Table 5, P < 0.05 for all). Then,
multivariate analysis revealed that MLXIPL expression,
tumor size, and TNM stage (Supplementary Table 6, P <
0.05 for all) were independent prognostic factors for DFS.
Vessel invasion and MLXIPL expression (Supplementary
Table 6, P < 0.05 for all) were independent prognostic

factors for OS. Thus, these results suggest that MLXIPL is
likely involved in HCC progression and correlated with a
poor prognosis in HCC.
Similar results appeared in immortalized liver cells and

liver cancer cells. The expression of MLXIPL in HCC cell
lines (SMMC-7721 and HepG2) was generally higher than
that in immortalized liver cells L02 from mRNA and
protein levels (Fig. 5I, J). These results indicate that high
expression of MLXIPL is associated with poor prognosis
of HCC.

MLXIPL promotes HCC proliferation and inhibits its
apoptosis in vitro
To explore the biological importance of the MLXIPL in

HCC, MLXIPL siRNAs and overexpressed (OE) plasmids
were transiently transfected into SMMC-7721 and HepG2
cells. The interference efficiency of the OE MLXIPL
plasmids and MLXIPL siRNAs was verified by quantita-
tive reverse transcription-quantitative polymerase chain
reaction (PCR) and western blot analysis (Fig. 6A, B). To
explore the effect on HCC proliferation and apoptosis, we
performed the CCK8 and flow cytometry experiments.
Transfected cells were used to examine their cell pro-
liferative abilities, according to the CCK8 assay on days
1–5. The results showed that OE MLXIPL plasmids sig-
nificantly promoted cell proliferation compared with the
control, and MLXIPL siRNAs inhibited the proliferation
of HCC cells (Fig. 6C). Quantitative apoptosis assay
demonstrated that OE MLXIPL plasmids inhibited
apoptosis compared with the control, and MLXIPL siR-
NAs promoted the apoptosis of HCC cells (Fig. 6D).
These results indicate that MLXIPL promotes HCC pro-
liferation and inhibits its apoptosis in vitro.

Fig. 2 Intra-tumoral heterogeneity at the single-cell transcriptional levels. A Chromosomal landscape of copy-number variations (CNV)
distinguishes malignant from nonmalignant cells at transcriptomes. Red, amplifications; blue, deletions. B A t-SNE plot of all the 405 single cells from
six liver cancer patients (patients indicated by colors). Patients’ ID was named as PT0X.

Dong et al. Cell Death Discovery            (2021) 7:14 Page 4 of 13

Official journal of the Cell Death Differentiation Association



Fig. 3 Hub-gene co-network and functional annotation of HCC0–4 (clusters 0–4). A Hub-gene co-network and GOBP functional analysis of
HCC0 (cluster 0). B Hub-gene co-network and GOBP functional analysis of HCC1 (cluster 1). C Hub-gene network and GOBP functional analysis of
HCC2 (cluster 2). D Hub-gene network and GOBP functional analysis of HCC3 (cluster 3). E Hub-gene network and GOBP functional analysis of HCC4
(cluster 4).
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MLXIPL elevates the activity of cell glycolysis in vitro
Studies have demonstrated that MLXIPL is responsible

for increased levels of cell glycolysis17,18. The deletion of
MLXIPL can decrease the gene expression of key glyco-
lytic enzymes19. However, the glucose metabolism reg-
ulation of MLXIPL in HCC is not completely understood.
We overexpressed or knocked down MLXIPL in HCC
cells using OE plasmids or siRNAs, respectively. The
results showed that OE MLXIPL significantly increased

the glucose uptake and lactate production rates of HCC
cell compared with control cells, whereas inhibiting
MLXIPL decreased the glucose uptake and lactate pro-
duction rates of HCC cell (Fig. 7A, B). Similar results
appeared in kinetics of cytoplasmic pyruvate production
experiment (Fig. 7C). In addition, MLXIPL also increased
extracellular acidification rate (ECAR) in HCC cells,
which indirectly reflected overall glycolytic flux (Fig. 7D).
Usually, genes promote cancer cell glycolysis by

Fig. 4 Cellular trajectory pattern and its major driving genes. A An unsupervised t-SNE plot showed sporadic distributed five HCC clusters in HCC
tissues, and hepatocellular cells in para-tumor tissues. B Cellular trajectory of five HCC cells subpopulations and para-tumor hepatocytes. The t-SNE
plot revealed the distribution of single cells determined by Monocle. C The direction of the cellular trajectory determined by unsupervised pseudo-
time. D Regulatory co-networks of cellular trajectory-related transcription factors and their regulated genes. Genes in yellow circles were the most
critical transcription factors. E GOBP functional annotation related to the cellular trajectory. F Plots showed the trends of expression profiles of eight
key transcription factors in different subclones as pseudo-time.
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upregulating the expression of key glycolysis enzymes.
The results consistently revealed that most of the key
glycolytic enzymes, glucose transporter type 1 (Glut1)
mRNA, Pyruvate kinase muscle isozyme M1 and M2
(PKM1 and PKM2) mRNA, and labeling recombinant
lactate dehydrogenase A(LDHA) mRNA and protein
levels were upregulated upon MLXIPL overexpression in
both SMMC-7721 and HepG2 cells (Fig. 7E, F). These
results indicate that MLXIPL can increase glycolysis.

Discussion
Sequencing technologies are now high throughput,

enabling simultaneous sequencing of thousands to mil-
lions of genetic molecules20,21. Traditional sequencing
approaches tend to obscure the underlying heterogeneity

within phenotypically defined cell subpopulation. The
results from single-cell sequencing facilitate comparisons
between cells, depicting specimen heterogeneity, and
enabling the discovery of novel subpopulations, which has
obvious advantages22.
Previous studies have showed the heterogeneity in

normal liver. MacParland et al.10 identified six distinct
hepatocyte populations and two intrahepatic macrophage
populations by scRNA-seq approaches. Zheng et al.23

determined the transcriptional profiles of liver immuno-
logical T cells with assembled T-cell receptor sequences,
to identify 11 T-cell subsets23. In this study, we defined
two hepatocyte subpopulations in hepatic tissues. The
evidence indicated that hepatocyte heterogeneity exists in
human liver samples, consistent with the results of

Fig. 5 MLXIPL, as a potential biomarker, is correlated with a poor survival rate of HCC patients. A A violin plot revealed the mRNA level of
MLXIPL in HCC clusters comparing to hepatocyte clusters. B, C Quantitative real-time PCR and western blotting analysis were performed to detect
MLXIPL protein expression in six patients of HCC and para-tumor tissues used in single-cell sequence. ns P > 0.05; *P < 0.05; **P < 0.01. D PCR analysis
were performed to detect MLXIPL mRNA expression in 68 patients of HCC and para-tumor tissues used in single-cell sequence. ***P < 0.001. E, F
Representative immunohistochemistry pictures and IHC score of the MLXIPL protein expression. *P < 0.05. G, H Kaplan–Meier survival curve based on
different expression levels of MLXIPL. J MLXIPL expression was significantly increased in HCC cells compared to L02 cells in mRNA level. ***P < 0.001.
I MLXIPL protein was relatively overexpressed in HCC cells compared to L02 cells in protein level.
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MacParland et al.10. Our findings raised the possibility of a
less localized and a more heterogeneous model of hepa-
tocytes in the normal liver.
Heterogeneity is also a typical feature of tumors, which

means that tumor cells undergo multiple proliferation and
differentiation events, resulting in different tumor char-
acteristics such as growth rate, invasiveness, metastatic
capacity, and immune resistance, ultimately leading to the
ineffectiveness of therapies and causing great challenges
for treatment24,25. The genomic instability of HCC cells is
an important reason for their high heterogeneity. HCC
has a wide range of gene abnormal profiles and lacks clear
characteristics of genetic change, which is different from
other malignant tumors26. Gao et al.27 found that ten
HCC patients displayed intra-tumor mutational hetero-
geneity and the mean occurrence of heterogeneous
mutations was 39.7%. Bidkhori et al.28 identified three

primary HCC subtypes and characterized heterogeneity in
HCC by TCGA transcriptomics data sets. These findings
were similar to our observations, in which we identified
five subpopulations of single HCC cells that were different
in genes expression levels, enriched pathways, and co-
networks. We depicted t-SNE plots based on patient of
origins, and the results showed a donor effect, which
suggests an inter-tumor heterogeneity. In addition, each
patient also contains a small amount of other cell sub-
populations, suggesting an intra-tumor heterogeneity.
Cells can exhibit a series of different states (such as

dynamic changes in gene expression, etc.) in various
biological systems, and these states are transformed in a
certain time sequence. When different cell subtypes are
stimulated or disturbed externally or internally, a series of
changes may occur in the expression of genes, presenting
a series of state transitions. It may help to explain why one

Fig. 6 MLXIPL promotes HCC proliferation and inhibits apoptosis in vitro. A, B The transfection effect of overexpressed MLXIPL plasmids or
MLXIPL siRNAs was measured by quantitative real-time PCR and western blotting. **P < 0.01; ***P < 0.001. C The proliferation ability in indicated cells
was detected by the CCK8 assay after MLXIPL overexpression and knockdown separately in HCC cells. *P < 0.05; **P < 0.01; ***P < 0.001. D Apoptosis
analysis in indicated cells was detected after MLXIPL overexpression and knockdown separately in HCC cells. Representative data are featured,
presenting the population of living cells (Annexin V‑FITC−/PI−) in the left lower quadrant, early apoptotic cells (Annexin V‑FITC+/PI−) in right lower
quadrant, late apoptotic cells (Annexin V‑FITC+/PI+) in the right upper quadrant and necrotic cells (Annexin V‑FITC−/PI+) in the left upper quadrant.
ns P > 0.05; **P < 0.01; ***P < 0.001.
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subtype can have different states. In this study, we noted
that HCC0 has similar cellular trajectory to hepatocytes,
which means they are in similar differentiation states.
Studying the difference between the two clusters will
provide new insights into liver carcinogenesis.
The liver is the foremost factory for the metabolism of

nutrients, and various metabolic disorders occur in HCC
patients29,30. In this study, we found that HCC3 subclone
is enriched in metabolic disorder-related pathways.
Pathway enrichment analyses revealed that metabolic
disorder is responsible for HCC3 cell fate. Three major
nutrient metabolism disorders, particularly lipids and
lipoproteins disorders, were associated with the tumor
development in HCC. Results of some biological studies
can explain this phenomenon. For example, Lai et al.31

demonstrated that stearoyl-CoA desaturase synthesizes
inhibited Wnt signaling, in part by acting on the stability
of low-density lipoprotein receptor-related proteins 5 and
6. Lipid metabolism, identified by DEG analysis, has also
been related to the inflection point in tumor evolution.
UGT1A1, the most abundant UGT1A isoform, is a
bilirubin-glucuronidating enzyme associated with the

occurrence of HCC32. Hanczko et al.33 demonstrated that
Taldo1-deficient mice spontaneously developed HCC
preceded by the occurrence of steatosis, steatohepatitis,
and cirrhosis, suggesting the pentose phosphate pathway
is crucial for liver cancer.
Importantly, we noticed that several TF appeared to be

particularly important in single cellular trajectory,
including ONECUT1, DMBX1, RBPJL, HINFP, MLXIPL,
ALX4, ONECUT1, and CEBPA/B. Researchers have ver-
ified that the expression of ONECUT1 was a suppressor
gene in HCC34,35. Reebye et al.36 demonstrated that the
upregulation of CEBPA can inhibit cell growth in HCC. In
this study, we explored MLXIPL, a potential biomarker of
HCC to better understand the molecular mechanisms of
the differentiation to HCC. The results showed that
MLXIPL was highly expressed in HCC tissues and cells,
where it promoted the proliferation of HCC cells and
inhibited its apoptosis, demonstrating that MLXIPL is an
oncogene for prognosis in HCC.
The Warburg effect has been widely recognized as a

hallmark of cancer37. Tumors are usually characterized by
altered glucose flux from the tricarboxylic acid cycle to

Fig. 7 MLXIPL promotes HCC cell glycolysis in vitro. A SMMC-7721 and HepG2 cells transfected with overexpressed MLXIPL plasmids or MLXIPL
siRNAs were cultured for 24 h for glucose uptake assays. *P < 0.05; **P < 0.01. B Analysis of the production of lactate in SMMC-7721 and HepG2 after
transfected with overexpressed MLXIPL plasmids or MLXIPL siRNAs. *P < 0.05. C The transfected cells were lysed and the cytoplasmic levels of
pyruvate were detected. *P < 0.05; **P < 0.01. D The overall glycolytic flux of transfected SMMC-7721 and HepG2 cells was analyzed by ECAR using
seahorse instrument. E, F Quantitative real-time PCR and western blot were performed to analyze the levels changes of glycolytic key enzymes, when
transfected with overexpressed MLXIPL plasmids in SMMC-7721 and HepG2 cells. ns P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001.
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glycolysis. Increased glycolysis in HCC is often correlated
with malignant biological behaviors38. It is acknowledged
that glycolysis occurs in HCC. However, the mechanism
driving glycolysis remains unknown. A study has
demonstrated that MLXIPL is responsible for the increase
of glycolytic mRNAs in response to excess carbohydrates.
Elevated MLXIPL level is associated with the increased
insulin sensitivity39. Hence, we focused on the effect of
MLXIPL on aerobic glycolysis of HCC in subsequent
studies. As expected, the results showed that MLXIPL is a
positive regulator of glycolysis in HCC cells.
In summary, our scRNA sequencing workflow depicts a

valuable framework for studying HCC. MLXIPL exhibits
malignant biological behavior by activating HCC cell
glycolysis. This study provides a better understanding
toward the molecular mechanism of glycolysis in HCC,
and highlights MLXIPL as a potential therapeutic target
in HCC.

Materials and methods
Single-cell collection
Tissues used in this research were obtained from six

patients pathologically diagnosed with HCC, at the
Comprehensive Cancer Center of Shanghai General
Hospital of Shanghai Jiao Tong University School of
Medicine. The study was approved by the research
institutional review board of our hospital, and all parti-
cipants signed the informed consent. Tumor and para-
tumor hepatic tissues were collected and immediately
stored in sterile Dulbecco’s modified Eagle medium
(DMEM) (Thermo Fisher Scientific), following the pro-
cess flow shown in Supplementary Fig. 2D. Then, the
tissues were transferred into pre-warmed DMEM med-
ium containing 2 mg/ml collagenase P (Roche) and 10 U/
µl DNase I (Roche). We gently pipetted the mixture and
then digested for 60 min at 37 °C to fully release single
cells. The cell suspension solution was filtered and
centrifuged. The pellet was resuspended and 2 mM
ethylene diamine tetraacetic acid in phosphate-buffered
saline. We employed FACS to ensure the living cell
selections. The majority of CD45+ leukocytes were
removed using Dynabeads (Thermo Fisher Scientific,
USA) from the cell suspension.

ScRNA-seq library preparation and sequencing
ScRNA-seq was performed according to the manu-

facturer’s instructions of Smart-seq 240 (Supplementary
Fig. 2E). Reverse transcription was performed using
Superscript reverse transcriptase (Takara) and locked
TSO oligonucleotides (Exiqon). Full-length cDNA pre-
amplification was conducted with 22 cycles of quantitative
PCR amplification and HiFi-HotStart ReadyMix (KAPA
Biosystems). Subsequently, Ampure XP beads (Beckman)
were used for the purification. An Agilent high-sensitivity

DNA chip was used to ensure the size and distribution of
the cDNA library. Barcoded libraries were fragmented and
tagged using a Nextera XT DNA preparation kit (Illu-
mina). Then, we used reagents from the Nextera XT kit to
amplify adapter-ligated fragments. Pooled libraries with
unique N5-N7 barcodes were sequenced using a HiSeq
2500 instrument (Illumina) and single-end 50-bp read
flow cells.

ScRNA-seq data preprocessing and quality control
Fastq reads were initially filtered using Trimmomatic.

The remaining clean reads were aligned to UCSC human
genome 19 using Hisat 2. Next, we used Feature Counts
software to quantify the expression of each gene, and
counts were obtained for each sample. The expression
level of each gene was converted to a transcript per mil-
lion value. Then, the expression values were log-
normalized. The strict filtration was then applied (Sup-
plementary Table 2).

Cell clustering and DEG analyses
We carried out robust clustering of unselected densities

and determined that the cells in the same cluster acted as
the same subtype, based on key gene mapping of different
cell types using “Seurat” package (V3.1.2). To assign gene
markers for single-cell clusters, DEGs were identified by
calculating fold-change and P values between different
groups using t-test method. We set a 1.5-fold cut-off of
fold change and a false positive rate to P < 0.05, as the
selection criteria. This was determined using the “stats”
function in R. DEGs heatmaps were generated with
heatmap R package (V1.0.12).

Gene co-expression network (co-network) and pathway
enrichment analyses
We constructed the network adjacency between genes, i

and j, according to Pearson’s correlation between their
expression profiles. Then, we obtained the co-network
adjacency matrix by computing the correlation co-
efficient. Next, we selected the genes with high correla-
tions (0.8 or greater) to draw a hub-gene co-expression
network graph using Cytoscape version 3.6.1.
The pathway enrichment analysis was based on GOBP

and KEGG profiling by Metascape (http://metascape.org/)
using P value cut-off 0.01.

Single-cell trajectory analysis
We used diffusion mapping and Monocle to perform a

pseudo-time analysis. Cells were chosen based on Seurat
cluster identification results. Then, the key genes were
obtained through differentialGeneTest Function in
Monocle R package and filtered by the significance of q <
0.01 as cut-off. The TF from key genes were further
selected by dplyr R package and ranked by q value to
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build a co-expression regulatory network as above
described.

Cell culture and transfection
L02, SMMC-7721, HepG2 cells were maintained in

DMEM supplemented with 10% fetal bovine serum
(Hyclone). All of the cell lines were from ATCC. Cells
used in the experiments were authenticated by using short
tandem repeat profiling.
HCC cells were plated at a density of 2 × 105/well in a

six-well plate 24 h before transfection. Transfection was
performed using Lipofectamine 2000 transfection reagent
(Thermo Fisher), according to the manufacturer’s proto-
col. Transfection efficiency was verified using quantitative
reverse transcription-quantitative PCR (qRT-PCR) and
western blotting.

Quantitative reverse transcription-quantitative PCR (qRT-
PCR)
Total RNA was extracted from transfected cells using

the TRIzol reagent (Invitrogen), and the concentration
was measured by NanoDrop1000 Spectrophotometer
(Agilent). cDNA was reversed transcribed by the Super-
script RT kit (TOYOBO) according to the manufacturer’s
instructions. qRT-PCR amplification was performed using
the SYBR Prime Script qRT-PCR kit (Takara). All quan-
tization was normalized to the level of internal control
GAPDH. Primer sequences are shown in Supplementary
Table 7.

Western blot analysis
Tissues and cells were lysed with a modified buffer, and

western blotting was performed as described previously41.
The primary antibodies were as follows: MLXIPL (Abcam,
ab92809), GLUT1 (Abcam, ab115730), PKM1 (Abcam,
ab116271), PKM2 (Abcam, ab137852), LDHA (Abcam,
ab84716), and β-actin (Abbkine, A01011). And images
were captured using an Amersham Imager 600 System
(GE Healthcare).

Immunohistochemistry
All the specimens embedded in paraffin blocks were cut

at 3–4 μm and air-dried overnight. The tissue sections
were deparaffinized, rehydrated, and subjected to heat-
induced antigen retrieval with sodium citrate buffer
(10 mM sodium citrate, 0.05% Tween-20 (pH 6.0)), which
was followed by incubation with 3% hydrogen peroxide
for 5 min to block endogenous peroxidase activity. Sec-
tions were then incubated with the appropriate primary
antibody and were sequentially incubated with biotiny-
lated goat anti-mouse IgG. For signal detection, the
VECTASTAIN ABC kit (Vector Laboratories) was used
according to the manufacturer’s instructions.

CCK8 assay
In all, 1000 cells were plated in 96-well plates in 100 μl

media. 10 μl Cell Counting Kit (CCK8) (Yeasen) solu-
tion was added into medium for 30 min before mea-
suring absorbance at a wavelength of 450 nm by a
microplate reader (Thermo Scientific) daily for con-
tinuous 5 days.

Apoptosis analysis
Transfected cells were washed twice with ice-cold

water, and stained with 5 μl of annexin V-FITC and 1 μl
propidium iodide (PI, 1 mg/ml) for 15 min, and subjected
to analysis on a flow cytometer (BD Biosciences).

Glucose uptake and lactate production
SMMC-7721 and HepG2 cells transfected with

MLXIPL OE plasmid or siRNAs were seeded in 12-well
plates and incubated for 24 h in 37 °C incubator. For
glucose uptake and lactate production assays, the culture
medium was replaced with 500 μl DMEM. Glucose assay
kit (Sigma) and lactate assay kit (Sigma) were applied
according to the manufacturer’s instructions to detect cell
lactate and glucose levels, respectively. All data were
normalized by cell numbers.

Cytoplasmic pyruvate assay
SMMC-7721 and HepG2 cells transfected with

MLXIPL OE plasmid or siRNAs were seeded in 12-well
plates and incubated for 24 h. After transfected cells lysed,
the pyruvate levels in the cell lysates were measured by
the pyruvate assay kit (Sigma, MAK071) according to the
manufacturer’s instructions.

Extracellular acidification rate (ECAR)
The Seahorse XF-96 Extracellular Flux Analyzer

(Seahorse Bioscience) was used to measure the ECAR.
ECAR was examined with a Seahorse XF glycolysis
stress test kit according to the manufacturer’s protocols.
In brief, cells (1 × 104 cells/well) were seeded into a
Seahorse XF-96 cell culture plate. After baseline mea-
surements, glucose, oligomycin, and 2-DG were
sequentially added into each well at the time points.
ECAR data were assessed by Seahorse XF-96 Wave
software and shown in mpH/min.

Statistical analysis
All data were expressed as means ± standard error of the

mean, and the statistical analysis was performed using
GraphPad Prism v8.0. Comparisons between groups were
performed using a one-way ANOVA or two-tailed Stu-
dent’s t test. The Kaplan–Meier method was used to test
the OS difference between two groups. A P value < 0.05
was considered statistically significant.
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