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Crosstalk between noncoding RNAs and
ferroptosis: new dawn for overcoming cancer
progression
Xuefei Zhang1, Lingling Wang1, Haixia Li1, Lei Zhang1, Xiulan Zheng1 and Wen Cheng1

Abstract
Cancer progression including proliferation, metastasis, and chemoresistance has become a serious hindrance to cancer
therapy. This phenomenon mainly derives from the innate insensitive or acquired resistance of cancer cells to
apoptosis. Ferroptosis is a newly discovered mechanism of programmed cell death characterized by peroxidation of
the lipid membrane induced by reactive oxygen species. Ferroptosis has been confirmed to eliminate cancer cells in
an apoptosis-independent manner, however, the specific regulatory mechanism of ferroptosis is still unknown. The use
of ferroptosis for overcoming cancer progression is limited. Noncoding RNAs have been found to play an important
roles in cancer. They regulate gene expression to affect biological processes of cancer cells such as proliferation, cell
cycle, and cell death. Thus far, the functions of ncRNAs in ferroptosis of cancer cells have been examined, and the
specific mechanisms by which noncoding RNAs regulate ferroptosis have been partially discovered. However, there is
no summary of ferroptosis associated noncoding RNAs and their functions in different cancer types. In this review, we
discuss the roles of ferroptosis-associated noncoding RNAs in detail. Moreover, future work regarding the interaction
between noncoding RNAs and ferroptosis is proposed, the possible obstacles are predicted and associated solutions
are put forward. This review will deepen our understanding of the relationship between noncoding RNAs and
ferroptosis, and provide new insights in targeting noncoding RNAs in ferroptosis associated therapeutic strategies.

Facts

● Resistance to apoptosis has become the main
obstacle for overcoming cancer progression.

● Ferroptosis is a type of cell death characterized by
excess reactive oxygen species and intracellular iron,
and is totally different from apoptosis.

● NcRNAs serve as important roles in biological
processes of cancer.

● Regulation of ncRNAs to ferroptosis has been
partially discovered.

Open Questions

● Can ferroptosis become the direction around which
to design cancer therapy in future?

● What are the roles of ncRNAs in regulation of
ferroptosis?

● Can ncRNAs become markers to filter cancer
patients who are fit for ferroptosis therapy or
therapeutic targets of ferroptosis inducers?

Introduction
Cancer progression including proliferation, metastasis

and chemoresistance to drugs, has become serious
obstacles in cancer therapy1. Although multiple ther-
apeutic manners including operation, targeted therapy,
chemotherapy, and radiotherapy have shown satisfactory
performance, progression occurs since cancer cells
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dysregulate apoptosis pathways via various manners2,3.
Therefore, new types of cancer therapy or drugs that
eliminate cancer cells are urgently needed.
Ferroptosis is a type of programmed cell death dis-

covered in 20124. Unlike apoptosis, ferroptosis is char-
acterized by excess reactive oxygen species (ROS) and
intracellular iron5. Superabundant ROS induces perox-
idation and disintegration of lipid membrane and cell
death6. Regulation of ferroptosis mainly depends on
neutral reaction between reduced glutathione (GSH) and
ROS7. The exchange of glutamate and cystine is mediated
by systemXc−, which is composed of solute carrier family
7 member 11 (SLC7A11) and solute carrier family 3
member 2 (SLC3A2), and offers the substrate cystine for
GSH synthesis8,9. Glutathione peroxidase 4 (GPX4) cate-
lyzes interaction between GSH and ROS to reduce
intracellular oxidative stress10. Ferroptosis inducers can
be divided into two classes based on regulation of neutral
reaction to ROS. Class I ferroptosis inducers such as
sorafenib, erastin and sulfasalazine, serve as blockers of
systemXc− and result in a drop of GSH levels11,12. Class II
ferroptosis inducers such as RSL3, FIN56, and ML162,
inhibit function of GPX413,14. Numerous studies have
confirmed that ferroptosis inducers such as RSL3 and
sorafenib eliminates cancer cells15,16. In addition, induc-
tion of ferroptosis via erastin and sulfasalazine improved
effect of cytarabine and doxorubicin, and overcame cis-
platin resistance of head and neck cancer17,18. This sug-
gests that ferroptosis may become a new mechanism
around which to design cancer therapy. However, use of
ferroptosis in cancer therapy still faces obstacles. First, the
specific mechanisms underlying ferroptosis and the
interaction between ferroptosis and other processes, such
as apoptosis, necrosis, and autophagy are not totally
known, so how to control ferroptosis in cancer is in dark.
Second, ferroptosis occurs in normal cells. Ferroptosis has
been shown to induce the elimination of nerve cells in
Parkinson’s disease19. In addition, in acute kidney injury,
ferroptosis participated in the death of renal tubular epi-
thelial cells20. Therefore, use of ferroptosis inducers may
generate complications. New regulatory factors should be
recognized to understand the true appearance of ferrop-
tosis in cancer.
Noncoding RNAs (ncRNAs) are RNAs that account for

nearly 98% of transcriptome21. According to length and
shapes, ncRNAs are divided into various types including
microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs),
small nuclear RNAs (snRNAs), small nucleolar RNAs
(snoRNAs), long ncRNAs (lncRNAs), circular RNAs
(circRNAs), transfer RNAs (tRNAs), and ribosomal RNAs
(rRNAs)22,23. NcRNAs participate in regulation of
tumorigenesis via various biological processes such as
chromatin modification, alternative splicing, competition
with endogenous RNAs and interaction with proteins24,25.

For example, miR-675-5p promoted the metastasis of
colorectal cancer cells via modulation of P5326. Moreover,
lncRNA HOTAIR served as an enhancer in epithelial-to-
mesenchymal transition of breast cancer cells via com-
peting with BRCA127. In addition, circFOXO3 enhanced
progression of prostate cancer through sponging miR-
29a-3p28. However, roles of ncRNAs in ferroptosis have
not been fully determined.
In this review, we focus on summarizing the ncRNAs

which have been found to associate with ferroptosis reg-
ulators GSH, iron, nuclear factor (erythroid-derived 2)-
like 2 (NRF2) and ROS in cancer5. Moreover, we predict
the obstacles that may limit the exploration of ncRNAs in
ferroptosis in cancer therapy and offer advice for future
studies. We believe that a comprehensive understanding
of the interactions between ncRNAs and ferroptosis may
benefit clinical therapeutics to cancer

MiRNAs and ferroptosis
MiRNAs exhibit functions by binding to the 3′-

untranslated regions of target mRNAs and suppressing
their expression29. Some studies have revealed a rela-
tionship between miRNAs and ferroptosis. In radio-
resistant cells, miR-7-5p inhibited ferroptosis via
downregulating mitoferrin and thus reducing iron
levels30. Furthermore, miR-9 and miR-137 enhanced fer-
roptosis via reduction of intracellular GSH levels, miR-9
inhibited synthesis of GSH and miR-137 suppressed
solute carrier family 1 member 5 (SLC1A5), a component
of systemXc−31. Moreover,miR-6852 which was regulated
by lncRNA Linc00336, inhibited growth of lung cancer
cells via promoting ferroptosis32. In the following sec-
tions, we will discuss the interactions between miRNAs
and GSH, iron and NRF2 in cancer cells. The information
of altered miRNAs in ferroptosis has been listed (Sup-
plementary Table 1).

MiRNAs and GSH
GSH is a scavengerof ROS and protects lipid mem-

brane33. Under physiological conditions, concentration of
reduced GSH is about 10–100-fold more prevalent than
the oxidized form. Under oxidative stress, reduced GSH is
converted to oxidized form34. Biosynthesis of GSH
involves three steps: exchange of glutamic acid and
cystine induced by systemXc−; synthesis of 훾-
glutamylcysteine by glutamic acid and cysteine catalyzed
via 훾-glutamylcysteine ligase (GCL); and synthesis of
GSH via 훾-glutamylcysteine and glycine catalyzed by
GSH synthetase35. Function of GSH includes detoxifica-
tion of exogenous or endogenous dangerous compounds
catalyzed by GSH-S-transferases (GSTs) and GPXs36.
Current knowledge on relation between GSH and cancer
are summarized in Table 1, and the schematic diagram of
these interactions is shown in Fig. 1a. MiR-18a and miR-
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218 decreased GSH levels via targeting GCL in hepato-
cellular carcinoma and bladder cancer37,38. Furthermore,
in hepatocellular carcinoma and lung cancer, miR-152
and miR-155 decreased GSH levels via targeting GST39,40.
In addition, miR-326 and miR-27a inhibited GSH levels in
cancer cells via targeting other factors such as pyruvate
kinase m 2 (PKM2), SLC7A11 and zinc finger and BTB
domain containing 10 (ZBTB10)41–43. Additionally,
downregulation of GSH by miRNAs such as miR-21, miR-
24-2,miR-497 andmiR‑503 has been observed in different
cancer types, however, the specific mechanisms were not
explored44–47. These findings indicate that miRNAs
repress GSH levels via control of synthesis and con-
sumption. The upregulation of GSH induced by miRNAs
has been well-explored. GST was targeted by different
miRNAs including miR-124, let-7a-5p, miR-92b-3p, miR-
129-5P, miR-144, miR-153-1/2, miR-302c-5p, miR-3664-
5p, miR-3714, miR-513a-3p, miR-590-3p/5p, miR-130b,
miR-186, and miR-133a/b. These miRNAs bound to the
3′-untranslated regions of GST mRNA and inhibited GST
expression, thus blocking GSH consumption and result-
ing in accumulation of intracellular GSH48–51. It is worth
mentioning that miR-133a/b served as effective sup-
pressors of GST in different cancer types, such as bladder
cancer, lung cancer, prostate cancer, colorectal cancer,
ovarian cancer and head and neck carcinoma. Inhibition
of miR-133a/b reversed both increased GSH and insen-
sitivity to drugs51–54. Furthermore, GPX family members
are targeted by miRNAs and results in defect of ROS
neutralization. In one report, GPX4 was decreased by
miR-181a-5p in osteoarthritis55. However, the relation-
ship between GPX4 and miRNAs in cancer is still in dark.
Only GPX2 and GPX3 have been found to be modulated
by miRNAs such as miR-17, miR-17-3p, miR-196a, and
miR-921 in colorectal cancer, prostate cancer, and lung
cancer56–59. Overall, regulation of GSH by miRNAs
occurs mainly through control of GST and GPX family
members. Since GSH has been shown to participate in
growth of tumors and chemoresistance to drugs which
induce intracellular oxidative stress, miRNAs may reg-
ulate ferroptosis and control cancer progression via
modulation of GSH.

MiRNAs and iron
Iron metabolism is another key factor in ferroptosis.

Excessive iron increases ROS via Fenton reaction and
ROS is neutralized by iron reversely60. Metabolism of iron
mainly includes interaction between transferrin (TF) and
its receptor (TFR), import of iron via divalent metal
transporter 1 (DMT1), storage of iron as ferritin and iron-
sulfur cluster (ISC), and export of iron via ferroportin
(FPN)61,62. The specific realtion between miRNAs and
iron is summarized in Table 2, and the schematic diagram
of these interactions are shown in Fig. 1b. In colorectalTa
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cancer, targeting of DMT1 by miR-149 and miR-19a led
to decreased iron import63. Furthermore, in colorectal
cancer and hepatocellular cancer, TFR was targeted by
miRNAs including miR-141, miR-145, miR-152, miR-182,
miR-200a, miR-22, miR-31, miR-320, miR-758, and miR-
19463–65. This inhibition led to disruption of interaction
between TF and TFR and the following decreased iron
import. Thereinto, miR-194 suppressed the expression of
both TFR and FPN in colorectal cancer63. FPN was also
targeted by miR-150, miR-17-5p, miR-20a, and miR-492
in hepatocellular carcinoma, multiple myeloma, lung
cancer, and prostate cancer, respectively66–68. Further-
more, ferritin which is composed of ferritin heavy chain
(FHC) and ferritin light chain (FLC), is controlled by

miRNAs69. FHC could be targeted by miR-200b, miR-
181a-5p, miR-19b-1-5p, miR-19b-3p, miR-210-3p, miR-
362-5p, miR-616-3p, and miR-638 in prostate cancer,
resulting in decreased intracellular iron65,70,71. FLC could
be targeted by miR-133a in colorectal cancer and breast
cancer, and knockdown of miR-133a restored the reduced
iron levels inside cancer cells63,72. Among the miRNAs
that regulate iron levels, miR-210 serves as an important
member. In colorectal cancer cells, miR-210 was activated
by hypoxia and then targeted ISCU to alter intracellular
iron homeostasis73. Furthermore, transfection of miR-210
decreased the uptake of iron via TFR suppression74. On
the contrary, miRNAs can be modulated by iron. MiR-
107, miR-125b, and miR-30d were inhibited by iron in

Fig. 1 Regulation of ncRNAs to ferroptosis. a Regulation of ncRNAs to GSH metabolism; b Regulation of ncRNAs to iron metabolism; c Regulation
of ncRNAs to KEAP1-NRF2 pathway.
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hepatocellular carcinoma and ovarian cancer75,76, and
miR-146a, miR-150, miR-214-3p and miR-584 were
increased by iron in ovarian cancer and neuro-
blastoma76,77. This phenomenon may derive from the
induction of excess ROS by iron and the subsequent
regulation of miRNAs transcription. Overall, different
miRNAs regulate iron levels in various directions, and the
imbalance of iron leads to run-away miRNA expression.

MiRNAs and NRF2
NRF2 serves as a transcriptional factor and activates

downstream antioxidant factors. The expression of NRF2
mainly depends on Kelch-like ECh-Associated Protein 1
(KEAP1), which assembles Cullin3 to form the Cullin-E3
ligase complex and then degrades NRF2 protein via the
ubiquitin-proteasome route78. Inhibition of NRF2 has
been confirmed to enhance ferroptosis79. The specific
information regarding interaction between miRNAs and
NRF2 is listed in Table 3, and the schematic diagram is
shown in Fig. 1c. In esophageal cancer, miR-129, miR-142,
miR-144-3p, miR-450, miR-507, and miR-634 targeted the
3′-untranslated region of NRF2 mRNA and decreased
NRF2 expression, resulting in an increase of ROS80–85.
Among these miRNAs, miR-144-3p played an important
role in the regulation of NRF2. Targeting NRF2 by miR-
144-3p inhibited tumor progression in melanoma and
acute myeloid leukemia86, and increased the sensitivity of
lung cancer cells to cisplatin87, indicating the role of
miR‑144‑3p in oxidative homeostasis. Other miRNAs that
targeted NRF2 include miR-144, miR-153, miR-200c, and
miR-212-3p, although their effects have not been
explored82,88–90. Moreover, miRNAs regulate NRF2 via
targeting KEAP1. In hepatocellular carcinoma, ovarian
cancer, leukemia, and neuroblastoma cells, KEAP1 was
targeted by miR-141, miR-23a, miR-432, miR-7, and miR-
200a88,91–95. Thereinto, miR-200a served as an active role.
In esophageal squamous cell carcinoma, methylseleninic
acid activated KEAP1/NRF2 pathway via upregulating
miR-200a, the latter inhibited KEAP1 expression and
induced expression of NRF296. In breast cancer and
pancreatic adenocarcinoma, miR-200a suppression
reverted expression of KEAP1 and then inhibited NRF2
and promoted the anchorage-independent cell growth
in vitro97. In turn, NRF2 enhances miRNAs expression via
binding to the antioxidative response element box. In
myelocytic leukemia, miR-125b driven by NRF2 promoted
leukemic cells survival. Inhibition of miR-125b enhanced
responsiveness of leukemic cells towards chemotherapy98.
However, in oral squamous cell carcinoma, repression of
miR-125b by peroxiredoxin like 2A (PRXL2A) protected
cancer cells from drug-induced oxidative stress in an
NRF2-depedent manner99, indicating the mutual regula-
tion between miR-125b and NRF2. In addition, expression
of miR-29B1, miR-129-3p, and miR-380-3p was induced

by NRF2 in acute myelocytic leukemia, hepatocellular
carcinoma, and neuroblastoma98,100,101. Conversely, miR-
181c, miR-378, miR-122, miR-17-5p, miR-1, and miR-206
were repressed by NRF2 in various cancer types66,102–107.
Thereinto, inhibition of miR-1 and miR-206 was mediated
by SOD1 induced by NRF2 but not the role of NRF2 as a
transcriptional factor. In summary, miRNAs regulate
NRF2 pathway through targeting KEAP1 and NRF2
mRNAs. Conversely, NRF2 controls miRNAs via tran-
scription or downstream factor SOD1.

MiRNAs and ROS
In addition to factors above, miRNAs regulate ROS via

other mechanisms. The information of miRNAs that are
related to ROS in cancer is listed in Table 4. MiRNAs can
positively regulate ROS levels. For example,miR-21 whose
expression increased with tumor grade, has been identi-
fied to enhance ROS level in lung cancer, colorectal
cancer, gastric cancer, hepatocellular carcinoma, ovarian
cancer, and prostate cancer108–113. Mechanically, miR-21
targeted STAT3, proline oxidase (POX), and programmed
cell death 4 (PDCD4) to induce oxidative stress114–116.
Moreover, miR-146a has attracted much attention. In
ovarian cancer, miR-146a repressed SOD2 expression and
inhibited proliferation of cancer cells and enhanced che-
mosensitivity to drugs117. In lung cancer, suppression of
miR-146a restored catalase and inhibited ROS induction,
and protected cancer cells from cisplatin-induced cyto-
toxicity118. In addition, overexpression of miR-124, miR-
526b, and miR-655 led to excess ROS via thioredoxin
reductase 1 in breast cancer119,120. Furthermore, the
antioxidant enzyme SOD1 was downregulated by stable
expression of miR-143 or miR-145 in colorectal cancer121.
This indicates that miRNAs enhance intracellular ROS via
different manners. On the other hand, in lung cancer,
miR-99 suppressed the invasion and migration of cancer
cells via targeting NOX4-mediated ROS production122.
Additionally, miR-520 and miR-373 reduced ROS via
targeting NF-κB and TGF-β signaling pathways and
repressed growth and lymph node metastasis of breast
cancer123. Other miRNAs such as let-7, miR-137, miR-
193b, miR‑199, and miR-26a, have been found to decrease
ROS level in cancer cells via diverse targets such as heme
oxygenase-1, C-MYC, and triglyceride124–128, indicating
that miRNAs inhibit ROS level. Conversely, miR-133a,
miR-150-3p, miR-1915-3p, miR-206, miR-34, miR-638,
and miR-182 were activated by oxidative stress and then
played a role in the subsequent biological processes129–
133. Moreover, miR-125, miR-145-5p, miR-17-5p, miR-
199, and miR-17-92, were decreased by excess intracel-
lular ROS134–137. Among them, miR-125b plays a dual
role in oxidative homeostasis. As discussed above, miR-
125b serves as a regulator of NRF2. In addition, miR-125b
could be inhibited by ROS via a DNMT1-dependent DNA
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methylation in ovarian cancer140. Moreover, although
miR-21 has been discussed as the enhancer of ROS in
breast cancer, DNA damage induced by ROS led to acti-
vation of miR-21 via NF-κB, indicating the interaction
between miRNAs and ROS138. In total, we can infer that
altered levels of GSH, iron, and NRF2 are not the only
methods by which miRNAs regulate ROS and vice versa
in, miRNAs and ROS can also regulate each other in
various pathways.

LncRNAs and ferroptosis
LncRNAs mainly serve as regulators of transcription

factors in nucleus or as sponges of miRNAs in cyto-
plasm139. Linc00336 was promoted by lymphoid-specific
helicase in lung cancer and inhibited ferroptosis via
sponging miR-685232. Furthermore, in breast cancer and
lung cancer, lncRNA P53rra bound to Ras GTPase-
activating protein-(SH3domain)-Binding Protein 1
(G3BP1) and displaced P53 from a G3BP1 complex,
resulting in retention of P53 in nucleus and down-
regulation of SLC7A11140. In addition, ferroptosis inducer
erastin upregulated lncRNA GA binding protein tran-
scription factor subunit beta 1 (GABPB1) antisense RNA
1 (Gabpb1-AS1), which suppressed GABPB1 and led to
downregulation of peroxiredoxin-5 peroxidase and sup-
pression of cellular antioxidant capacity in hepatocellular
carcinoma141. Interaction between lncRNAs and ferrop-
tosis has been listed (Supplementary Table 1), and the
relationship between lncRNAs and ferroptosis associated
factors is summarized in Table 5. The schematic diagram
of these interactions is shown in Fig. 1.

LncRNAs and ferroptosis associated factors
Since there are only a few studies about lncRNAs and

ferroptosis factors, we will discuss them together. Reg-
ulation of GSH by lncRNAs in cancer mainly depends on
GST and GCL46. In breast cancer, knockdown of lncRNA
Ror led to reduced multidrug resistance-associated P-
glycoprotein and GST expression, resulting in restored
sensitivity of breast cancer cells to tamoxifen142. Similarly,
in colorectal cancer, knockdown of lncRNA Xist inhibited
doxorubicin resistance via suppressing GST and increas-
ing GSH48. Furthermore, in hepatocellular carcinoma
cells, silencing lncRNA Neat1 inhibited IL-6-induced
STAT3 phosphorylation which contributed to the
increase of GST143. In addition, lncRNA Linc01419 bound
to the promoter region of GSTP1 and recruited DNA
methyltransferase, increasing promoter methylation and
decreasing GST expression in esophageal squamous cell
carcinoma144. Moreover, knockdown of lncRNA H19
resulted in recovery of cisplatin sensitivity via reduction of
GCL and GST145. In total, regulation of GSH by lncRNAs
mainly depends on GST and GCL. Moreover, in hepato-
cellular carcinoma, silencing of lncRNA Pvt1 inhibitedTa
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TFR expression and obstructed iron uptake via miR-
150146. Furthermore, silencing of FHC in leukemia cells
induced production of ROS and altered downstream
genes via increasing H19 and miR-657 expression147. This
means that lncRNAs are associated with iron metabolism
in cancer cells. Moreover, in bladder cancer, suppression
of NRF2 by lncRNA associated transcript in bladder
cancer (Aatbc) resulted in apoptosis148. In multiple mye-
loma, metastasis associated lung adenocarcinoma tran-
script 1 (Malat1) which has been proved to play a role in
various cancers, inhibited NRF2 via activation of their
negative regulator KEAP1149. Furthermore, over-
expression of Keap1 regulation-associated lncRNA (Kral)
inhibited NRF2 via increasing KEAP1 expression, and
reversed the resistance of hepatocellular carcinoma cells
to 5-fluorouracil91. Therefore, lncRNAs regulate NRF2
expression via direct and indirect manners. On the con-
trary, NRF2 participates in regulation of lncRNAs. In
gallbladder cancer, downregulation of lncRNA loc344887
suppressed cell proliferation and decreased migration and
invasion. Further studies found that loc344887 was
upregulated after ectopic expression of NRF2150. In a
recent study, NRF2 activated smoke and cancer-
associated lncRNA 1 (Scal1) and induced oxidative
stress protection. Knockdown of NRF2 suppressed Scal1
and alleviated the proliferation of lung cancer cells92. In
sum, lncRNAs can regulate NRF2 by directly controlling
expression or modulating KEAP1 indirectly, and NRF2
can regulate lncRNAs expression reversely.
Other than the factors above, lncRNAs regulate ROS

levels via various mechanisms. In bladder cancer, lncRNA
urothelial cancer associated 1 (Uca1) decreased ROS level
via targeting miR-16 which led to decreased GSH syn-
thetase151. Furthermore, in hepatocellular carcinoma,
downregulation of H19 increased ROS via MAPK/ERK
signaling pathway and reversed chemotherapy resis-
tance152. Moreover, knockdown of lncRNA growth arrest
specific 5 (Gas5) in melanoma enhanced intracellular
ROS via increased superoxide anion and NADPH oxidase
4 (NOX4)-oxidized GSH153. In lung cancer cells, the
intracellular oxidative stress induced by paclitaxel was
attenuated by knockdown of maternally expressed 3
(Meg3), and Meg3 overexpression induced cell death and
increased sensitivity to paclitaxel in an ROS-dependent
manner154. In total, lncRNAs influence ROS metabolism
via control of GSH, iron, NRF2 and other factors, and
these factors can regulate lncRNAs expression reversely.

Other ncRNAs and ferroptosis
CircRNAs, tRNAs, rRNAs, piRNAs, snRNAs, and

snoRNAs are also contained in family of noncoding
RNAs21. However, studies on the relations between these
ncRNAs and ferroptosis are few. The interactions have
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been listed (Supplementary Table 2). The schematic dia-
gram of these interactions is shown in Fig. 1.

CircRNAs
CircRNAs are covalently closed, single-stranded RNA

molecules derive from exons via alternative mRNA spli-
cing22. Several studies have uncovered function of cir-
cRNAs in ferroptosis. In glioma, circ-TTBK2 enhanced
cell proliferation and invasion and inhibited ferroptosis
via sponging miR-761 and subsequent ITGB8 activation,
knockdown of circ-TTBK2 promoted erastin-induced
ferroptosis155. Furthermore, circ0008035 inhibited fer-
roptosis in gastric cancer via miR-599/EIF4A1 axis.
Knockdown of circ0008035 enhanced anticancer effect of
erastin and RSL3 via increased iron accumulation and
lipid peroxidation156. According to ferroptosis associated
factors, in gastric cancer, circPVT1 promoted multidrug
resistance by enhancing P-gp and GSTP. MRNA levels of
P-gp and GSTP were obviously repressed after down-
regulation of circ-PVT1 in paclitaxel-resistant gastric
cancer cells157. Moreover, high-throughout microarray-
based circRNA profiling revealed that 526 circRNAs were
dysregulated in cervical cancer cells, and bioinformatic
analyses indicated that these circRNAs participated
mainly in GSH metabolism158. However, associated
miRNAs and downstream factors were not screened.
Thus, further studies on the modulation of ferroptosis by
circRNAs are needed.

TRNAs
TRNAs serve as adapter molecules between mRNAs

and proteins. The interaction between tRNAs and fer-
roptosis includes two possible manners. First, tRNAs are
required in the synthesis of ferroptosis associated factors
such as SLC7A11, GPX4, and IREB2, thus the mutation of
tRNAs may alter the expression of these factors and then
influence ferroptosis217. Second, tRNAs have multiple
interaction partners including aminoacyl-tRNA-synthe-
tases, mRNAs, ribosomes and translation factors159.
Among them, cysteinyl-tRNA synthetase plays a role in
ferroptosis. In fibrosarcoma, rhabdomyosarcoma and
pancreatic carcinoma, loss of cysteinyl-tRNA synthetase
suppressed erastin-induced ferroptosis via increasing
intracellular GSH and transsulfuration, and inhibition of
the transsulfuration pathway resensitized cells to era-
stin160. Interestingly, tRNAs mutation may control fer-
roptosis in an opposite manner. Selenocysteine which is
formed from serine at the respective tRNA, is a compo-
nent of GPXs. However, in hepatoma, colorectal cancer
and breast cancer, the mutation of tRNA led to decline of
selenoprotein expression except GPX4 and GPX1, and
weak ferroptosis alteration161–163. This indicates that
tRNAs modulate GSH levels mainly via synthesis but not
metabolism. In addition, tRNAs influence ROS levels via

various manners. Lung cancer mouse model with deletion
of selenocysteine-tRNA gene exhibited ROS accumula-
tion and increased susceptibility to lymph nodules
metastasis164. Additionally, Queuine-modified tRNAs
promoted cellular antioxidant defense via catalase, SOD,
GPX, and GSH reductase and inhibited lymphoma165. In
total, tRNAs decrease GSH synthesis and increase fer-
roptosis without modulating GPX4, while on the other
hand, tRNAs enhance the antioxidant defense system and
then inhibit ferroptosis.

RRNAs
RRNAs constitute the structural and functional core of

ribosomes166. Some reports have provided clues for role
of rRNAs in ferroptosis. In cervical cancer, NRF2 was
found to contain a highly conserved 18S rRNA binding
site on 5′ untranslated region that is required for internal
initiation. Deletion of this site remarkably enhanced
translation, indicating that the 18S rRNA regulates NRF2
expression167. In another study, hepatoma cells treated
with ethidium bromide exhibited a 70% decrease in the
16S/18S rRNA ratio and enhanced NRF2 expression168.
However, whether NRF2 and 18S rRNA are mutually
regulated remains unclear. Regarding ROS, nuclear
mitotic apparatus protein (NuMA) is involved in cellular
events such as DNA damage response, apoptosis, and
P53-mediated growth arrest. In breast cancer cells, NuMA
bound to 18S and 28S rRNAs and localized to rDNA
promoter regions. Downregulation of NuMA expression
triggered nucleolar oxidative stress and decreased pre-
rRNA synthesis169. Furthermore, in leukemia HL-60 cells
treated with iron chelator deferoxamine, rRNA synthesis
in nucleoli was inhibited170. In conclusion, interaction
between rRNAs and ferroptosis has not been completely
uncovered. Role of ribosomes as the place in which pro-
teins related to ferroptosis are synthesized may provide
clues for further studies.

PiRNAs, snRNAs, and snoRNAs
PiRNAs are the class of small ncRNA molecules distinct

from miRNAs in that they are larger, lack sequence
conservation, and are more complex171. PiRNAs are
involved in tumorigenesis of variety cancers172. However,
studies on piRNAs and ferroptosis are few. In prostate
cancer, piR-31470 formed a complex with piwi-like RNA-
mediated gene silencing 4 (PIWIL4). This complex
recruited DNMT1, DNA methyltransferase 3 alpha, and
methyl-CpG binding domain protein 2 to initiate and
maintain the hypermethylation and inactivation of
GSTP1. Overexpression of piR-31470 inhibited GSTP1
expression and increased vulnerability to oxidative stress
and DNA damage in human prostate epithelial
RWPE1 cells, resulting in tumorigenesis173. However, the
GSTP1 inactivation may inhibit tumor growth via

Zhang et al. Cell Death and Disease          (2020) 11:580 Page 14 of 22

Official journal of the Cell Death Differentiation Association



induction of ferroptosis once the tumors are formed.
Clearly, further studies are needed to explore the roles of
piRNAs in different stages of cancer. SnoRNAs are a class
of small RNA molecules that mediate modifications of
rRNAs, tRNAs, and snRNAs. The snoRNA ACA11 was
overexpressed in multiple myeloma cells, increasing ROS
and resulting in protein production and cell prolifera-
tion174. There are currently no reports on ferroptosis and
snRNAs which mediate post-transcriptional splicing in
gene expression. In cervical cancer and osteosarcoma,
assembly chaperones and core proteins devoted to snRNA
maturation contributed to recruiting trimethylguanosine
synthase 1 to selenoprotein mRNAs including GPX1 for
cap hypermethylation175. Future studies should focus on
the possible regulation of snRNAs towards GPX families.
In sum, further studies are needed to explore functions of
circRNAs, tRNA, rRNAs, piRNAs, snoRNAs and snRNAs
in ferroptosis. Furthermore, the network of factors mod-
ulating ferroptosis remains to be established. As ferrop-
tosis is a process of dynamic equilibrium, any alteration of
the associated factors may intersect with others. For
example, GSH maintains the cytosolic labile iron pool via
formation of iron-GSH complexes176. In addition, GSH
regulates iron trafficking, and inhibition of GSH synthesis
leads to diminished iron efflux following nitric oxide
exposure177. Moreover, iron is exported via multidrug
resistant protein 1 (MRP1), a known transporter of GSH
conjugates178. GSH depletion, MRP1 inhibition or MRP1
knock-out leads to decreased iron release upon nitric
oxide treatment179. Conversely, the secondary increase in
ROS induced by iron stimulates GSH production, indi-
cating that iron and GSH are interconnected46. Moreover,
targets of NRF2 play a critical role in mediating iron/heme
metabolism. Both FTL and FTH, the key iron storage
protein, as well as FPN, which is responsible for cellular
iron efflux, are controlled by NRF2180,181. In addition, a
number of integral GSH synthesis and metabolism related
enzymes including both the catalytic and modulatory
subunits of GCLC, GCLM, GSS, and SLC7A11, are under
the control of NRF2182–184. In total, regulation of fer-
roptosis are linked together, modulation of GSH, iron and
NRF2 by ncRNAs may result in further change of each
other, and finally alter ferroptosis process.

Clinical application potential of ncRNA-associated
ferroptosis
Targeting ncRNAs in cancer has yielded some promis-

ing results, however, application of ferroptosis via an
ncRNA-dependent manner in clinic is facing obstacles.
Inadequate understanding of specific mechanisms results
in the limited use of ncRNA modifiers in ferroptosis.
Furthermore, cell death occurs in a variety of ways, and
numerous ncRNAs may be simultaneously regulated, thus
how to ensure that the alteration of associated ncRNAs

leads to ferroptosis is another problem. Moreover,
ncRNAs act in various ways that may intersect with fer-
roptosis. For example, ferroptosis inducer miR-210 and
H19 could modulate autophagy via targeting BECN1,
ATG7, SIRT1, and HIF-1α185–188. In addition, miR-146a
could regulat ROS modulator catalase and SOD2 which
repressed mitochondrial function189,190. Alteration of
autophagy or mitochondrial function resulted in multiple
pathologic changes such as neuroinflammation, neuro-
degeneration, vessel remodeling and myocardial fibrosis,
thus how to overcome these possible complications
should be considered191–194. In addition, some pathways
such as the KEAP1-NRF2 axis, is inhibited by multiple
miRNAs and lncRNAs and promotes ferroptosis. Never-
theless, the repression of KEAP1-NRF2 results in the
defect in cleaning of ROS and leads to susceptibility to
DNA damage and tumorigenesis195,196. To solve these
problems, future studies should address the following
points. First, more ncRNAs should be identified. A
ferroptosis-associated ncRNA screening platform should
be established to identify the spectrum of ferroptosis
associated ncRNAs and those specific to certain cancers.
Second, more intensive studies using complex molecular
biological experiments, such as chromosome immuno-
precipitation, RNA immunoprecipitation, RNA pull-
down, luciferase assays, and RNA truncation should be
performed to explore the precise roles of ncRNAs in
ferroptosis. Third, in order to translate fundamental
experimental results into clinic, functions of ncRNAs in
ferroptosis should be tested in animal models. Transgenic
mouse models should be established to verify the function
of ncRNAs more clearly. Fourth, in order to ensure
whether ferroptosis is modulated by ncRNAs, accurate
detection of ROS and iron levels, and observation of
mitochondrial morphology in tumor tissues are needed.
Furthermore, primary culture of tumor cells from patients
should be performed to explore whether the proliferation
of cancer cells is enhanced by Fer-1, which is the specific
inhibitor of ferroptosis. The involvement of ncRNAs in
ferroptosis in cancer can be verified in knockdown or
overexpression studies. Finally, since ferroptosis occurs in
not only tumors but also normal tissues, and as above,
ferroptosis regulation by ncRNAs may activate other
biological processes and even increase the susceptibility to
tumorigenesis. Thus, both ferroptosis-related ncRNAs
and associated markers of cell death, senescence, and
remodeling should be assessed in patients who are sui-
table for ferroptosis-associated therapy. In addition,
adverse events, dose-limiting toxicities and therapeutic
effects should be carefully monitored through rigorous
detection of organ functions, imaging of vital organs and
tumors, and hematological changes during the application
of ferroptosis inducers in clinic. After all, as cancer is a
developmental process, the collaboration between
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multidisciplinary teams should be made to obtain rational
therapy regimens to enhance therapeutic effect and alle-
viate complications.

Conclusions and perspectives
Cancer cells may be intrinsically insensitive or evolve

and develop resistance to apoptosis, resulting in cancer
progression197. Under the development of molecular
biological technologies, identification of new targets or
methods to eliminate cancer cells has attracted substantial
attention. Ferroptosis is a recently recognized form of
programmed cell death that relies on excess intracellular
ROS and consequent lipid peroxidation198. Ferroptosis
has been successfully applied to limit tumor growth and
overcome the resistance of cancer cells to apoptosis,
indicating that it may be useful as a new therapeutic
approach3. Nevertheless, the application of ferroptosis
inducers in cancer therapy is limited, mainly because the
specific mechanisms underlying ferroptosis remain
unexplored.
NcRNAs have been proved to regulate gene expression

by various manners. Numerous ncRNAs have been found
to regulate behaviors of cancer cells. In recent years,
researchers have examined some ferroptosis-associated
ncRNAs in cancer cells. Nevertheless, the specific reg-
ulatory mechanisms have not been explored. Therefore,
wider and deeper studies to explore the function of
ncRNAs in ferroptosis are needed. In this review, the
landscape of ncRNAs associated with ferroptosis in cancer
thus far is summarized. In addition, possible obstacles
during application of ncRNA-associated ferroptosis in
clinic are put forward and associated solutions are sug-
gested. However, the information summarized in this
review is not sufficient to support the application of fer-
roptosis inducers in cancer, more ncRNAs should be
identified and deeper researches should be performed. In
conclusion, ncRNAs may become markers to filter cancer
patients who are fit for ferroptosis therapy and become
therapeutic targets of ferroptosis inducers.
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