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The endoplasmic reticulum (ER) plays important roles in biosynthetic and metabolic processes, including protein and lipid
synthesis, Ca2+ homeostasis regulation, and subcellular organelle crosstalk. Dysregulation of ER homeostasis can cause toxic protein
accumulation, lipid accumulation, and Ca2+ homeostasis disturbance, leading to cell injury and even death. Accumulating evidence
indicates that the dysregulation of ER homeostasis promotes the onset and progression of kidney diseases. However, maintaining
ER homeostasis through unfolded protein response, ER-associated protein degradation, autophagy or ER-phagy, and crosstalk with
other organelles may be potential therapeutic strategies for kidney disorders. In this review, we summarize the recent research
progress on the relationship and molecular mechanisms of ER dysfunction in kidney pathologies. In addition, the endogenous
protective strategies for ER homeostasis and their potential application for kidney diseases have been discussed.
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FACTS

● The endoplasmic reticulum (ER) is an important site for several
intracellular biological processes and is essential for maintain-
ing cellular homeostasis.

● Dysregulation of ER homeostasis in renal resident cells triggers
the onset and progression of various kidney diseases by
promoting renal inflammation and fibrosis.

● Restoration of ER homeostasis through unfolded protein
response, ER-associated degradation and autophagy, and ER-
overload response presents a therapeutic potential for kidney
illnesses.

INTRODUCTION
The endoplasmic reticulum (ER) is the largest organelle in eukaryotic
cells, consisting of a series of cavities and thin tubes that interact
with each other and form a pipeline system isolated from the
cytoplasmic matrix. The ER is a highly dynamic and fluid mesh
membrane system [1] and is the main site for intracellular protein
synthesis, post-translational modification, folding and transport,
oligomerization processing, lipid anabolism, storage and regulation
of calcium ions, and signal transduction. Molecular chaperones in
the ER, such as glucose-regulated protein 78 (GRP78/Bip), J domain
proteins, and lectin chaperones, together with foldase can regulate
protein folding and release from the ER. In addition, the ER interacts
with other organelles in response to endogenous and exogenous
stress [2]. For example, the interaction of ER with mitochondria is

beneficial for cellular Ca2+ homeostasis [3], whereas its interaction
with endosome/Golgi is involved in lipid exchange and metabolism
[4]. Moreover, the ER interacts with phagocytes to form autophago-
somes and participates in autophagy [5]. Recent studies have
shown that various types of stress, including glucose or nutrient
deficiency, ischemia and hypoxia, dysregulation of redox state, viral
infections, drugs, toxins, and increased synthesis of secreted
proteins, may disrupt ER homeostasis [6, 7]. During ER stress, the
ability of the ER to process or transport proteins and regulate Ca2+

release and uptake is impaired, which causes the accumulation of
unfolded and misfolded proteins in the lumen of the ER and an
imbalance of calcium homeostasis and lipid synthesis. However,
several protective mechanisms, including unfolded protein
response (UPR), ER-associated degradation (ERAD), and ER-related
autophagy or ER-phagy, are activated during ER stress to restore
homeostasis [8].
Increasing evidence has proven that dysregulation of ER

homeostasis acts as a key player in the progression of various
kidney diseases and may represent a potential therapeutic target.
In this review, we focused on research articles with experimental
data, which remarkably promote our understanding of the
functional mechanisms of ER in kidney disorders, published in
the past 10 years. The publications were searched on the PubMed
database. “Endoplasmic reticulum” and “kidney disease” were set
as search keywords, and original articles and a few reviews in
English were collected. We reviewed a small number of studies on
the application of drugs targeting ER in kidney illnesses; several
studies were not considered to avoid duplication and because of
space constraints.
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MAINTENANCE MECHANISMS OF ER HOMEOSTASIS
Unfolded protein response (UPR)
Under adverse conditions, such as starvation, hypoxia, calcium
imbalance, increased biosynthetic demand, or drug influence, ER
folding capacity is often impaired, resulting in the dysregulation of
ER homeostasis and the accumulation of a large number of
unfolded or misfolded proteins in the ER. Therefore, any
disturbance in the ER environment that impairs ER folding ability
can trigger ER stress. However, UPR is activated in response to ER
stress to normalize ER function. It has recently been suggested
that toxic lipid stimuli, such as high levels of saturated fatty acids
(FAs), can trigger ER stress by directly acting on membrane fluidity
regardless of the level of folded ER proteins [9]. UPR is typically
triggered by three canonical UPR mediators (sensors), including
inositol-requiring enzyme 1α (IRE1α), protein kinase R-like ER
kinase (PERK), and activating transcription factor 6 (ATF6) path-
ways. These mediators bind to the ER chaperone 78-kDa glucose-
regulated protein (GRP78), also referred to as binding immuno-
globulin protein (BiP), in a monomeric and inactive form through
their luminal domain. Under stress, GRP78 dissociates from the ER
and assists in the folding of nascent proteins, activating PERK and
ATF6 sensors and their corresponding downstream signaling
pathways [10]. However, the three sensors are activated under
lipotoxic stress, regardless of the ER protein load [9].
IRE1α is the most evolutionarily conserved ER stress sensor. IRE1α

has a ribonuclease domain and can initiate unconventional mRNA
splicing of X-box-binding protein 1 to generate an active
transcription factor, the spliced form of X-box binding protein 1
(XBP1s). XBP1s in turn enters the nucleus, upregulates the
expression of molecular chaperones, folding enzymes, and ER-
related degradation factors in the lumen of the ER, and enhances
the ability of the ER to process and clear unfolded proteins. IRE1α
also functions as an endoribonuclease that degrades several mRNAs
through the regulated IRE1α-dependent decay (RIDD) pathway.
RIDD is an important component of UPR and has a protective effect
on cells [11, 12]. Recently, studies have reported about the
regulation of IRE1α activity. For example, the HSP47 protein, a
member of the heat shock protein family, has been found to act as a
regulator of IRE1α. Under ER stress, IRE1α separates fromGRP78, and
at that point, HSP47 can competitively bind to IRE1α and promote
phosphorylation activation of IRE1α. As HSP47 occupies the
theIRE1α-binding site, GRP78 may have only limited ability to
return to interact with IRE1α, thus HSP47 could serve as a novel
IRE1α regulator. Furthermore, the ER co-partner DnaJ family protein
ERDJ4, a cofactor of GRP78, can indirectly regulate the activation of
IRE1α, as the affinity of GRP78 to IRE1α is regulated by
conformational changes that are dependent on the levels of
adenosine triphosphate (ATP). When ATP is hydrolyzed, GRP78
forms a closed conformation and can bind to IRE1α stably. However,
the intrinsic ATPase activity of GRP78 is weak, and j-protein
cochaperones, such as ERDJ4, can accelerate ATP hydrolysis,
improving substrate recognition and GRP78-binding efficiency [8].
Interestingly, activation of IRE1α is also involved in ER-mediated
apoptosis. IRE1α-recruited tumor necrosis factor receptor correla-
tion factor 2 activates apoptotic Jun N-terminal kinase or caspase-12
signaling, leading to apoptosis. In addition, RIDD can promote
apoptosis, mainly through the degradation of GRP78 mRNA,
reducing the expression of molecular chaperones [11, 12].
As an ER-type transmembrane protein belonging to the cyclic

adenosine monophosphate (cAMP)-response element binding
protein (CREB) transcription factor family, ATF6 can exist in two
configurations, ATF6α and ATF6β. The N-terminal cytoplasmic
region of ATF6 has a basic region, the leucine zipper (bZIP) DNA
transcription activation domain. Free ATF6 is transported into the
Golgi in the form of vesicles with the help of coat protein II (COPII)
and cleaved by site 1 protease (S1P) and S2P on the Golgi
membrane to release an intracellular fragment p50-ATF6, which is
translocated into the nucleus and combined with the universal

nuclear transcription factor Y (NF-Y) fragment to form a
heterodimer. The complex recognizes the specific sequence of
the ER stress response element (ERSE) and upregulates the
expression of molecular chaperones, such as GRP78, GRP94, and
calreticulin, to enhance the protein folding ability of ER. In
addition, the complex can promote the expression of XBP1, C/EBP
homologous protein (CHOP), and other factors, and work together
with transcription activation factor 4 (ATF4) to activate the ER-
associated degradation (ERAD) pathway to alleviate ER stress [13].
Currently, it is considered that the ATF6 signaling pathway is
mainly involved in promoting cell survival [14].
PERK is a serine/threonine protein kinase that is activated by

autophosphorylation under ER stress and acquires full catalytic
activity to further phosphorylate eukaryotic translation initiation
factor 2α (eIF2α), inhibiting protein translation, and reducing the
entry of new proteins into the ER. The PERK-eIF2α pathway
activates ATF4 and selectively induces the expression of UPR
target proteins, including chaperone and oxidative detoxification
enzymes (glutathione-S-transferase and heme oxygenase-1) to
reduce cellular oxidative damage and ER stress. Moreover, PERK
can increase the transcription levels of CHOP by upregulating
ATF4. CHOP can upregulate growth arrest and DNA damage-
inducible protein 34 (GADD34) levels. The GADD34 protein can
play a negative feedback role in the dephosphorylation of eIF2 to
restore normal cell function [15].
The three signaling pathways are not completely independent

but interact with each other to share some common proteins. The
three-pronged axis orchestrates the UPR process, and their
regulatory interdependence is well documented. For example,
downstream target genes of ATF6 can be compensated by XBP1
during acute silencing of ATF6. Inhibition of PERK could lead to
compensatory activation of XBP1s, whereas the inhibition of IRE1α
contributes to the continuous activation of PERK and CHOP [16].
The coordinated effects of misfolded protein degradation and
chaperone-assisted protein folding can alleviate ER stress and
reestablish ER homeostasis. However, the activation of the
maladaptive branch in the ER stress response can induce
unresolved chronic ER stress. Under this chronic ER stress
condition, the UPR transforms from a pro-survival signal into a
pro-apoptotic signal and initiates apoptosis by activating signaling
molecules, including CHOP, caspase-12, c-Jun N-terminal kinase
(JNK), and B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax) [6].

ERAD and autophagy
Apart from UPR, which prevents new protein synthesis and
promotes the correct folding of existing proteins, ERAD is another
key quality control mechanism of ER homeostasis that is
responsible for clearing misfolded proteins from the ER via
cytoplasmic proteasomal degradation [8]. Peptides that stick to
the ER membrane are cleared by the membrane zinc metallopro-
tease (ZMPSTE24). Some of the polypeptides that successfully
enter the ER but are not properly folded may be refolded in the
ER, whereas the other misfolded proteins will be cleared. As the ER
does not contain a degradation mechanism, the misfolded
proteins are transported to the proteasome for degradation after
ubiquitination through a process known as the ERAD pathway.
ERAD is initiated by the recruitment of unfolded substrates, aided
by chaperones (such as the GRP78) and proteins belonging to ER
degradation-enhancing α-mannosidase-like protein (EDEM) family.
Studies have shown that the inhibition of ERAD can lead to several
organ dysfunctions in mouse models, including enteritis, obesity,
and glucose intolerance, making it a potential therapeutic target
for treating some diseases, including cancer [16]. However, ER-to-
lysosome-related degradations, including macroautophagy (also
known as autophagy) and ER-specific autophagy (ER-phagy), are
necessary for the clearance of abnormally aggregated proteins
that cannot be recognized by ERAD partners or that are too large
to be re-transported to the cytoplasm [17].
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Autophagy is a physiological process tightly regulated by
several molecules and autophagy-related genes (ATGs) that are
involved in maintaining cellular homeostasis. Autophagy involves
two key pathways, the Atg12-Atg5-Atg16 and Atg8/microtubule-
associated protein 1 light chain 3 (LC3) pathways. LC3/Atg8
covalently binds to phosphatidylethanolamine (PE), and the
soluble form of LC3 (LC3-I) is converted to LC3-II after binding
to PE, which is a classic marker for autophagy. Autophagy not only
reduces ER load by degrading abnormally aggregated proteins,
such as misfolded or unfolded proteins, but also releases
degraded products and provides materials for the synthesis of
other new proteins, indicating that autophagy contributes to the
maintenance of ER homeostasis [10]. Margariti et al. demonstrated
that the IRE1/XBP1s and IRE1/JNK axis activate the autophagy
inducer beclin-1 [18]. Chen et al. showed that the induction of the
PERK/eIF2α/ATF4 axis is critical for ATG expression [16]. However,
unlike ERAD, which is limited to protein degradation, ER-related
autophagy can be divided into ER stress-mediated autophagy and
ER-phagy. The former is involved in the degradation of damaged
proteins and organelles, whereas the latter selectively degrades
parts of the ER through ER-phagy receptors [12]. ER stress-induced
autophagy has two main functions. The first is the formation of ER-
containing autophagosomes (ERA), which engulf ER or aggregated
proteins that cannot be processed by other pathways. The second
function is the reduction of the expanded ER level to normal levels
after the alleviation of ER stress. Unlike general autophagy, ER-
phagy occurs continuously under normal conditions and is
enhanced during starvation. Recent research has identified eight
ER-phagy receptors in mammals, including family with sequence
similarity 134, member B (FAM134B), SEC62, reticulon-3L (RTN3L),
cell-cycle progression gene 1 (CCPG1), atlastin GTPase 3 (ATL3),
testis-expressed protein 264 (TEX264), tripartite motif containing
13 (TRIM13), and Calcium Binding And Coiled-Coil Domain 1
(CALCOCO1) [19]. However, little is known about the regulatory
mechanisms of ER-phagy.

ER-overload response (EOR)
In contrast to UPR, EOR initiates other survival-promoting
mechanisms to counteract the signal regulation of ER stress
induced by prolonged storage of properly folded protein in the
ER. This process involves a relatively independent signal path, the
EOR-Ca2+-ROS-NF-κB (nuclear factor kappa B) pathway. The main
mechanism involves the activation of NF-κB to initiate the
expression of multiple pro-inflammatory proteins and cell adhe-
sion molecules and regulate cell apoptosis [6]. However, further
research is needed to elucidate the relevant mechanisms.

DYSREGULATION OF ER HOMEOSTASIS IN KIDNEY DISEASES
Recently, it was estimated that more than 850 million people
worldwide are affected by kidney disorders, and approximately
10% of adults are affected by some form of chronic kidney
diseases (CKD) [20]. The global burden of acute kidney injury (AKI)-
related mortality rates currently far exceeds that of breast cancer,
heart failure, or diabetes [21]. Diabetic nephropathy (DN), which
affects approximately one in three people with diabetes, is listed
as the leading cause of end-stage kidney disease worldwide [22].
CKD is expected to be the fifth leading cause of death globally by
2040 [23].

ER stress in CKD
Previous studies have shown that ER function is important for
protein homeostasis in the kidneys, and ER stress is involved in
primary glomerulonephritis and secondary glomerular disease.
Studies have reported an increase in the levels of ER stress markers
in renal biopsy samples in patients with minimal change disease,
focal segmental glomerulosclerosis, membrane nephropathy, and
proliferative glomerulonephritis. ER stress is an important factor in

the decline in kidney function towards CKD and end-stage renal
disease (ESRD) in patients with diabetes and/or hypertension [24].
Some studies have confirmed that chronic ischemia-induced
proteinuria and ER stress can promote tissue remodeling and CKD
progression [25, 26]. Mohammed-Ali et al. observed an increase in
the expression of ER stress key genes (Grp78, Chop, Atf6, and
pleckstrin homology-like domain family A member) and the
simultaneous occurrence of albuminuria and renal lesions with
UPR activation during the early stages of CKD, confirming that UPR
is involved in CKD [27]. In inherited single-gene kidney disorder,
mutations in collagen nephropathy collagen type IV alpha 5 chain
(COL4A5) and COL4A3 can cause upregulation of ER stress markers
(GRP78, calnexin, calreticulin, GADD34, XBP1s, and CHOP) and ERAD
markers (ER degradation enhancement α-mannosidase-like protein,
EDEM protein) [28, 29]. Moreover, uromodulin (UMOD) mutations
result in its retention within the ER of renal tubular cells [30],
confirming that ER stress plays an important role in the develop-
ment of kidney injury. In addition, it is more intuitive that dilated
and enlarged ER lesions have been observed in biopsy samples
from patients with membranous nephropathy using an electron
microscope. ER retention of misfolded proteins in the mesangial
and tubular epithelium has been observed in mesangial prolifera-
tive glomerulonephritis and DN [24]. Mice with GRP78 mutations
may develop severe tubulointerstitial lesions with age [31].
Moreover, podocyte IRE1α-deficient mice have been shown to
exhibit podocyte damage, including dilated ER and mitochondria
damage [32]. SEC63 and XBP1 double-defective mice reportedly
exhibited podocyte apoptosis; in contrast, the intact XBP1 pathway
can alleviate stress in the ER and maintain normal glomerular
filtration barrier [33]. A recent study showed that simultaneous
inactivation of XBP1 and SEC63 in the collecting duct also induces
inflammation and activation of myofibroblasts, leading to chronic
tubulointerstitial kidney injury [34, 35]. In addition, in animal models
of polycystic kidney disease, the accompanying inactivation of
SEC63 and XBP1 in distal renal tubules significantly reduced the
maturation of polycystic protein-1 and aggravated the polycystic
kidney phenotype [36] (Fig. 1).

ER stress in AKI
Drug-induced nephrotoxic AKI, including cisplatin-induced AKI, is
characterized by ER stress [37, 38]. The activation of UPR during
AKI can prevent the negative effects of ER stress in the short term
[38, 39]. However, persistent activation of UPR can also worsen
AKI. For example, Wang et al. reported that intermedin (IMD), a
new member of the family of calcitonin/calcitonin gene-related
peptides, can prevent renal ischemia–reperfusion injury (IR) by
inhibiting ER stress-induced apoptosis [40]. Generally, it is believed
that mild to moderate ER stress in AKI promotes cell survival and
plays a cytoprotective effect, whereas severe ER stress accelerates
apoptosis, indicating the concept of ER stress as a “double-edged
sword”. Further studies are necessary to extensively elucidate the
mechanism of ER stress in AKI. Research findings suggest that ER
stress activation can lead to inadequate renal remodeling during
the transition from AKI to CKD. ER stress has been shown to alter
the characteristics of renal tubular epithelial cells, promote
epithelial-to-mesenchymal transition, induce cell reprogramming,
and promote fibrosis, leading to the loss of normal kidney
structure [22, 31]. Chronic persistent inflammation is a driver of
uncontrolled healing and tissue damage in AKI-to-CKD.
Recent studies have shown that persistent ER stress can act as a

driver of inflammatory signaling, exacerbating the activation of
major UPR branches (IRE1α/XBP1, PERK/ATF4, and ATF6), inducing
the expression of numerous genes involved in inflammation, cell
death, autophagy, and oxidative stress. For example, sustained
activation of the UPR pathway (IRE1α) can lead to the activation of
tumor necrosis factor receptors and the transcription factor AP-1,
which in turn promotes the activation of pro-inflammatory
pathways, such as NF-κB, nucleotide-binding oligomerization
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domain (NOD) proteins NOD1/2, and receptor-interacting protein
kinase (RIP)-dependent cascades. PERK activation and eIF2α
phosphorylation increase the stability of NF-κB. ER stress in
macrophages has been shown to promote NF-κB-driven pro-
inflammatory phenotypic differentiation, manifested by an
increase in pro-inflammatory cytokines, such as interleukins IL-
1β and IL-18 [22, 41]. In summary, ER stress and UPR may cause
fibrosis by inducing apoptosis, myofibroblast differentiation,
epithelial–mesenchymal transition, pro-inflammatory macrophage
polarization, and Ca2+ release into the cytoplasm matrix, leading
to various pathological changes [42, 43].
Notably, ER stress is critical in AKI-to-CKD progression [44]. Jao

et al. found that ATF6α can disrupt fatty acid metabolism in the
proximal renal tubule in ischemia/reperfusion injury (IRI), leading
to lipotoxicity-mediated apoptosis and upregulation of connective
tissue growth factor (CTGF) and tubulointerstitial fibrosis [45].
Moreover, the production of reactive oxygen species (ROS) during
renal IRI is also involved in the pathogenesis and progression of
CKD. Nuclear factor E2-related factor 2 (Nrf2) acts as an antioxidant
transcriptional regulator that can resist oxidative stress by
activating antioxidant genes, such as catalase, heme oxygenase-
1 (HO-1), and superoxide dismutase. However, studies have shown
that Nrf2 is a downstream target for the ATF6, IRE1/JNK, and PERK
pathways [14, 46, 47]. Genetic studies of the reticulon-1 (RTN1)
protein, an ER-forming protein primarily localized in the ER, have

also confirmed the role of ER stress in AKI-to-CKD progression. In
an obstruction-induced AKI model, inhibition of RTN1 expression
attenuated ER stress, apoptosis, and renal fibrosis [48]. Moreover,
Fan et al. found that multiple markers of ER stress, including
RTN1A, were expressed in kidney biopsy samples in patients with
AKI, and their expression levels were positively correlated with AKI
severity [49]. Furthermore, studies have shown that ER stress or ER
stress-dependent UPR activation also regulates the expression of
vascular endothelial growth factor [50], which also plays an
important role in the maintenance and survival of endothelial cells
during AKI. Fibroblast growth factor 1 (FGF1) therapy can inhibit
diabetes-induced ER stress, and FGF10 can attenuate renal IRI-
induced kidney cell apoptosis in AKI by reducing the UPR [51, 52].
In addition, Zhang et al. showed that erlotinib-induced inhibition
of the estimated glomerular filtration rate (eGFR) alleviated the
development of diabetic nephropathy in type 1 diabetes, partially
mediated by inhibition of the mechanistic target of rapamycin
(mTOR) and activation of AMP-activated protein kinase (AMPK),
and is accompanied by increased level of autophagy and
inhibition of ER stress [53]. Moreover, Thitinun et al. found that
the production of renal erythropoietin (EPO) is significantly related
to ER stress, especially the activation of transcription factor ATF4,
which can inhibit the 3' enhancer activity of EPO [54]. The specific
mechanisms of ER stress-driven AKI or AKI-to-CKD progression are
not well elucidated (Fig. 2).

Fig. 1 Restoration of ER homeostasis presents a therapeutic potential for the treatment of chronic kidney diseases. In chronic kidney
diseases, various pathogenic factors, including free fatty acid, angiotensin II, advanced glycation end products, and hyperglycemia, disrupt ER
homeostasis characterized by the accumulation of massive misfolded proteins. UPR, ERAD, autophagy or ER-phagy, and EOR were induced by
ER stress to restore ER homeostasis. However, persistent activation of UPR, comprised of at least three UPR stress sensors IRE1 α, PERK, and
ATF6, triggers apoptosis in renal intrinsic cells, resulting in the progression of kidney diseases. Eight mammalian ER-phagy receptors have
been identified, including FAM134B, SEC62, RTN3L, CCPG1, ATL3, TEX264, TRIM13, and CALCOCO1.
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ER-associated autophagy and ER-phagy in kidney diseases
As a cellular homeostatic mechanism, autophagy plays a key role
in several cellular physiological and pathophysiological conditions,
including cell growth, differentiation, and death, and the
regulation of energy balance. In the basal state, cell autophagy
is usually low, mainly for the degradation of long-lived proteins
and organelles. It has been suggested that at least a part of the
membrane of autophagosomes originates from the ER membrane
[55]. Evidence suggests that autophagy is associated with UPR and
is necessary (other than ERAD) for the clearance of misfolded
proteins from secretory pathways. Although ER stress and
autophagy can function independently, they possess some
common features, including protecting cells by alleviating stress
and inducing cell death under extreme stress conditions [24]. ER
stress induces autophagy as a mechanism to protect cells from
apoptosis [56]. The PERK pathway plays a crucial role in triggering
autophagy, and downstream ATF4 and CHOP have been shown to
transcribe multiple ATGs, such as LC3B, ATG5, ATG12, beclin1, and
ATG16L1. Inhibiting the expression of PERK can reduce autophagy.
Autophagy can balance ER expansion induced by ER stress,
improve cell survival rate or induce non-apoptotic death accord-
ing to the environment [57]. Kawakami et al. reported that
treatment with the classic ER stress inducer tunicamycin resulted
in a significant increase in LC3-II expression(the marker of
autophagy) in the proximal renal tubular cells of the kidneys,
indicating that ER stress activates autophagy [58]. Autophagy is an
adaptive mechanism for cell survival during ER stress, and
inhibiting autophagy can accelerate cell death. Interestingly, in
2015, Dong et al. found that autophagy is activated under low ER
stress to overcome mTOR inhibition and prevent apoptosis to
promote cell survival. Conversely, autophagy may be blocked in
response to severe ER stress to inhibit apoptosis via mTOR
activation [59]. Recently, Dong et al. further investigated the
upstream state of ER stress in the study of chronic fibrosis animal
model induced by tunicamycin. PERK-eIF2α pathway activates

autophagy, which may antagonize ER stress and provide a
negative feedback mechanism to alleviate cell stress. These
findings indicate the crosstalk between ER stress and autophagy
in chronic kidney injury and fibrosis [42].
Eight ER-phagy receptors have been discovered [19], but their

roles in kidney pathologies have not been identified. Recently,
Jiang et al. found that quantum dot-induced nephrotoxicity
models not only disrupted ER ultrastructure but also induced UPR
and FAM134B-dependent ER-phagy [60]. Huang et al. argued that
TRIM13, which reduces renal cell carcinoma metastasis and
invasion, could serve as a candidate prognostic marker and
potential therapeutic target for renal cell carcinoma [61]. In
addition, Li et al. reported that TRIM13 could serve as a potential
target for the treatment of diabetic nephropathy [62]. Analysis of
the Woroniecka Diabetes Study dataset showed that the ER-
phagosome pathway and interleukin–interferon signaling are
overactivated and extracellular matrix (ECM) components are
overexpressed in the kidneys of patients with diabetes [63]. In the
future, analyzing the mechanism of ER-associated autophagy and
ER-phagy will improve the understanding of the pathogenesis of
kidney illnesses and become a new therapeutic target.

ER CROSSTALK WITH OTHER ORGANELLES IN KIDNEY
DISEASES
ER crosstalk with mitochondria
Direct interaction of membrane contact sites (MCS) in organelle
has been receiving increasing attention [64]. Contact between ER
and mitochondria occurs most often, and the part of the ER that is
directly connected to the mitochondria is called the mitochondria-
associated ER membrane (MAM) [65]. MAMs are considered the
signal hubs for lipid and Ca2+ transfer between mitochondria and
ER. MAM plays an important role in Ca2+ signaling, lipid
homeostasis, mitochondrial dynamics, ER stress, apoptosis,
inflammation, and autophagy [66, 67]. ER requires high levels of

Fig. 2 Role of ER stress in AKI-CKD. Various pathogenic factors, such as ischemia, toxicity, infection, and inflammation, cause ER stress in renal
intrinsic cells. Autophagy induced by ER stress promotes recovery and restricts renal inflammation. In contrast, persistent activation of UPR
impairs recovery progress. Severe ER stress leads to maladaptive repair in the transition from AKI to CKD.
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Ca2+ in the ER lumen to function properly, and changes in ER Ca2+

homeostasis can lead to rapid accumulation of misfolded proteins,
activating the UPR. Mitochondria and ER contact at the MAM
regulates Ca2+ signaling and activates ATP production to meet
energy demands and accelerate the removal of misfolded proteins
in the ER. However, excessive and persistent increase in Ca2+ level
can open mitochondrial permeability transition wells (mPTP) and
release cytochrome c, leading to apoptosis [68]. Studies have
shown that MAM integrity is strongly associated with the
progression of kidney disorder. Igwebuike et al. confirmed that
MAM integrity disruption occurs in the early stages of gentamicin-
induced AKI and precedes downstream UPR activation and cell
death [69]. Yang et al. found that MAM integrity was impaired in
renal biopsy samples of patients with DN, and the kidneys of
streptozotocin (STZ)-induced diabetic mice, which was inversely
correlated with lipid levels and kidney injury. In addition, the
expression of MAM control proteins (disulfide-bond A
oxidoreductase-like protein (DsbA-L), phosphofurin acidic cluster
sorting protein 2 (PACS-2), and mitofusin 2 (MFN-2) was
modulated at different stages of DN [65, 70, 71]. DsbA-L acts as
an antioxidant to reduce ER stress, and the reduction in DsbA-L
expression disrupts MAM integrity. In contrast, DsbA-L over-
expression can inhibit apoptosis by maintaining MAM integrity
and MFN-2 expression and improve renal damage [70]. PACS-2
deficiency not only disrupts MAM integrity but also prevents
mitochondria formation and mitochondrial autophagy in the
proximal renal tubules under diabetic condition [72, 73]. MFN2
mediates mitochondrial dysfunction by activating the PERK

pathway, leading to a decrease in MAM levels and apoptosis of
podocytes [74]. Overexpression of MFN2 improves Cu-induced
MAM dysfunction and increases autophagy [75].
Moreover, RTN1A overexpression can worsen ER stress and

mitochondrial dysfunction of renal tubular epithelial cells under
diabetic conditions by regulating ER–mitochondrial contact [76].
Excessive vanadium exposure can induce ER–mitochondrial
dysfunction, whereas inhibiting inositol triphosphate receptors
(IP3R) improved ER mitochondrial dysfunction and attenuated
vanadium-induced apoptosis in duck tubular epithelial cells [77].
In addition, crosstalk between the two organelles can be

regulated through the UPR signaling pathway. Studies have
shown that under pathogenic conditions of unilateral IRI-induced
tubulointerstitial fibrosis, ATF6-induced decrease in peroxisome
proliferator-activated receptor α (PPARα) expression downregu-
lates the expression of downstream genes of mitochondrial β
oxidation, leading to lipid accumulation and tubular fibrosis [78].
There was a decrease in ER stress and mitochondrial fragmenta-
tion in a unilateral ureteral obstruction (UUO) model of CHOP-
deficient mice (with no expression of PERK, IRE1α, and ATF6).
CHOP acts as a regulator during mitochondrial fission, upregulat-
ing the expression of fission and fusion mitochondrial proteins
such as Fis1 and Opa1, promoting a reduction in mitochondrial
fracture in the UUO model [79] (Fig. 3).
Mitochondrial UPR (mtUPR) also optimizes mitochondria-ER

interactions. For example, CHOP induces apoptosis during ER
stress by lowering the protein level of Bcl-2 and by transferring
Bax from the cytosol to mitochondria. In mitochondria, CHOP

Fig. 3 ER interact closely with other organelles to maintain the function of kidney intrinsic cells. A Bidirectional membrane trafficking
between ER and Golgi is mediated by COPI and COPII. When the MUC1 fs protein is trapped in the vesicles containing TMED9 cargo receptors
in the early secretion pathway, and cannot promptly be degraded by the lysosome, the accumulation of toxic MUC1 leads to mucin 1
nephropathy (MKD). B ER stress induces ROS production in mitochondria. The interface between the Golgi apparatus, ER, and mitochondria is
an important hub for the activation of NLRP3 Inflammasome to cause pyroptosis. C Transmembrane and coil domain family 1 (TMCC1)
concentrates at the ER-endosome membrane contact sites and controls ER-associated bud fission and subsequent cargo sorting to the Golgi.
D The part of ER directly connected with mitochondria is called mitochondrial associated ER membrane (MAM), which is composed of a
variety of proteins, including inositol triphosphate receptor (IP3R), voltage-dependent anion channel (VDAC), glucose-regulated protein 75
(GRP75), and fibroin 2 (Mfn2) PACS-2, DsbA-L. Calcium can be transported from ER to mitochondria. Mitochondrial fission also occurs at the
MAM site. In addition, MAM is closely related to autophagy, mitophagy, and ferroptosis.
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induction acts as an amplifier and integrator of apoptosis and is
thought to be an early event of mtUPR [80]. Notably, although ER
and mtUPR induce CHOP upregulation, there appears to be an
overlap between the UPRs, but virtually each of them activate the
transcription of a different set of target genes [81]. Interestingly,
Zhong et al. showed that inhibition of ER stress with
4-phenylbutyric acid (4-PBA) mitigates kidney damage and
mitochondrial apoptosis due to nephrotoxicity of
3-monochloropropane diol (3-MCPD) [82]. Another study showed
that nicotine (NIC), a toxic component of smoke, can accelerate
the progression of pre-existing kidney damage by disrupting
mitochondrial structural integrity, triggering ER stress, and altering
the expression of mitochondrial and ER stress genes [83]. Overall,
these findings suggest that the crosstalk between ER and
mitochondria has important implications in kidney disorders and
that the regulation of both may be a potential therapeutic
strategy for kidney protection.

Endosome, Golgi, and ER crosstalk in kidney diseases
Endosomes are membrane-bound vesicles that transport various
proteins between the Golgi and ER. Ashley et al. demonstrated that
early and late endosome shrinkage and fission sites are spatially and
temporally associated with ER contact sites [84]. Melissa et al.
reported that endosomal fission requires transmembrane and coil
domain family 1 (ER membrane protein, Transmembrane and Coiled-
Coil Domain Family 1, TMCC1) and coronin 1C (endosomal localized
actin regulator) at the ER-endosomal membrane contact site. TMCC1
functions to stabilize the ER membrane contact site (ER MCS) and has
a cargo sorting domain on the endosomal bud. A previous study
showed that TMCC1 depletion results in defects in cargo transport
from late endosomes to the Golgi [85]. A crosstalk between ER and
endosomes is also associated with kidney pathologies. Mucin 1
kidney disease (MKD) is an autosomal dominant hereditary tubular
interstitial nephropathy characterized by progressive tubulointerstitial
cyst formation. MKD is caused by a code shift mutation in mucin 1
(MUC1). Intracellular accumulation of misfolded proteins causes toxic
proteinopathies, diseases without targeted therapies. Moran et al.
showed that MKD is a toxic proteinopathy. The abnormal MUC1
protein (MUC1-fs) is trapped in endosomes containing transmem-
brane P24 trafficking protein 9 (TMED9) cargo receptors between the
ER and the Golgi apparatus, preventing unfolded proteins from being
transported to lysosomes through secretory pathways for degrada-
tion. As a result of the accumulation of MUC1-fs in tubular cells, the
ATF6 branch that activates the UPR pathway eventually causes
tubular damage (Fig. 3). BRD4780, as a candidate compound, has
been shown to combine with TMED9 to releaseMUC1-fs and reroutes
it for lysosomal degradation. BRD4780 is expected to become a
leading compound for the treatment of renal toxic protein diseases
[65, 86]. In addition, endosome and Golgi-associated degradation
(EGAD) pathways have been identified to play important roles in ER
clearance to prevent protein accumulation in the ER. Degradable
substrates of the EGAD pathway include ER-resident membrane
proteins (orosomucoid 2, Orm2), negative regulators of sphingolipid
biosynthesis) required for lipid biosynthesis. Although this selective
mechanism is found in yeast, Oliver et al. argued that it is not
impossible to extract ubiquitinated ORM1-like (ORMDL) proteins from
membranes in a process similar to EGAD. Given that elevated levels of
the ORMDL3 protein are associated with diabetes, ulcerative colitis,
Crohn’s disease, and asthma, the chelation of ORM family proteins
from ER and its subsequent ubiquitin-dependent degradation may
have pathophysiological implications [87].

ER CROSSTALK WITH DEATH MECHANISMS IN KIDNEY
DISEASES
When continuous UPR fails to restore ER homeostasis, the
downstream apoptosis pathways initiated by UPR, including
IRE1-tumor necrosis factor (TNF) receptor-associated factor 2

(TRAF2)-apoptosis signal-regulating kinase 1 (ASK1)-JNK, Bax-Bak/
IRE1, TRAF2-caspase-12/caspase-4, and PERK/ATG6/IRE1-CHOP,
may eventually cause cell death [88, 89]. In addition to activating
the apoptotic pathway described above to induce cell death, UPR
is associated with pyroptosis, programmed necrosis, and ferrop-
tosis. Previous studies have found that ER stress plays an
important role in kidney pathologies caused by pyroptosis, and
CHOP-caspase-11 triggered by overactivated ER stress may be an
important pathway for pyroptosis-mediated IRI or hypoxic
reoxygenation injury (HRI). Pretreatment with a low-dose of ER
stress inducer tunicamycin can reduce IRI-induced pyroptosis and
renal tissue damage. Moreover, silencing CHOP has been shown
to decrease caspase-11 activity and IL-1β production, and it
reduces IRI-induced pyroptosis of renal tubular epithelial cells
[90, 91]. In addition, the occurrence of ferroptosis is also
accompanied by the generation of ER stress. ER stress responses,
especially the PERK-ATF4 pathway, often act as a protective
mechanism to negatively regulate ferroptosis, especially in cancer
cells involved in the formation of drug resistance [92]. However,
some studies have shown that ER stress response promotes
ferroptosis in some disease conditions. For example, considerable
iron deposition, lipid radical accumulation, mitochondrial shrink-
age, and other ferroptosis features have been observed in colonic
mucosal cells in patients with ulcerative colitis (UC) and mouse UC
models. The ER stress marker molecule GRP78 and PERK-ATF4-
CHOP pathway are substantially activated in colonic epithelial cells
of UC mice. Treatment with GSK414, an inhibitor of PERK, inhibits
ferroptosis caused by dextran sulfate sodium salt (DSS), with a
considerable decrease in the iron level and lipid peroxidation in
colonic epithelial cells in mice [93]. Park et al. found that cigarette
smoke condensate (WCSC) treatment induced ER stress, PERK,
IRE1α, and ferroptosis pathways. Moreover, gene chip analysis
showed that ER stress promotes the occurrence of ferroptosis.
Under pathological conditions, the activation of ER stress pathway
can exacerbate the occurrence of ferroptosis, confirming that ER
stress can also cause ferroptosis under persistent or harsh disease
conditions [94]. Recently, Zhao et al. demonstrated that the PERK-
eIF2α-ATF4-CHOP pathway can inhibit ER stress and reduce
cadmium-induced ferroptosis in cadmium-induced models of
heavy metal toxic kidney injury. It was observed that ferroptosis
and cadmium-induced nephrotoxicity were regulated by the
MitoROS-ER stress-ferritinophagy axis [95] (Fig. 3).

TREATMENT OF KIDNEY DISEASES BY MODULATING ER
Studies have shown that ERdj3 and mesencephalic astrocyte-
derived neurotrophic factor (MANF) that lack the KDEL motif can
be used as indicators of glomerular ER stress [96]. ER stress marker
levels in patients with AKI, such as RTN1A, are positively correlated
with the severity of AKI [25, 97]. Cysteine-rich epidermal growth
factor (EGF)-like domain 2 (CRELD2), a sensitive urine biomarker
used to detect ER stress in several kidney disorders, including
ischemic AKI. For example, the CRELD2 level is substantially
increased in the urine of pediatric patients undergoing cardiac
surgery within 6 h after surgery and patients with severe
postoperative AKI [30, 98]. Circulating GRP78 and CHOP levels
may be novel biomarkers for identifying diabetic kidney disease
(DKD) [99]. Overall, these biomarkers may be beneficial for the
early diagnosis, risk stratification, and monitoring of treatment
response in patients with kidney diseases (Table 1).
Previous studies have shown that multiple molecules/drugs

affect the outcome of kidney illnesses by modulating the UPR.
First, the regulation of ER stress in kidney diseases could be
achieved by targeting the IRE1-XBP1 and PERK-eIF2α axis.
Angiopoietin (ANG) is a ribonuclease that has been shown to
play a physiologically relevant ER-stress-mediated adaptive role in
the translation control of kidney injury in an IRE1-XBP1-dependent
manner [100]. Quercetin is one of the most available antioxidant
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flavonoids in the human diet and has been shown to inhibit the
IRE1-TRAF2-JNK pathway in UUO [101], DN [102], asymmetric
dimethylarginine (ADMA) [103], and cadmium-induced kidney
injury [104], and maybe a powerful treatment option for targeting

UPR. Salubrinal, a selective inhibitor of GADD34-phosphatase-1
(PP1) prevents dephosphorylation of eIF2α and protects cells from
ER stress-induced apoptosis and hyperglycemia-induced podocyte
damage [105], as well as kidney damage caused by toxic drugs,

Table 1. Summarize the biomarkers of ER stress associated with kidney disease.

Protein Disease model Function/dependency Result References

ANG CKD, AKI (KTR) Reflect the severity of the renal injury Yes Tavernier et al. [121]

CRELD2 AKI (TM, I/R) NS,
ADTKD-UMOD

Urine ER stress biomarker, used for early diagnosis and
guidance of ER-targeted therapy

Yes Kim et al. [98]

ERdj3 PHN, PAN Reflect glomerular ER stress Yes Tousson-Abouelazm et al. [96]

MANF PHN, PAN, NS, AKI (TM,
I/R)

Reflects ER stress in glomerulus and tubules Yes Tousson-Abouelazm et al. [96];
Kim et al. [122]

RTN1A FAN, AAN, HIVAN, CKD
(UUO, DN)

Mediator of UPR in kidney disease Yes Fan et al. [48];
Fan et al. [97]

GRP78
CHOP

T2DM Biological indicators to distinguish DKD Uncertain Ma et al. [99]

ANG angiogenin, CKD chronic kidney disease, AKI acute kidney injury, KTR transplant failure, CRELD2 cysteine rich with EGF like domains 2, TM tunicamycin,
I/R ischemia–reperfusion, NS nephrotic syndrome, ADTKD autosomal dominant tubulointerstitial kidney disease, UMOD uromodulin, PHN passive Heymann
nephritis, PAN puromycin aminonucleoside nephrosis, MANF mesencephalic astrocyte-derived neurotrophic factor, RTN1A Reticulon-1A, FAN folic acid
nephropathy, AAN aristolochic acid nephropathy, HIVAN HIV-associated nephropathy, UUO unilateral ureteral obstruction, DN diabetic nephropathy, GRP78
glucose-regulated protein 78, T2DM diabetes mellitus type 2, DKD diabetic kidney disease, CHOP C/EBP homologous protein.

Table 2. Summarized the therapeutic effect of modulators targeting ER homeostasis in renal diseases.

Chemical Mechanism of action Animal model Therapeutic effect References

Quercetin IRE1 Rnase
activatior

UUO,
STZ-DN,
Cadmium
ADMA

ROS↓
MCP-1↓
TGF-β↓
Apoptosis↓

Jones et al. [101]; Anjaneyulu et al. [102];
Morales et al. [104]; Guo et al. [103]

Salubrinal eIF2α phosphatase inhibitor Cyclospo-rine
Cadmium
Cisplatin

ER Stress↓
Apoptosis↓
epithelial
phenotypic changes
(EPCs)↓
ROS↑
Apoptosis↑

Pallet et al. [107]; Komoike et.al. [108]; Wu
et al. [109]

Chrysin eIF2α phosphatase inhibitor db/db-DN ER Stress↓
Slit -diaphragm
protein ↓
Apoptosis↓

Kang et al. [110]

Tunicamycin Modulation of ER proteins IR anti-Thy1
nephritis

Kidney injury↓
GRP78↑

Prachasilchai et al. [112]; Inagi et al. [113]

sNogo-B Modulation of ER proteins STZ-DN Urinary albumin↓
Filtration↓
VEGF-A↑
Proliferation of
GECs↓
ER Stress↓

Hernandez-Diaz et al. [114]

Metformin AMPK activation UUO
AKI(TM)
Protein-Overload
proteinuria rats

Fibrosis↓
Apoptosis↓

Kim et al. [116]; Lee et al. [115]

4-PBA
TUDCA

Chemical
Chaperones

uIR,
UUO

Fibrosis↓
Apoptosis↓
Inflammation↓
Autophagy↓

Liu et al. [117]
Shu et al. [44]

KDM4C
JMJD3

Histone methylation regulates the
expression of ATF4 and XBP-1

AKI(TG)
UUO

ER stress
during kidney
injury↓

Diaz-Bulnes et al. [120]

UUO unilateral ureteral obstruction, STZ-DN streptozotocin-induced diabetic nephropathy, ADMA asymmetric dimethylarginine, ROS reactive oxygen species,
MCP-1 monocyte chemoattractant protein-1, TGF-β transforming growth factor-β, TM tunicamycin, I/R ischemia–reperfusion, GRP78 glucose-regulated protein
78, VEGF-A vascular endothelial growth factor-A, GECs glomerular endothelial cells, TM tunicamycin, TG thapsigargin, TUDCA tauroursodeoxycholic acid, 4-PBA
4-phenylbutyric acid.
“↑/↓” in Therapeutic effect represents an increase or decrease compared to controls.
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such as arsenic, paraquat, cyclosporine, cisplatin, and cadmium
[106–109]. Chrysin (5,7 dihydroxyflavone) is a natural flavonoid
found in propolis and mushrooms; it blocks hyperglycemic/
diabetes-mediated ER stress/UPR and podocyte apoptosis by
inhibiting PERK-EIF2α-ATF4-CHOP activation [22, 110]. CHOP
expression is involved in several diseases, and CHOP deficiency
can reduce renal fibrosis and inflammation [111]. Second, ER
protein homeostasis could be regulated by inducing UPR. ER
stress has been shown to elicit protective effects in several studies
and pretreatment with tunicamycin protects mice from acute
ischemic injury [112]. In a rat model of glomerulonephritis,
tunicamycin significantly reduced mesangial proliferation and
adhesion of Bowman capsules to glomerular clusters and
proteinuria [113]. Overexpression of sNogo-B (N-terminal fragment
of ER protein Nogo B) in circulation improved diabetic nephro-
pathy by reducing proteinuria, ultrafiltration, and abnormal
angiogenesis and protecting glomeruli [114]. The third type of
agents is the AMPK activators. Metformin (an AMPK activator)
inhibits ROS by inducing thioredoxin, an endogenous antioxidant
molecule, and inhibition of GRP78 expression in an albumin-
overloaded rat model protected tubular cells from albumin-
loading induced ER stress [115]. In addition, metformin also
inhibited ER stress and fibrosis in tunicamycin-induced AKI and
UUO mouse models [116]. The fourth type is the chemical
chaperones. Tauroursodeoxycholic acid (TUDCA) and 4-PBA could
be used to treat kidney disorders. 4-PBA has been approved by
the U.S. Food and Drug Administration (FDA) for use in children
with urea cycle disorder [16]. Both compounds contribute to the
alleviation of ER stress-related conditions, including renal fibrosis
and DN [44, 117]. In STZ-induced DN, 4-PBA and TUDCA alleviate
albuminuria and reduce the expression of GRP78, ATF6, PERK, JNK,
and CHOP, as well as inflammatory mediators [118]. In addition,
4-PBA pretreatment reduces the expression of NLRP3 and
inflammosomes [119]. The findings indicate that 4-PBA and
TUDCA are potential drugs to reduce renal fibrosis. However, the
multiple biological effects of drugs could lead to off-target effects.
Therefore, the development of drugs with precise ER targeting has
become an important research focus in the prevention and
treatment of related diseases.
Currently, research on ER-targeted drugs is still in its infancy, and

knowledge of the types of active targeting molecules and their
quantities is limited. Moreover, it would be difficult to meet the
needs of developing a multifunctional ER-targeted nanomedicine
using these targeted molecules. However, the clustered regularly
interspaced short palindromic repeats (CRISPR)/Cas9 genome
editing technology could be used to comprehensively test the
efficiencies of these drugs under different ER stress scenarios.
Human-induced pluripotent stem cells (hiPSCs) could be estab-
lished for disease modeling, mechanistic research, and future drug
discovery [30]. Overall, it is believed that these novel technologies
would greatly facilitate the implementation of precision medicine
in ER stress-mediated kidney pathologies and may lead to the
development of highly targeted ER stress modulators for individual
mutations. Notably, epigenetic enzyme block is also a promising
target for improving kidney damage. Recently, epigenetic kinetics
mediated by H3K9 and H3K27 histone methylation has been key to
regulating ATF4 and XBP1 transcription factor expression, provid-
ing potential treatment strategies for regulating the pathological
consequences of acute ER stress responses. Pharmacological
inhibition of histone demethylases (HDMs) (KDM4C and Jumonji
domain-containing protein-3) is considered to help eliminate
pathological consequences triggered by maladaptive UPR activa-
tion during kidney injury [120] (Table 2).

CONCLUSIONS
In summary, dysregulation of ER homeostasis in renal resident
cells not only affects characteristic pathophysiological markers but

also triggers the onset and progression of various kidney diseases
by promoting renal inflammation and fibrosis. Restoration of ER
homeostasis through UPR, ERAD, and autophagy presents a
potential for the treatment of kidney diseases. As ER regulators
may also have a variety of biological effects and off-target effects,
further studies are necessary to confirm the specificity and safety
of targeted agents.
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