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Cell death mediated by genetically defined signaling pathways influences the health and dynamics of all tissues, however the tissue
specificity of cell death pathways and the relationships between these pathways and human disease are not well understood. We
analyzed the expression profiles of an array of 44 cell death genes involved in apoptosis, necroptosis, and pyroptosis cell death
pathways across 49 human tissues from GTEx, to elucidate the landscape of cell death gene expression across human tissues, and
the relationship between tissue-specific genetically determined expression and the human phenome. We uncovered unique cell
death gene expression profiles across tissue types, suggesting there are physiologically distinct cell death programs in different
tissues. Using summary statistics-based transcriptome wide association studies (TWAS) on human traits in the UK Biobank
(n ~ 500,000), we evaluated 513 traits encompassing ICD-10 defined diagnoses and laboratory-derived traits. Our analysis revealed
hundreds of significant (FDR < 0.05) associations between genetically regulated cell death gene expression and an array of human
phenotypes encompassing both clinical diagnoses and hematologic parameters, which were independently validated in another
large-scale DNA biobank (BioVU) at Vanderbilt University Medical Center (n= 94,474) with matching phenotypes. Cell death genes
were highly enriched for significant associations with blood traits versus non-cell-death genes, with apoptosis-associated genes
enriched for leukocyte and platelet traits. Our findings are also concordant with independently published studies (e.g. associations
between BCL2L11/BIM expression and platelet & lymphocyte counts). Overall, these results suggest that cell death genes play
distinct roles in their contribution to human phenotypes, and that cell death genes influence a diverse array of human traits.
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INTRODUCTION
Regulated cell death is an essential phenomenon during the
development of multicellular organisms [1–3] and dysregulation
of cell death is a prominent feature of organismal aging [2, 4].
Three well characterized forms of cell death that rely upon
genetically encoded, hierarchical signaling pathways are apop-
tosis, necroptosis, and pyroptosis [5]. Apoptosis can be elicited
via extrinsic or intrinsic cellular perturbation; as a result, there is
both “extrinsic” apoptosis regulated by caspases and “intrinsic”
apoptosis regulated by BCL-2 family members which regulate
mitochondrial membrane permeability [6, 7]. Necroptosis is a
regulated form of cellular necrosis which converges on the
assembly of an MLKL pore on the cell membrane [8, 9].
Pyroptosis is an immunogenic form of cell death that is
canonically reliant upon the formation of the NLRP3 inflamma-
some and the release of IL-1β and IL-18 via gasdermin
membrane pores [10]. Apoptosis, necroptosis, and pyroptosis
all ultimately result in cellular demise; however, their mechan-
isms and functions are unique.

Three major regulated cell death modalities are implicated in
health and disease
Regulated cell death maintains homeostasis in diverse organ
systems and dysregulation of cell death has pathophysiological
implications [11, 12]. For instance, neurodegenerative disease is
associated with inappropriate neuronal cell death and inflamma-
tory cell death pathways [13]. Aberrant upregulation of necropto-
tic and pyroptotic inflammatory cell death within the bone
marrow environment impair hematopoiesis and drives bone
marrow failure syndromes [14–16]. Upregulation of pro-survival
pathways and the downregulation of pro-death signals are a
hallmark of neoplasms [17]; mouse models with both systemic
and tissue-specific deficiencies in key apoptotic signaling reg-
ulators have illustrated a propensity for the development of
malignancy [18–20]. Apoptotic cell death controls proper lym-
phocyte development and destruction of autoreactive lympho-
cytes, and defects in apoptotic destruction of these autoreactive
lymphocytes result in autoimmune diseases [21]: TNFR-dependent
extrinsic apoptosis is crucial for the negative selection of
autoreactive thymocytes, and antiapoptotic BCL2 family members
play a role in regulation of this process [22–25]; BCL2 family
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signaling contributes to selection against polyreactive B cells
[26–28]. The Mendelian disease autoimmune lymphoproliferative
syndrome (ALPS) arises from defects in the genes FAS, CASP8, and
CASP10, which coordinate the Fas-dependent apoptosis that is
critical for thymocyte development [29–31]. Defects in cell death
regulation contribute to a diverse array of pathologies that can be
tissue- and context-specific.

Tissue-specific transcriptional regulation of cell death has
implications for human disease
Diverse functions of various tissues dictate distinct cell death
behavior [32, 33] despite developing from identical germline DNA.
For example, skin cells must be resistant to cell death to perform
their barrier function, whereas the dynamic regulation required of
the hematopoietic system dictates a similarly adaptable regulation
of cell death to maintain homeostasis. This context dependency is
established in part by transcriptional regulation of cell death
pathway members, which operate downstream of transcription
factor programs including Rel/NF-kappaB [34], p53 [35], interferon
regulatory factors, among others [10, 36].
Another context-dependent feature of cell death pathway

regulation is tissue-specific gene expression patterning. Generally,
tissue-specific gene expression patterning is transcription factor
independent [37] and highly variable across individuals in a
population [38, 39]. This variation in expression may explain the
incidence of disease across a large population of individuals and/
or help us understand disease susceptibility across these
populations [40], and is critical for untangling the tissue-specific
functions of genes and pathways. Although the role of individual
cell death pathway genes has been rigorously defined in mouse
models, the specific landscape of the expression of cell death
pathway genes across a wide array of non-germline tissues is a
fundamental aspect of cell death biology and is heretofore
underexplored. Furthermore, the relationship between the expres-
sion of cell death genes and human disease susceptibility is not
thoroughly understood.
In this study, we characterize the landscape of tissue-specific

cell death gene expression across human tissues. From there, we
examine the relationship between tissue-specific cell death gene
expression and human traits by leveraging summary statistics-
based transcriptome wide association studies (TWAS) [41]. This
approach uses genome-wide association study (GWAS) summary
statistics and reference transcriptomic datasets to identify genetic
loci with strong associations between gene expression and a
given trait [41, 42]. A summary statistics-based TWAS approach
enables us to identify how subtle, lifetime shifts in the
predisposition of cell death gene expression associates with
clinically relevant traits (e.g. predisposition to disease, lab values,
drug susceptibility) across the human phenome, i.e. the complete
spectrum of human traits.

RESULTS
Curation of an array of core cell death genes
Our studies focus on core programmed cell death machinery in
the apoptotic, necroptotic, and pyroptotic pathways that are well
studied [43, 44], targetable by multiple clinically relevant
pharmaceuticals [45–47], and therefore implicated in the patho-
genesis of many diseases [11, 48, 49]. These pathways are
comprised of well-defined gene sets that participate primarily in
cell death signaling. In all, we chose 44 genes operating within the
intrinsic apoptosis pathway (18 genes), extrinsic apoptosis path-
way (12 genes), necroptosis pathway (4 genes), and pyroptosis
pathway (10 genes) (Fig. 1, Supplementary Table 1). Other
biologically relevant cell death pathways, such as ferroptosis
[50], cuproptosis [51], and parthanatos [52], are defined by central
gene regulators (listed in Supplementary Table 1) that we
examined in a separate analysis.

Observed expression of programmed cell death genes is
variable and tissue-specific
We first examined the expression of members of our cell death
gene array across adult non-germline tissues to reveal cell-type-
specific patterns in cell death machinery networks (Fig. 2A). We
employed the GTEx resource release 8, which has transcriptomic
data on tissues for 838 individuals. Across 49 GTEx tissues,
expression was highest in genes encoding prosurvival factors
MCL1 (MCL1), BCL2L1 (BCL-XL), and BCL2L2 (BCL-W) (Fig. 2B). There
was variable expression of all cell death genes evaluated across
tissues, which can be visualized by the interquartile range when
median log2(TPM) expression for each of these genes was
examined (Fig. 2B). The variance observed was not explained by
the number of expression observations in GTEx, suggesting that
these expression distributions are biologically relevant and not the
result of sample size (Fig S1A). Two possible interpretations of this
variance in cross-tissue gene expression are: expression patterns
of cell death genes maintain a similar stoichiometry but differing
magnitude across tissues; or expression patterns of cell death
genes are variable across tissues. Indeed, we observed that
immune-related tissues, whole blood and spleen, featured the
highest levels of expression of necroptosis and pyroptosis genes
(Fig. 2B, GTEx [38]).
To ascertain if gene expression patterns were maintained across

tissues, we computed the correlation of each tissue-tissue pair
using expression of all genes in our cell death array. Hierarchical
clustering of correlation values subsequently identified four
distinct groups of tissues with highly correlated expression of cell
death genes (Fig. 2C). Interestingly, these tissues segregated into
biological themes as follows: brain tissues, rapidly dividing tissues,
diverse non-germline tissues, and transformed lymphocytes (Fig.
2C, Supplementary Table 2). The correlation coefficients derived
from examining the relationship between median expression of
each cell death gene-gene pair across all tissues in a module
ranged widely (from ρ= -0.99 to 0.99), indicating that cell death
genes can be highly positively correlated or negatively correlated
depending on the tissue type examined (Fig. S1A, Supplementary
Table 3). These module-specific expression patterns suggest
differences in “wiring” of cell death pathways across cell and
tissue types. Module-specific gene expression patterning reveals
that the most highly related genes transcend classical pathway
boundaries (Fig. 2D–F). The distinct patterns we observed
highlight the importance of evaluating expression in a tissue- or
module-specific context for understanding tissue and organ-
specific cell death dynamics. Furthermore, the diverse tissue-
specific expression patterns we observed suggest that specific
human diseases might be associated with tissue-specific changes
in cell death gene expression, which we explore in the next
section.

Transcriptome-wide association studies identify associations
between genetically determined expression of cell death
genes and human disease
Joint-Tissue Imputation (JTI) generates prediction models for most
cell death genes across human tissues for large-scale use on GWAS
summary statistics. To address the relationship between tissue-
specific genetically determined expression of cell death genes and
human disease on a tissue-specific level, we implemented a
summary statistics transcriptome-wide association study (TWAS)
approach, Joint-Tissue Imputation (JTI) methodology [53], on 49
separate GTEx tissues (Fig. 3A, Supplementary Table 4). Joint-tissue
imputation generated in silico genetic variation-based models of
gene expression for 43 autosomal genes of our array of 44 cell
death genes involved in apoptosis, necroptosis, and pyroptosis.
Two genes, CASP7 and BAK1, had sufficient QTL information (i.e.,
gene expression heritability, or the level of genetic control) for
testing in all 49 GTEx tissues, whereas BCL2A1 was included in two
tissue-models (Supplementary Table 5, Fig. S2A). XIAP, an
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X-chromosomal gene, was modeled in 19 tissues (Supplementary
Table 4). This variability in tissue modeling suggests that cell death
genes may have variable level of genetic control of expression
across tissues. These JTI models can then be applied to GWAS
summary statistics to estimate the association between
genetically-determined gene expression and human traits.
Because the level of genetic control varies with tissue, certain
genes are tested more frequently for each trait than others in
these analyses, and some gene/tissue relationships are not tested.
At least 10 genes were tested in each tissue (Fig. S2B). Overall,
these models test for associations between 1061 cell death gene/
tissue pairs and any trait of interest for which GWAS summary
statistics are available.

Manual curation of relevant clinical outcome and lab-derived traits
from the UKBB enriches for heritable traits. To maximize the power
of our analysis and enhance the interpretability of findings, we
manually curated a list of clinically relevant traits from the UKBB
version 3 release (see Data Availability) on which we performed
analyses on autosomal genes. This curation prioritized quantitative
traits from lab-derived tests and electronic health record (EHR)-
derived clinical outcomes with clear diagnoses, specific etiology,
and/or minimal redundancy with other UKBB GWAS entries.
Ultimately, we selected 482 EHR-derived clinical outcome traits
(“clinical outcome traits”) from the UKBB and 31 lab-derived
clinical traits from quantitative blood and urine measurements for
analysis (“lab-derived traits”) (Supplementary Table 6). The clinical
outcome traits span 16 discrete phenotypic categories, and the 24
lab-derived traits encompass both blood and urine-derived
markers (Supplementary Table 6). The average heritability of

selected clinical outcome traits (as determined by linkage
disequilibrium score regression; Data Availability) was higher than
that of omitted clinical outcome traits (Fig. 3B). This suggests that
our filtering strategy not only enriches for traits with clinical
relevance, but traits for which these genetically informed analyses
are more relevant. Of these curated clinical outcome traits, 106
phecode-defined traits were available for de novo X-chromosomal
XIAP association analysis (Supplementary Table 7).
The continuous lab-derived traits and binary clinical outcome

traits had marked differences in sample size and the number of
significant associations (Fig. S2D). As such, lab values were
analyzed separately from clinical traits. Associations from the 24
lab-derived traits were analyzed with an FDR cutoff of 0.01. Given
the phenome-wide scope of the clinical outcome trait analysis and
subsequent multiple testing burden, to maximize the discovery
potential for clinical outcome trait associations, we used an FDR
cutoff of 0.25 (corresponding with an unadjusted p-value 7.7e-5).

Genetically determined expression of cell death genes
associates with health-related traits across the human
phenome, and is unique across specific genes and traits
For clinical outcome traits, we identified 157 significant associa-
tions (FDR < 0.25) in 21 cell death genes across 27 unique traits
and 12 phenotype categories within our autosomal gene analysis
and no significant (FDR < 0.05) associations for X-chromosomal
analysis (Supplementary Table 8). Significant associations were
detected across all 49 examined tissues (Supplementary Table 8).
The number of significant associations identified for a given cell
death gene/tissue pairing was not correlated with the number of
tissue samples used to generate the tissue-specific models (i.e.,

Fig. 1 Composition and organization of an array of core cell death genes. Summary of the composition and organization of our chosen cell
death gene array by pathway and subpathway: three cell death modalities of interest: apoptosis (yellow), pyroptosis (red), and necroptosis
(blue) and the proteins encoded by the genes selected for studying these modalities (ovals). Proteins are grouped by function.
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weights), suggesting that tissue biology rather than sample size
drives the number of associations (Fig. S2A). Similarly, the number
of significant associations detected was not correlated with the
number of cases used to perform association studies on clinical
traits, suggesting that these analyses can detect bona fide
biological signals (Fig. S2D). Though tissue specificity is an
important biological consideration, we found that for gene/trait
associations in multiple tissues where p < 0.05, the overwhelming
majority of associations were concordant in their direction of
effect (Supplementary Table 8). This phenomenon implies that, for
traits with multiple tissue associations, there is a shared genetic
architecture that drives associations across tissues.
We observed that genetically determined expression of a suite

of cell death genes is associated with a range of clinically relevant
traits comprising over a dozen different phenotypic categories
(Fig. 4A). The most highly significant association was between
CASP8 expression and “Other malignant neoplasms of skin”. CASP8
associations could be detected in a variety of different tissues
(Supplementary Table 8, Fig. 4A). This suggests that there are

tissue-shared eQTLs for the gene driving the associations across
tissues. Significant associations were observed in genes involved
in all examined cell death pathways, involving apoptotic,
necroptotic, and pyroptotic genes (Fig. 4A). These findings reveal
a potential link between genetically determined expression of
apoptosis, necroptosis, and pyroptosis machinery in the etiology
of a variety of clinically relevant disorders.
A key feature of the gene-level TWAS approach is its ability to

estimate both effect size and direction of effect for associations.
Given the conserved structural and functional characteristics of
many of the genes in our cell death array, we sought to resolve
significant gene-trait association effect sizes by both gene
similarity and trait similarity (Fig. 4B). We were surprised that
more significant associations did not occur in groups of genes
with functional similarities (e.g., Initiator Caspases, prosurvival BCL-
2 family genes, as grouped on the X-axis in Fig. 4B). To enrich for
potential additional relevant patterns, we graphed median effect
sizes for nominally significant (punadj<0.05) gene/trait associations
alongside the significant gene/trait associations (as denoted by

Fig. 2 Tissue-specific patterning of cell death gene expression across adult somatic tissues. A Preprocessed GTEx tissue expression data in
transcripts per million (TPM) from 49 tissues were extracted for analysis, and the distribution of median values in each tissue and the Pearson
correlation between median TPM values in each tissue was calculated. B Boxplot depicting the distribution of median tissue TPM for GTEx
tissues for each cell death gene. Outlier expression values (>1.5X IQR) are depicted as dots. Genes are grouped by pathway. C Correlation plot
for 49 GTEx tissues using Ward’s D hierarchical clustering reveals four modules (outlined in red) that are highly correlated: brain tissues, rapidly
dividing tissues, diverse somatic tissues, and EBV-transformed lymphocytes. D–F: Dendrograms illustrating relationships between gene
expression values in Modules 1 (D), 2 (E), and 3 (F) using hierarchical clustering of Euclidean distance between median gene TPM values across
members of expression modules identified in (C).
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asterisks, Fig. 4B). The effect size and direction of shared
associations for a particular trait was variable (Fig. 4B). Across
significant (FDR < 0.25) gene/trait associations, the largest magni-
tude of effect was the association of diverticular disease with
lower expression of BCL2L2, encoding BCL-W (Fig. 4C). Explicitly,
this means that the genetically determined expression of BCL-W
accounts for almost 3% of the genetic predisposition to
diverticular disease of the intestine. These results provide
preliminary evidence there is a directional relationship between
cell death gene expression and a suite of human traits and
support a model in which functionally similar genes and pathways
have distinct roles in the etiology of disease.

Laboratory traits are enriched for significant associations with
hematologic phenotypes
We identified hundreds of significant (FDR < 0.01) gene/tissue/trait
associations for lab-derived traits. The most highly significant
associations were in blood traits, particularly associations between
BAK1 and platelet count & crit (Supplementary Table 9). Other
highly significant associations were observed between leukocyte
blood parameters and MCL1, and BCL2L1 (encoding BCL-XL) and
red blood cell parameters (Fig. 5A). As was observed in our
analysis of EHR-derived traits, the direction of effect for gene/trait/
tissue associations across tissues were overwhelmingly concor-
dant for any given trait.
Resolving significant (FDR < 0.01) and nominally significant

(p < 0.05) association effect sizes by gene family and trait family
reveal a matrix of gene/trait associations that are not redundant
across similar gene families (Fig. 5B; e.g., BCL2L1 encoding BCL-XL
and MCL1 display associations with opposite directions of effect
across blood traits). The maximum associations by median effect
size were observed in red blood cell-associated traits and with
BH3-only gene BNIP3L and pyroptosis-associated adapter PYCARD
(Fig. 5B). For many of these associations, up to 20% of the genetic
contribution for several traits can be traced back to genetically
determined expression of one of these two genes (Fig. 5B). On the

whole, these findings reinforce the proposition there are distinct
roles for cell death genes that are considered functionally
redundant in their contribution to human phenotypes and
indicate that the genetically determined expression of BNIP3L
and PYCARD exert a significant effect on hematologic, particularly
red blood cell traits.
There were many more highly significant associations with

large-magnitude effect sizes for hematologic traits relative to urine
traits (Fig. 5A, B), suggesting that cell death gene expression is
uniquely important for shaping hematopoiesis. To explicitly test if
cell death pathway genes were overrepresented among our
significant associations, we performed enrichment analysis on
apoptotic, necroptotic, or pyroptotic gene sets across each of the
blood traits. Cell death genes were highly enriched for significant
associations with blood traits versus non-cell-death genes, with
apoptosis gene sets enriched for significant associations with
leukocyte and platelet traits, and necroptosis and pyroptosis gene
sets enriched for associations with erythroid traits (Fig. 5C).
Overall, these results suggest that the genetically determined
expression levels of cell death genes are particularly important in
shaping the numbers and distributions of blood and immune cells.
We performed TWAS of clinical outcome and lab-derived

phenotypes from the central regulators of ferroptosis, cuproptosis,
and parthanatos and identified strong associations between
PARP1 and neoplasms (Fig. S3A) and platelet traits (Fig. S3B).
Associations arising from GPX4 include nasal polyps (Supplemen-
tary Table 10). These results align with PARP1’s known role as a
DNA damage response coordinator [52] and reports of ferroptosis’
role in the pathogenesis of nasal polyps [54].

Biobank- and literature-based replication of gene/trait
associations
Our discovery analysis implicated genetically determined expres-
sion of cell death genes in dozens of clinically relevant diagnoses
that are viable candidates for validation. We opted for a two-
pronged approach that [1] replicated our in silico results in an

Fig. 3 Joint-Tissue Imputation and Biobank TWAS application for phenome-wide scanning of cell death genes. A Joint-Tissue Imputation
was used to generate tissue-specific weights using the GTEx v8 resource, and these weights were applied to both clinical diagnoses and lab-
derived traits from the UKBB, which generated a series of gene-trait-tissue associations that enabled analysis of 43 cell death-associated genes.
B Observed heritability for ICD10-derived clinical traits that were included or excluded from analysis per our manual curation strategy.
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independent, large-scale biobank and [2] identified in vivo and
in vitro studies that are concordant with our findings via an
extensive literature review. We performed external replication
analysis by applying our TWAS methodology to a large-scale DNA
biobank linked to electronic health records at Vanderbilt
University Medical Center, BioVU (n= 94,474 individuals of
predominantly European ancestry) [55]. For clinical outcome traits,
we prioritized top gene/trait associations that had corresponding
phecodes in the BioVU dataset. Remarkably, we detected
significant associations between BAK1 and Rheumatoid arthritis/
Polyarthropathies (p= 2.50e-3) as well as BCL2L2 and Diverticular
disease of the intestine (p= 3.86e-02) (Table 1). For lab-derived
traits, we performed replication analyses on 13 available
hematologic parameters (Fig. 6). Dozens of associations, for
instance BCL2L11/BIM and monocyte count, aligned with findings
from our discovery analysis (Fig. 5B).
We further evaluated concordance of our findings with

observations from murine knockout models (representing very
low/no gene expression) and reports from hypothesis-driven
human genetic studies may lend support to our observations as
well. Table 2 compares traits reported in independent, peer-
reviewed publications with those identified in our PheWAS. These
studies support our findings for 19 measurable phenotypes in
highly controlled experimental systems. One such example is that
of BCL2 and its associations with both lymphocyte count, and
hypertensive renal disease, as murine knockout of Bcl2 reports

lymphoid and kidney development effects (Table 2, [56]). Overall,
our replication analysis and literature review provide two
independent lines of evidence that support the utility of our
approach to discovering novel gene/trait associations.

DISCUSSION
This study presents a comprehensive transcriptomic survey of
cross-tissue cell death gene expression and delivers an atlas of
human traits that are influenced by genetically determined
expression of apoptotic, necroptotic, and pyroptotic genes. Our
analysis identified dozens of human phenotypes that are
associated with cell death gene expression, both novel and
previously reported. Many of these phenotypes were dually
validated in an independent biobank (Table 1 & Fig. 6) and have
been reported as part of independent, peer-reviewed publications
(Table 2). Beyond identifying novel relationships between cell
death genes and human phenotypes, our findings highlight
several important phenomena.
TWAS analyses such as those that form the basis of our PheWAS

have utility in their ability to identify relationships between
extremes in gene expression and traits. This transcends existing
protein structure/function paradigms in the cell death field.
Though associations do not imply causal relationships (i.e., lower
expression of GeneX causes DiseaseY), the findings may be of
utility in the vetting and application of cell death inhibitory

Fig. 4 UKBB clinical diagnoses associated with genetically regulated expression of cell death genes identified by S-PrediXcan.
A Manhattan plot illustrating top gene-trait associations by p-value and organized by trait type. Only the most significant gene-trait association
in a phenotype category is labeled, and the red line illustrates the FDR= 0.25 threshold (p < 7.7e-5). Gene-trait associations with significant
associations across multiple tissues (i.e. CASP8 and Other malignant neoplasms of skin), are not annotated for clarity. B Heatplot illustrating
median effect size and direction across gene-trait-tissue associations for traits with n≥1 associations with FDR < 0.25 (labeled with “*”) or
p < 0.05. C Median effect size for significant (FDR < 0.25) gene/trait/tissue associations where associations with |β| > 0.005 are labeled.
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Fig. 5 Lab-derived blood & urine metabolite traits associated with genetically regulated expression of cell death genes identified by
S-PrediXcan. A Manhattan plot illustrating top laboratory-derived gene-trait associations by p-value and organized by trait type. Unique trait
associations with punadj < 2e-10 are labeled, and the red line illustrates the FDR= 0.01 threshold (p < 0.0008353). Gene/trait associations across
multiple tissues are omitted from this plot for clarity. B Median effect size and direction across all gene/trait pairs with a tissue association of
p < 0.05. Significant (FDR < 0.01) gene/trait associations are indicated by an asterisk. C Fisher’s Exact testing for enrichment of associations for
apoptosis, necroptosis, and pyroptosis genes as defined in Table 1. *p < 0.05, **p < 0.01, ***p < 5e-10.

Table 1. Independent replication analysis in the BioVU biobank.

Phecode Effect p-value Gene Phenotype # cases # controls

714 −0.282262 2.50E-03 BAK1 Rheumatoid arthritis and other inflammatory polyarthropathies 928 19052

562.2 0.800272 3.86E-02 BCL2L2 Diverticulitis 291 16064

A.L. Rich et al.

7

Cell Death and Disease          (2024) 15:251 



compound administration, as the outcome of restricted gene
expression is lower protein content/function. We observed that
low expression of BCL2L1 (encoding BCL-XL) is significantly
associated with a decrease in platelet count and platelet crit
(Fig. 5B). Correspondingly, the major dose-limiting toxicity of an
inhibitor of BCL-XL, navitoclax, is its reduction in platelet count
[57]. Many of the tested genes have associations with multiple
hematopoietic traits, highlighting the highly interdependent
nature of hematopoietic cell differentiation and the importance
of cell death for hematopoiesis. For instance, increased expression
of BCL2L1 is strongly positively correlated with mean corpuscular
volume (MCV) and mean reticulocyte volume (Fig. 5B). This is
consistent with observations that BCL-XL deficiency impairs late
erythroblast/reticulocyte survival [58].
An intriguing phenomenon across functionally similar gene

groupings (defined in Fig. 1) was the presence of significant gene/
trait associations with opposite directions of effect. For example,
BAX and BAK1 are thought to be functionally redundant, as dual
knockout of these pore-forming proteins is required to elicit multi-
organ pathologies [59]. BAK1 and BAX had divergent median effect
sizes when considering platelet count/crit, eosinophil percentage,
and mean reticulocyte volume (Fig. 5B). Furthermore, BCL2L1 and
MCL1, both prosurvival proteins, had discordant associations with
platelet count & platelet crit, monocyte count, and immature
reticulocyte fraction (Fig. 5B). These results highlight the potential
for non-redundant roles of apoptotic family genes in human
hematologic traits.
Though there are gene-specific patterns across all gene/trait

associations from our analyses, overall, cell death gene expression
associates with many hematologic traits. Cell death genes were
highly enriched for significant associations with blood traits versus
non-cell-death genes, with apoptosis-associated genes enriched
for leukocyte and platelet traits and necroptosis gene associations
enriched for erythroid traits (Fig. 5C). This reinforces the paradigm
that apoptosis pathway genes are critical for white blood cell and
platelet development and suggests that immunogenic/proinflam-
matory cell death pathways play an important role in regulating
erythropoiesis.
Our cross-tissue survey of expression patterns revealed discrete

tissue modules with correlated gene expression signatures (Fig.
2C). Using only our array of 44 genes, we identified biologically
coherent tissue modules that segregated into relevant groupings:
nervous tissues (module 1), which are comprised largely of a pool

of post-mitotic cells, segregated clearly from a group of rapidly
dividing tissues including intestines, whole blood, and skin
(module 3), and these were separated by an intermediate module
[2] with various somatic tissues. Surprisingly, the most highly
correlated gene pairs within each module (Fig. 2D-F) were not
gene paralogs, nor did many highly correlated genes reside in the
same pathways, suggesting that cell death gene expression
networks have unique architecture in specific tissues (Supple-
mental Table 3). Notably, EBV-transformed lymphocytes com-
prised a module distinct from all primary tissues examined (Fig.
2C), suggesting that this cell type is divergent from other tissue
types with regards to cell death gene expression. The unique
transcriptional signature in these immortalized cells highlights a
limitation of using transformed lymphocytes in studies in which
the dynamics of cell death are important for the readout (e.g.,
drug toxicity screens, MPRAs). Indeed, the EBV-encoded E1B
protein functionally complements BCL-2 in its anti-apoptotic
action to facilitate lymphocyte transformation [60]. As such, these
findings advocate for careful selection of mechanistic models that
avoid transformed cell lines and recapitulate the transcriptional
“footprint” of the target tissue or organ system.
This study has limitations that must be considered in the

interpretation of our findings. The TWAS methodology models
how germline, rather than somatically acquired, genetic variants
influence gene-level expression, rather than protein-level expres-
sion, leveraging expression quantitative trait loci (eQTLs) [40]. As
such, this study captures how germline-mediated differences in
gene expression across a lifetime influence traits. Rare gain- or
loss-of function mutations in our cell death gene array, that may
have a substantial impact on the functioning of these pathways,
are also not captured in this study. Such variants have been
captured by Karczewski and colleagues (2022) [61], who identified
germline rare variants in cell death genes that associate with
human traits via whole exome sequencing of large populations.
Current data in large-scale biobanks preclude comparative
analysis of gene expression/protein abundance associations,
however, there is significant sharing of regulatory information
between gene and protein-level expression QTLs [62, 63],
suggesting that our results may extrapolate to protein-level
phenomena. Databases for interrogating pathogenic mutations of
cell death genes and protein structures/post-translational mod-
ifications are described more deeply elsewhere [64]. Our
transcriptome training models were derived from the sampled

Fig. 6 External validation of blood traits in the BioVU biobank. Median effect size and direction of gene/trait TWAS associations from the
BioVU dataset that replicated UKBB analysis associations. Concordant associations that are significant in the UKBB (FDR < 0.01) and BioVU
(p < 0.05) are boxed. Concordant gene/trait associations surpassing a more stringent multiple testing threshold within BioVU (FDR < 0.05) are
indicated by an asterisk.
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Table 2. External validation studies for top blood trait associations (gene/trait associations in >10 tissues; FDR < 0.01) and top health trait
associations (FDR < 0.25).

Gene PheWAS Associations (direction of
effect)

Mouse Studies Human Studies

BAD Platelet count (−) Kelly et al. [66]. Bad−/− mice have elevated
platelets.

BCL2L11 White blood cell count (−), platelet
count (+), lymphocyte count (−)

Bouillet et al. [67] Bim−/− mice have
increases in peripheral blood WBCs,
lymphocytes, monocytes, and granulocytes
with a reduction in platelets.

BNIP3L High light scatter reticulocyte
percentage (+/−), immature
reticulocyte fraction (+/−)

Sandoval et al. [68]. Bnip3l−/− mice have
reticulocytosis and anemia

BCL2 Lymphocyte count (+) Veis et al. [56]. Bcl2−/− mice exhibit
lymphoid tissue involution with age.

BCL2L1 Red blood cell count (+/−) Motoyama et al. [69]. Bcl2l1−/− embryonic
stem cells have defects in late stage
erythropoiesis and do not contribute to
definitive erythropoiesis.
Rhodes et al. [58]. Bcl-x(L) prevents late-stage
erythroblast apoptosis.

MCL1 Lymphocyte count (+) Opferman et al. [70]. Conditional Mcl1
deficiency in lymphocytes (LckCre, Cd19Cre)
ablates T & B lymphocytes.

CASP8 Red blood cell count (−);
lymphocyte count (−)

Varfolomeev et al. [71]. Casp8−/− embryos
exhibit profound erythrocytosis.
Salmena & Hakem. [72]. T-cell specific
deletion of Casp8 results in an age-
dependent lymphoproliferative disorder.

Grzela et al. [73]. Low CASP8 expression is a
feature of lymphocytes derived from a
patient with human autoimmune-like
lymphoproliferative syndrome

CASP10 Lymphocyte count (+/−) No direct murine paralog. Wang et al. [74]. Missense mutations in
CASP10 associate with human autoimmune
lymphoproliferative syndrome and defects
in lymphocyte apoptosis.

BCL2L11 Benign lipomatous neoplasm (+),
thyrotoxicosis (+)

Bouillet et al. [67]. Bim−/− mice develop
plasmacytosis; autoimmune kidney disease.

BIK Malignant neoplasm of prostate
(+/−)

Wang et al. [75]. Novel risk variants for
prostate cancer identified in the BIK locus in
multi-ancestry GWAS.

HRK Disorders of vestibular function (+) Coultas et al. [76]. Hrk deficiency protects
sensory neurons from nerve growth factor
deprivation.

BAX Noninflammatory disorders of
ovary, Fallopian tube and broad
ligament (+)

Knudson et al. [77]. Bax−/− mice exhibit
ovarian aberrations.

BAK1 Celiac disease (+), adult-onset Still
disease (−), polyarthopathies (−),
seropositive rheumatoid arthritis
(−)

Chernavsky et al. [78]. BAK1 mRNA is
increased 2-fold in Celiac disease patients.

BCL2 Hypertensive renal disease (−) Veis et al. [56]. Bcl2−/− mice exhibit defects
in renal development.

BCL2L2 Diverticular disease of intestine (+) Pritchard et al. [79]. Bclw deficiency
enhances intestinal apoptosis in response to
cytotoxic insult.

CASP7 Disorders of vitreous body (−) Choudhury et al. [80]. Casp7−/− mice are
resistant to loss of retinal ganglion cells
following optic nerve injury.

GSDMD Cutaneous abscess, furuncle and
carbuncle (−)

Liu et al. [81]. Gsdmd−/−mice develop larger
skin abscesses when infected with S. aureus.

IL1B Acute pericarditis (+) Thorolfsdottir et al. [82]. Genetic variants
influencing IL1 transcription associate with
pericarditis.

IL18 Malignant neoplasm of colon (−) Salcedo et al. [83]. Il18−/− mice are more
susceptible to colitis (AOM/DSS model)-
induced polyp formation.
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individuals in GTEx v8, and the GWAS summary statistics data
were derived from the UKBB, resources that are biased towards
individuals of European ancestry, limiting our ability to make
cross-ancestry generalizations. Power to detect associations is
influenced by the specificity of diagnosis codes within the UKBB
and the number of cases per trait (for instance “Other malignant
neoplasms of skin” diagnosis code may encompass a range of
distinct etiologies, and autoimmune lymphoproliferative syn-
drome was not amongst the traits we analyzed).
Our study identified and replicated novel associations between

genetically determined expression of cell death genes and human
traits and defined hundreds of significant (FDR < 0.01) associations
with lab derived traits. Overall, these results suggest that the
genetically determined expression of cell death genes is
particularly important in shaping the numbers and distributions
of blood and immune cells. Our findings reinforce the proposition
there are distinct roles for cell death genes that are classically
considered functionally redundant in their contribution to human
phenotypes. These associations have implications for personalized
medicine including disease risk prediction, pharmaceutical candi-
date screening, and diagnostics for a variety of traits. Ultimately,
these findings emphasize the nuance of cell death gene
regulation and underscore the importance of cell death pathways
in the determination of traits across the phenome.

METHODS
Parameters for selection of cell death gene array
We focused on apoptotic, necroptotic and pyroptotic signaling pathways
to conscribe the bounds of the analysis. Intrinsic and extrinsic apoptosis,
necroptosis, and pyroptosis are examples of highly studied and well-
defined pathways whose genetically encoded machinery participates
primarily in the process of cell death, with minimal shunting to metabolic
pathways. Omitted were cell surface receptors initiating these pathways,
enzymes involved in non-core post-translational modifications of pathway
members, and pathway proteins that participate in but operate on the
periphery of these pathways. Omitted also were genes/pathways defined
in part by genes with secondary functions (for instance, glutamate
transporters SLC7A11 and SLC3A2, which modulate glutamate substrate
availability upstream of GSH/GPX4 for ferroptosis, play a significant role in
metabolism and other cell processes [50]).

Gene expression correlation and clustering analyses
Preprocessed GTEx v8 tissue expression data in transcripts per million
(TPM) from 49 tissues were extracted for analysis. Median TPM values for
each gene in the of the cell death gene array were calculated each tissue,
and then applied to Pearson correlation analysis. Ward’s D hierarchical
clustering was implemented to identify four discrete tissue modules by
graphing the correlation coefficients using the ‘corrplot‘ v0.92 package in R
4.2.1. Euclidean distance between median gene expression TPMs across
modules was applied to generate dendrograms for gene-gene relation-
ships across modules.

Manual curation of health-related outcome traits
To enrich our results for clinically informative traits, we considered health-
related outcome phenotypes derived from ICD10 Diagnosis codes (UK
Biobank Data Field 41270) as well as multi-parameter phenotypes derived
in collaboration with the FinnGen consortium (“FinnGen custom”
phenotypes) from the UKBB GWAS round 2 analysis (see Supplementary
Data). These encompass 1144 unique phenotypes (Supplementary Table 6)
with varying degrees of overlap. ICD10 codes categorized as representing
“Pregnancy, childbirth, and the pueperium” (Chapter XV / “O” prefix),
“Symptoms, signs and abnormal clinical and laboratory findings, not
otherwise classified” (Chapter XVIII / “R” prefix), “Injury poisoning and
certain other consequences of external causes” (Chapter XIX / “S” and “T”
prefixes), and “Factors influencing health status and contact with health
services” (Chapter XXI / “Z” prefixes) were excluded from analysis, as they
generally have lower genetic heritability as estimated by linkage
disequilibrium score regression (Fig. 3B). GWAS summary statistics
calculated after sex stratification were omitted from our analysis as well.
Additional manual review of these traits removed FinnGen custom

phenotypes that overlapped with more specifically defined or identical
ICD10 Diagnosis Codes as well as phenotypes representing nonspecific or
“catch-all” traits (Supplementary Data).
Laboratory-derived traits with measurements derived from quantitative

assays were selected for analysis, and GWAS summary statistics that were
calculated using inverse rank-based normal transformation (IRNT) were
chosen for final analysis. This resulted in 31 continuous traits derived from
blood and urine tests. Of these traits, some measurements derived from
complete blood count data were redundant and removed. These were:
monocyte percentage, lymphocyte percentage, neutrophil percentage,
high light scatter reticulocyte percentage, reticulocyte percentage, and
mean sphered cell volume.

Joint-Tissue Imputation (JTI) and Transcriptome-Wide
Association Study (TWAS)
The summary statistic-based S-PrediXcan methodology developed by
Barbeira et al. [41] was employed using tissue-specific models generated
using the Joint-Tissue Imputation (JTI) methodology developed by Zhou
et al. [53].
Overall, 1061 gene/tissue pairs x 513 traits were assessed, resulting in

544,293 individual tests. The Benjamini-Hochberg multiple hypothesis
testing correction was employed to adjust for this large multiple testing
burden. A false-discovery rate cutoff of 25% was chosen for clinical
outcomes traits to enable a trait discovery-based analysis. Given the higher
sample size and sensitivity of continuous trait analysis, we opted to use a
more stringent FDR cutoff of 1% for data presentation and enrichment
analysis.

Replication analysis in BioVU
We performed replication testing of our most significant findings (Table 1
and Supplementary Table 11) in an independent biobank linked to
electronic health record data, Vanderbilt’s BioVU repository. We tested
BAK1’s association with Rheumatoid arthritis and with polyarthropathies,
BCL2L2’s association with Diverticulitis, and MCL1’s association with
cerebral infarction BioVU using phecodes aligning with ICD10 codes used
within the discovery analysis. We were unable to test for replication of
CASP8’s association with “Other malignant neoplasms of skin,” our most
significant association, due to lack of a single phenotype designation in the
replication dataset. Replication of blood traits was performed using the JTI/
TWAS methodology described above using GWAS summary statistics
derived from 94,474 individuals released previously [65].

DATA AVAILABILITY
JTI was performed using GTEx v8 transcriptomic data (dbGaP phs000424.vN.pN).
GWAS summary statistics and heritability data were obtained from the publicly-
available UKBB v3 release at http://www.nealelab.is/uk-biobank and https://
nealelab.github.io/UKBB_ldsc/downloads.html, respectively. Source code and imple-
mentation notes for S-PrediXcan and JTI, as well as custom code for figure generation
and analyses can be found in this GitHub repository (https://github.com/
gamazonlab/CellDeathOmics/).
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