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Oxidative resistance of leukemic stem cells and
oxidative damage to hematopoietic stem cells
under pro-oxidative therapy
Yongfeng Chen1, Yong Liang1, Xingjing Luo1 and Qiongying Hu1

Abstract
Leukemic stem cells (LSCs) and hematopoietic stem cells (HSCs) are both dependent on the hypoxic bone marrow
(BM) microenvironment (also known as the BM niche). There is always fierce competition between the two types of
cells, and the former exhibits a greater competitive advantage than the latter via multiple mechanisms. Under hypoxia,
the dynamic balance between the generation and clearing of intracellular reactive oxygen species (ROS) is conducive
to maintaining a quiescent state of cells. Quiescent LSCs can reside well in the BM niche, avoiding attack by
chemotherapeutic agents, which is the cause of chemotherapeutic resistance and relapse in leukemia. HSCs acquire
energy mainly through anaerobic glycolysis, whereas LSCs achieve energy metabolism largely through mitochondrial
oxidative respiration. Mitochondria are the primary site of ROS generation. Thus, in theory, mitochondria-mediated
respiration will cause an increase in ROS generation in LSCs and a higher intracellular oxidative stress level. The
sensitivity of the cells to pro-oxidant drugs increases as well, which allows for the selective clearing of LSCs by pro-
oxidative therapy. However, HSCs are also highly sensitive to changes in ROS levels, and the toxic effects of pro-
oxidant drugs on HSCs poses a major challenge to pro-oxidative therapy in leukemia. Given the above facts, we
reviewed studies on the oxidative resistance of LSCs and the oxidative damage to HSCs under pro-oxidative therapy.
An in-depth investigation into the oxidative stress status and regulatory mechanisms of LSCs and HSCs in hypoxic
environments will promote our understanding of the survival strategy employed by LSCs and the mechanism of the
oxidative damage to HSCs in the BM niche, thus facilitating individualized treatment of leukemia patients and helping
eliminate LSCs without disturbing normal hematopoietic cells.

Facts

1. Redox homeostasis is vital for maintaining the
quiescence of LSCs. Quiescent LSCs can reside in
the BM niche to avoid attack by chemotherapeutic
agents, which is the cause of chemotherapeutic
resistance and relapse in leukemia.

2. Theoretically speaking, LSCs undergoing
mitochondria-mediated respiration will also exhibit
an increased sensitivity to pro-oxidant drugs, which

provides a basis for the leukemia treatments
targeting redox homeostasis. However, the BM
niche can protect LSCs from pro-oxidative
treatments, and LSCs can also resist oxidative
damage through antioxidative mechanisms.

3. For HSCs in hypoxic BM niches, a low ROS level is
conducive to maintaining their stem cell features. A
higher ROS level not only disrupts the quiescent
state of HSCs but also may kill bone marrow
hematopoietic stem cells (BMHSCs) or even cause
BM suppression. It is then necessary to reduce the
dosage or even completely stop chemotherapy.
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Open questions

1. In pro-oxidative treatment of leukemia, how can the
protective effects of the BM niche on LSCs be
blocked?

2. Leukemia is a disease of high heterogeneity, and the
oxidative stress of leukemic cells varies across
patients and dynamically within the same patient.
A level of ROS that is too low during pro-oxidative
treatment may be beneficial for the survival and
proliferation of leukemic cells. However, if it is too
high, it will exacerbate the damage to normal cells.
Therefore, it is necessary to determine the optimal
pro-oxidative treatment.

3. At present, studies on pro-oxidant therapy for
leukemia are mainly conducted in animal
experiments or in vitro cell experiments.
Therefore, they cannot fully reflect the real
situations in vivo. More convincing evidence is
needed to reveal what the true redox state of LSCs
and HSCs is in different types and stages of leukemia
and whether there are significant differences in the
sensitivity of the two cells to ROS.

4. The regulatory mechanism for redox homeostasis
may differ between LSCs and HSCs. As such, is it
possible to identify specific targets for pro-oxidative
treatment to kill LSCs while avoiding damage to
BMHSCs?

Introduction
Leukemia is a hematopoietic malignancy caused by

mutations in BMHSCs or hematopoietic progenitor cells
(HPCs). With the application of novel chemotherapeutic
drugs and the progress in hematopoietic stem cells
(HSCs) transplantation, the remission rate and disease-
free survival of leukemia patients have improved. How-
ever, during chemotherapy, leukemic stem cells (LSCs)
may reside inside the BM niche in a quiescent state,
evading the killing power of the chemotherapeutic agents.
Thus, the protective effect of the BM niche on residual
LSCs is the cause of chemotherapeutic resistance and
relapse in leukemia1,2.
In a hypoxic BM niche, maintenance of quiescence

and the biological functions of HSCs and LSCs, cell
survival, and proliferation are closely related to the
intracellular reactive oxygen species (ROS) level and
oxidative stress status3. Much evidence in recent years
has indicated that targeting the BM niche and dis-
rupting redox homeostasis may be a new treatment
strategy for leukemia4. However, HSCs are also highly
sensitive to an increased ROS level. How to reduce the
cytotoxic effects of ROS on HSCs while killing LSCs
with a high ROS level represents another challenge in
pro-oxidant therapy for leukemia. Therefore, an in-

depth investigation into the oxidative stress status and
regulatory mechanisms of HSCs and LSCs in hypoxic
environments will promote our understanding of the
survival strategy of LSCs in the BM niche and the
limitations of HSCs in resisting oxidative injury. This
understanding will help to develop individualized
treatments that can protect normal BMHSCs while
eradicating LSCs.

Hypoxia is significant for maintaining the biological
functions of HSCs
HSCs in a hypoxic BM microenvironment mainly rely

on anaerobic glycolysis for energy, and the ROS level
associated with anaerobic glycolysis is relatively low.
However, the differentiation of HSCs may lead to dynamic
changes in the ROS level, and it was found that low
endogenous ROS levels were crucial for maintaining the
quiescence of HSCs5. Whereas an excessively high ROS
level will drive HSCs to shift from the quiescent state, and
their self-renewal capacity will be reduced, causing oxi-
dative injury or even death of HSCs. Moreover, an
increased production of ROS has also been associated
with genomic instability and enhanced DNA damage,
including double-strand breaks, and performs a signaling
function to promote cell proliferation and migration, thus
contributing to leukemic cell transformation6,7. It should
be noted that ROS also has a pivotal role in innate
immunity by acting as signaling molecules and as a direct
effector that kills pathogens via phagocytosis. However, a
persistently low ROS level in HSCs will not only lead to
loss of stem cell function but also cause opportunistic
infections8. Thus, the balance of ROS levels is critical for
maintaining the biological functions of HSCs and host
immunity.
In terms of the metabolism of HSCs, many regulatory

mechanisms, including high antioxidant defense and a
diversity of regulatory molecules, such as P53, FOXO3,
Akt, MAPK, hypoxia inducible factor 1 (HIF-1) and ataxia
telangiectasia mutated (ATM), are involved in maintain-
ing the low ROS level of HSCs to protect HSCs from
oxidative stress-induced injury9–13. Bone marrow stromal
cells (BMSCs) residing in the HSC niche also has a vital
role in maintaining the redox homeostasis of HSCs, and
ROS in HSCs can be transferred to BMSCs, maintaining a
low ROS level14. In addition, stromal cells can regulate the
quiescence, proliferation, and differentiation of HSCs
through direct contact with HSCs and secretion of a
variety of cytokines via multiple signaling pathways (Fig. 1).
Among them, the chemokine ligand 12 (CXCL12)/C-X-C
chemokine receptor type 4 (CXCR4) axis has the most
important role in the interaction between BMSCs and
HSCs15. In addition, different types of immune cells and
nerve cells are also involved in the regulation of the HSC
microenvironment16,17.
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LSCs are more adapted to the hypoxic environment of the
BM niche than HSCs and inhibit the latter
LSCs and HSCs share similar self-renewal and differ-

entiation features and other biological functions. For this
reason, LSCs and HSCs are engaged in intense competi-
tion in the BM microenvironment, and the former usually
have more advantages18,19. It has been shown that a
hypoxic BM microenvironment can promote the synth-
esis of HIF-1a, which further induces the upregulation of
CXCR4 on the surface of LSCs. The migration ability of
LSCs can be enhanced through the interaction between
CXCL12 and CXCR4, which facilitates the anchoring of
leukemic cells in the BM niche and their quiescence. With
the LSCs better protected in the BM niche than they are
in circulation, their resistance to chemotherapeutic agents
increases as well20–22.
As leukemic cells proliferate massively in the BM niche

and secondary anemia occurs, hypoxia within the niche is
exacerbated. Compared with normal HSCs, leukemic cells
are more resistant to hypoxia. Goto et al.23 showed that
leukemic cells can better survive in a hypoxic environ-
ment than HSCs by reducing ROS generation and
enhancing ROS clearance. The leukemic cells can also
release exosomes containing a variety of microRNAs, such

as miR-210, which are then transported to the endothelial
cells to inhibit the expression of the antiangiogenic factor
EPH-related receptor tyrosine kinase ligand 3 (EFNA3),
thus promoting angiogenesis24. In addition, HIF-1a25–28

and many cytokines, including granulocyte colony-
stimulating factor (G-CSF), granulocyte-macrophage
colony-stimulating factor, CXCL12 and angiopoietin 1
(Ang1) secreted by BMSCs, are also involved in the reg-
ulation of angiogenesis29. The formation of more new
vessels is conducive to the tolerance of the leukemic cells
to the hypoxic environment and to the supply of oxygen
and nutrients to LSCs for rapid growth. Recent reports
indicate that HSCs acquire energy mainly through anae-
robic glycolysis, whereas LSCs maintain energy metabo-
lism and survival largely through mitochondrial oxidative
respiration30,31. According to recent studies, in human
acute myeloid leukemia (AML) cells, the mitochondria of
BMSCs can be transferred to AML cells via AML-derived
tunneling nanotubes, a process that is dependent on the
ROS generation mediated by nicotinamide adenine
dinucleotide phosphate (NADPH) oxidases (NOX)-
dependent oxidative stress. Thus, more energy is supplied
to AML cells through mitochondrial oxidative phos-
phorylation (Fig. 2). However, this phenomenon is not

Fig. 1 Maintenance of redox homeostasis and quiescence of HSCs in the BM niche. The ROS level of HSCs in quiescence is regulated by a
complex signaling network consisting of ATM, HIFs, FoxOs, SRC3, etc., which work together to maintain a low intracellular ROS level. The interaction
between HSCs and BMSCs in the BM niche has a vital role in the long-term stability of HSCs. TPO, SCF, TGF-β1, and BMPs produced by BMSCs are all
important regulators of the quiescence of HSCs.
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observed in HSCs32. Therefore, inhibiting angiogenesis
and blocking the mitochondrial respiratory pathway of
leukemic cells may help inhibit LSCs.
In addition to adaptation to the environment and com-

petition for resources, leukemic cells can inhibit the number
and activity of normal HSCs directly or by causing dete-
rioration of the hematopoietic microenvironment. Kumar
et al. showed that the expression of Dickkopf-related pro-
tein 1, which is a suppressor of normal osteogenesis and
hematopoiesis, was elicited by AML-derived exosomes.
Moreover, hematopoietic stem cell-supporting factors were
downregulated in BM stromal cells, and their effect in
supporting normal hematopoiesis was also decreased33.
Huan et al. reported that critical retention factors (stem cell
factor and CXCL12) were downregulated by AML-derived
exosomes in stromal cells, and hematopoietic stem and
progenitor cells were mobilized from the BM34. In addition,
leukemic cells can induce remodeling of the BM niche by

promoting the production of abnormal osteoblastic lineage
cells from mesenchymal progenitor cell, thus transforming
it into a normal hematopoiesis-suppressive and leukemia
growth-permissive leukemia niche35–38.

ROS levels are associated with the status of leukemic cells
It has long been known that increased production of

ROS is a feature of tumor cells, and leukemic cells are not
an exception, as they also exhibit elevated level of ROS.
This feature is found in many leukemic cell lines and the
cells of patients with various types of leukemia10. Com-
pared with the levels in differentiated cancer cells, ROS
levels are lower in cancer stem cells (CSCs), which is
crucial for the survival of CSCs and the maintenance of
their stemness. In contrast, an excessively high ROS level
may trigger the death of CSCs39.
Recent studies have shown that similar to that of CSCs,

the self-renewal ability of LSCs is also closely related to

Fig. 2 LSCs’ remodeling of the BM niche, inhibition of HSCs, and resistance against oxidative stress. LSCs have a remodeling effect of the BM
niche by multiple pathways, such as activating the production of abnormal osteoblastic lineage cells from mesenchymal progenitor cells (MPCs). The
interaction between LSCs and MSCs, including the transfer of ROS and mitochondria, is conducive to maintaining a low intracellular ROS level and
energy metabolism of LSCs under a hypoxic environment. In addition, it has been indicated that 1. hematopoietic stem cell-supporting and retention
factors secreted by bone marrow matrix cells, such as SCF and CXCL12 etc., have an important role in HSCs maintenance; 2. exosomes derived from
leukemic cells may interfere and destroy HSCs maintenance by downregulating SCF and CXCL12.; 3 HSCs mobilization in bone marrow niche is
accelerated; 4. In the pro-oxidative treatment, LSCs can respond by upregulating antioxidant, MCL-1, MPO, and HO-1. As leukemia is a highly
heterogeneous disease, the survival and redox regulation mechanisms of LSCs in the BM niche may vary for different types of leukemia. More studies
are needed for revelation in this subject.
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the ROS level and oxidative stress of the cells. According
to Herault et al.40, LSCs highly expressed glutathione
peroxidase 3, and their ROS level was low, thereby
maintaining the properties of stem cells. Lagadinou et al.
analyzed ROS generation in primary AML cells, and it was
found that AML cells with low ROS were more primitive
than those with high ROS, exhibiting an immunopheno-
type and functional features of LSCs and largely being G0-
stage, quiescent cells. This relatively dormant condition
likely enables LSCs to persist, even under restrictive
conditions such as low nutrient or oxygen levels31. LSCs
account for ~0.1–1.0% of leukemic cells in leukemia
patients. Quiescent LSCs can reside in the BM niche to
avoid attack by chemotherapeutic agents, which is the
cause of chemotherapeutic resistance and relapse in leu-
kemia. It has been shown that direct contact with BMSCs
and regulation of the signaling molecules angiopoietin 1
(Ang1) and B-cell lymphoma 2 (Bcl-2) has important roles
in maintaining the quiescence of LSCs31,41,42. Disrupting
the quiescence of LSCs and inducing cell entry into the
cell cycle in combination with administration of cell cycle-
dependent chemotherapeutic agents can help eradicate
the residual LSCs in clinical treatments for leukemia.
Compared with the level in more primitive leukemic

cells in a quiescent state, the ROS level is higher in leu-
kemic cells that are proliferating more30. Previous studies
have shown that the mechanism of ROS generation in
leukemic cells is very complex. When leukemic cells
acquire energy through mitochondrial respiration, the
mitochondrial respiratory chain become a very important
source of intracellular ROS30. According to the literature,
among various types of leukemia cells, including AML,
chronic myeloid leukemia (CML) and promyelocytic
leukemia cells, an increase in NOX activity is observed,
indicating that NOX’s constitutive activation is a very
important source of intracellular ROS for LSCs43–45.
Moreover, activated FMS-like tyrosine kinase and onco-
genes such as BCR/ABL, cellular-myelocytomatosis viral
oncogene and Ras are all closely related to changes in
redox homeostasis in leukemic cells and increased ROS
levels9,46,47. It has been found that antioxidant defense is
decreased in different types of leukemia48–51, indicating
that an imbalance between the oxidative and antioxidative
systems may be one of the reasons for increased ROS
levels in leukemic cells.
Recently, Bourgeais et al.52 found that the persistent

activation of signal transducer and activator of tran-
scription (STAT)5 induced by BCR-ABL promoted ROS
production in CML cells by inhibiting catalase (CAT)
and glutaredoxin-1 (Glrx1) expression; however, when
leukemic cells were cocultured with BM stromal cells to
mimic a leukemic niche, CAT and Glrx1 were upregu-
lated, causing downregulation of ROS levels and
enhancement of leukemic cell quiescence. Given the

facts above, antioxidant capacity may be related to the
status of leukemia cells. It is believed that the down-
modulation of some antioxidant systems contributes to
the high level of ROS found in leukemic cells and that
the upregulation of antioxidants allows the cells to sur-
vive under permanent oxidative stress without surpass-
ing a deadly threshold. Furthermore, antioxidant
upregulation promotes intracellular ROS elimination,
maintaining cellular quiescence10.

Targeting ROS in treatment for leukemia
Mitochondria are the primary site of ROS generation.

Thus, in theory, mitochondria-mediated respiration will
cause an increase in ROS generation in leukemia cells and
a higher intracellular oxidative stress level. The sensitivity
of the cells to pro-oxidative drugs increases as well, which
allows for the selective clearing of LSCs by pro-oxidative
therapy53–57. The application of pro-oxidant chemother-
apeutic agents may cause death of leukemia cells by
increasing ROS, protein oxidation and mutation, lipid
peroxidation, and mitochondrial stress and activating the
G2/M phase cell cycle checkpoint10,58.
Studies have shown that a variety of chemotherapeutic

agents for leukemia, including vincristine, doxorubicin,
and cytosine arabinoside, work by promoting ROS gen-
eration59–62. Constant optimization and the combined use
of chemotherapeutic agents can help improve the out-
comes of pro-oxidative treatment for leukemia63. Mito-
chondria are the main site for intracellular ROS
generation. Therefore, targeting mitochondria is a rea-
sonable strategy to disrupt the redox balance of the cells,
induce oxidative stress and promote the apoptosis of
leukemia cells64. A variety of mitochondrial inhibitors that
can promote ROS generation are undergoing clinical trials
for their role in leukemia treatment. Metformin, an anti-
diabetic drug, has been proven to be capable of inhibiting
mitochondrial ATP generation and increasing ROS
levels65. Adaphostine is another drug with proven ability
to increase ROS levels by inhibiting mitochondrial
respiration, this drug can overcome the resistance of
primary CML cells to imatinib66,67. It should be noted
that, a high ROS level not only induces cell apoptosis but
also induces noncaspase-dependent necroptosis, which is
conducive to overcoming the drug resistance mediated by
the apoptotic defect68,69.
However, the leukemia niche can protect leukemic cells

under oxidative stress. For example, BMSCs protect leu-
kemic cells by activating prosurvival signaling pathways
such as the PI3-K/Akt pathway70 and releasing protective
molecules such as asparagine71, fatty acids72, and
cysteine73. Leukemic cells can also relieve oxidative injury
by interacting with the leukemia niche. Ding et al.74

reported that H2O2 generated by chronic lymphocytic
leukemia (CLL) cells under vorinostat treatment was
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transferred to the surrounding stromal cells and drove
autophagy, mitophagy, and glycolysis, resulting in the local
production of high-energy mitochondrial fuels, which
were then taken up by CLL cells to be effectively utilized
through mitochondrial oxidative phosphorylation to
enable more ATP production (Fig. 2). Under daunorubicin
treatment, acute lymphoblastic leukemia (ALL) cells
induce intracellular ROS production and oxidative stress
responses in adipocytes, leading to the secretion of soluble
factors that protect ALL cells from daunorubicin75.
Leukemic cells also have complex antioxidative

mechanisms to resist oxidative stress. The intracellular
antioxidant enzyme system consisting of superoxide dis-
mutase (SOD), peroxidase, and CAT can clear away
excessive ROS in cells, thus maintaining intracellular
redox balance. Some small molecular substances, such as
vitamins E, C, and A, can also clear away free radicals and
prevent lipid peroxidation. In addition, the mercapto
reductive buffer system consisting of glutathione (GSH)
and thioredoxin (Trx) has a very important role in
maintaining the intracellular redox state76. Several studies
have demonstrated that suppression of the intracellular
antioxidant system can help improve the efficacy of pro-
oxidative therapy in leukemia77–81. It has been recently
reported that nuclear factor erythroid 2-related factor 2
(Nrf2) is a key factor regulating the oxidative stress
response of cells. Nrf2 is regulated by Kelch-like ECH-
associated protein 1 (Keap1) and participates in the reg-
ulation of the activities of antioxidant enzymes such as
SOD, CAT, and Trx by interacting with antioxidant
response elements (AREs)82,83; Nrf2 can also promote the
expression of various antioxidant proteins such as heme
oxygenase enzyme-1 (HO-1) and regulate the regenera-
tion of GSH82,83. Suppressing the Nrf2 signaling pathway
has been proven to effectively reverse the drug resistance
of leukemia cells84. Besides, there are still many anti-
oxidant molecules are involved in protecting leukemia
cells from oxidative stress. Under the higher oxidative
stress level caused by chemotherapy, ALL cells can
upregulate antioxidant production and myeloid cell leu-
kemia 1 expression85. Under cytarabine treatment, mye-
loperoxidase (MPO) expression is increased in AML cells,
which promotes the conversion of hydrogen peroxide into
hypochlorous acid, thereby reducing the sensitivity of
AML cells to cytarabine86. In addition, a complex sig-
naling network involving HO-187, AMP-activated protein
kinase88, STAT589, and STAT390 also has an important
role in maintaining redox homeostasis in leukemic cells
(Fig. 2).
Recently, many studies have demonstrated that nitric

oxide (NO), the main member of ROS, also exhibits
antioxidation properties, which can destroy cascade
reaction of lipid peroxidation and protect integrity of
cytoplasm, avoiding oxidative injury of leukemic cells91,92.

However, NO also stimulates ROS production, thereby
eliciting lipid peroxidation. Therefore, NO has dual roles
in the body, which are dependent on its relative con-
centration in the body93,94. Moreover, much evidence
shows that leukemic cells relieve oxidative stress via
autophagy and clear the organelles damaged by oxidative
stress. Thus, inhibiting autophagy is conducive to pro-
moting the death of leukemic cells95–97.
Given the facts above, pro-oxidative treatment for leu-

kemia requires an individualized strategy, and specific
interventions should be based on the antioxidative fea-
tures of different types of leukemic cells. Furthermore,
blocking the microenvironment’s protection of leukemic
cells from antioxidants may contribute to better
outcomes.

Oxidative injury of HSCs caused by pro-oxidative
treatment
The killing power of ROS is not cell specific. Therefore,

a high ROS level not only kills the leukemic cells but also
undesirably causes oxidative injury or even death of HSCs.
Tang et al. showed that the high ROS level induced by
pro-oxidative chemotherapeutic agents not only caused
direct injury and apoptosis of HSCs but also disrupted the
BM niche where HSCs reside. This will ultimately damage
the hematopoietic functions of the BM98. Continuous
oxidative injury of DNA can also cause senescence and
loss of the self-renewal ability of HSCs, which may be an
important reason for long-term BM suppression and
hematopoietic failure99,100. The proposed mechanism of
HSC oxidative damage and senescence is illustrated in
Fig. 3.
In addition, recent studies have demonstrated that

autophagy serves as an important buffer system for oxi-
dative stress and has a vital role in protecting HSCs from
oxidative injury and maintaining the stem cell features of
HSCs101,102. However, autophagy is also a double-edged
sword, and excessive autophagy will cause autophagic cell
death13. As it has been shown that ROS are an important
factor inducing autophagy103, the autophagy level of LSCs,
which depends on mitochondrial respiration, may be
theoretically higher than that of HSCs, which depends on
glycolysis104,105. However, this hypothesis remains to be
further confirmed by more evidence. To date, targeting
autophagy to eradicate LSCs via autophagic cell death
without disturbing normal hematopoietic cells has
aroused widespread attention in researchers106,107.
To address the adverse impact of pro-oxidative treat-

ment on BM hematopoietic function, inhibition of leu-
kemic cells’ intracellular antioxidants, e.g., GSH108 and
HO-1109, may be an effective strategy. In theory, anti-
oxidant inhibitors can also cause increased intracellular
ROS levels, which means they can be used as pro-
oxidants. Isothiocyanates is such a pro-oxidant drug110.
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It was reported that, Isothiocyanates act by depleting GSH
pools, and efficiently kill fludarabine-resistant CLL cells111

and imatinib-resistant CML cells112 selectively without
attacking normal hematopoietic cells. Preclinical studies
have shown that different SOD inhibitors, such as ATN-
224113 and 2-methoxyestradiol (2-ME)114, have an antil-
eukemia effect. It has been reported that 2-ME can target
and kill leukemic cells but has no such effect on normal
HSCs115.
In order to relieve the oxidative injury of conventional

chemotherapeutic agents on BM hematopoietic tissues,
research is underway to screen and develop natural
components and biological products with antitumor
effects, such as catechins, parthenolide, curcumin, and
resveratrol116–135. The role of these natural antitumor
drugs in inducing the apoptosis of tumor cells is also
related to ROS. They can replace conventional che-
motherapeutic drugs or reduce the dosage of conventional
chemotherapeutic agents to a certain degree, thereby
alleviating toxicity and side effects. Zhang et al. showed
that catechins suppressed the proliferation of acute pro-
myelocytic leukemia (APL) cells and elicited cell apoptosis
at the micromolar concentration level, which was related
to mitochondrial damage, ROS production, and caspase

activation. Catechin-mediated apoptosis was also found in
primary APL cells, but normal hematopoietic progenitor
cells were unaffected121. According to the report by
Guzman et al., parthenolide could induce the apoptosis of
primary human AML cells and blast crisis CML cells by
inducing ROS generation. However, parthenolide of the
same concentration barely had any effects on the
BMHCs130. The above studies suggest that natural anti-
tumor drugs have broad prospects in the treatment of
leukemia while protecting BM hematopoietic function.
Some natural compounds that exert antileukemia activity
via ROS-dependent actions are listed in Table 1. In
addition, recent studies have found that many natural
compounds possess potent antioxidant activity, which
may protect BMHSCs from oxidative damage. It has been
reported that some natural polyphenolic antioxidants,
such as curcumin and quercetin, can effectively protect
BMHSCs from the oxidative damage caused by pro-
oxidative drugs without affecting the antileukemia func-
tion136–138. It has been shown that this phenomenon is
associated with the difference in ROS levels between
cancer cells and healthy cells, and polyphenols may exert
more pro-oxidative action in cancer cells with increased
levels of ROS125,138. In recent years, many studies have
shown that many alkaloids, polysaccharides, flavonoids,
and saponins extracted from plants also display antitumor
and antioxidant effects139–141. The antioxidative
mechanism of natural antioxidants is illustrated in Fig. 4.

Summary
New treatment strategies targeting the oxidative stress

status of leukemic cells and the BM microenvironment
have become hot topics of research. However, many of the
previous studies have limitations. First, most of them are
in vitro studies, which cannot completely simulate the BM
microenvironment in a physical or pathological condition.
Therefore, these studies cannot truly reflect the state
inside the leukemia patients’ bodies. Second, leukemia is
highly heterogeneous and varies across individuals, dis-
ease types, and development stages. Moreover, the cell
status, oxidative stress level of cells and relevant regula-
tion mechanisms also vary, making it very difficult to
determine the appropriate ROS level for pro-oxidative
treatments. Third, there are also BMSCs and HSCs in the
BMmicroenvironment apart from the leukemic cells. Pro-
oxidant drugs may damage HSCs and other normal cells,
leading to severe BM suppression and other adverse
events. In conclusion, deeper and more comprehensive
studies of the redox features and regulatory mechanisms
of HSCs and LSCs in the BM microenvironment are
urgently needed to identify new therapeutic targets to
eradicate LSCs without harming normal HSCs. This issue
represents the biggest challenge in the field of leukemia
treatment.

Fig. 3 Proposed mechanism of HSCs oxidative damage and
senescence. Chemotherapy, especially pro-oxidative chemotherapy,
leads to a considerable increase of ROS derived from mitochondria
and other resources, inevitably inducing DNA oxidative injury of HSCs.
In that case, cell cycle arrest is elicited by p53–p21and p38–p16/19
pathways to repair DNA, whereas cell cycle arrest is the main cause of
cell senescence. If DNA injury cannot be repaired, both intrinsic and
extrinsic apoptotic pathways will be activated via various pathways,
leading to cell apoptosis. Besides, TNF-α, IFN-γ, Fas, and TRAIL bind to
their receptors and lead to HSCs cycle arrest or apoptosis.
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In recent years, many studies have made good use of
modern biological technology. Great efforts have been
devoted to developing animal models that can realistically
reflect the microenvironment of leukemia patients,
including transgenic models and chimeric models. The
findings from these models are encouraging further stu-
dies on leukemia. With the establishment of more animal
models of leukemia with high fitness, our understanding
of leukemia will deepen, which will contribute to progress
in leukemia studies.
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