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MicroRNA-3163 targets ADAM-17 and enhances
the sensitivity of hepatocellular carcinoma cells
to molecular targeted agents
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Yongping Yang1 and Yinying Lu1

Abstract
Molecular targeted agents, such as sorafenib, remain the only choice of an antitumor drug for the treatment of
advanced hepatocellular carcinoma (HCC). The Notch signaling pathway plays central roles in regulating the cellular
injury/stress response, anti-apoptosis, or epithelial–mesenchymal transition process in HCC cells, and is a promising
target for enhancing the sensitivity of HCC cells to antitumor agents. The ADAM metalloprotease domain-17 (ADAM-
17) mediates the cleavage and activation of Notch protein. In the present study, microRNA-3163 (miR-3163), which
binds to the 3′-untranslated region of ADAM-17, was screened using online methods. miRDB and pre-miR-3163
sequences were prepared into lentivirus particles to infect HCC cells. miR-3163 targeted ADAM-17 and inhibited the
activation of the Notch signaling pathway. Infection of HCC cells with miR-3163 enhanced their sensitivity to molecular
targeted agents, such as sorafenib. Therefore, miR-3163 may contribute to the development of more effective
strategies for the treatment of advanced HCC.

Introduction
Hepatocellular carcinoma (HCC) is one of the foremost

threats to public health in China due to the high rate of
hepatitis B virus infection in the Chinese population1–3.
Regardless of the administration of anti-viral treatment, a
large number of patients suffering from hepatitis B virus-
related chronic liver disease eventually progress to HCC, a
fatal end-stage liver disease4–6. Unfortunately, a large
proportion of patients with HCC often suffer from
advanced-stage disease (e.g., advanced HCC, Barcelona
Clinic Liver Cancer stage B or C) at initial diagnosis. This
subset of patients is unsuitable for surgical resection and
is associated with poor clinical outcome or prognosis7,8.

Moreover, advanced HCC is resistant to radiotherapy or
cytotoxic chemotherapy, and the rapid or regressive
recurrence after treatment may limit the application or
efficiency of local therapies, such as transarterial che-
moembolization or radiofrequency ablation9–11. There-
fore, molecular targeted therapy plays important roles in
the treatment of advanced HCC12. As the only first-line
choice of an antitumor drug, the use of molecular targeted
agents (i.e., oral administration of small molecular protein
kinase inhibitors, such as sorafenib) has improved the
overall survival or time to progression in patients with
advanced HCC13–15. However, only a small proportion
(20–40%) of patients with advanced HCC were initially
sensitive to sorafenib. Of note, treatment with sorafenib is
linked to a gradual increase in resistance16. Therefore, it is
urgent to investigate and develop novel approaches to
enhance the antitumor effects of molecular targeted
therapies for the treatment of advanced HCC.
The Notch signaling pathway is a key regulator of cel-

lular fate, survival, and cellular stress/cellular injury
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responses in HCC cells17,18. The aberrant expression of
Notch protein or activation of the Notch pathway has
been reported in various malignancies, such as prostate
cancer, colorectal cancer, breast cancer, and especially in
HCC19–23. During clinical treatment, radiotherapy
(ionizing radiation) or chemotherapeutic agents (cellular
toxicity) may function as cellular injuries to HCC cells,
activating Notch. This leads to the development of
stronger resistance to these antitumor strategies in HCC
cells24,25. It has been confirmed that Notch protein is
cleaved and activated by the ADAM metalloprotease
domain-17 (ADAM-17). This results in the release of the
Notch intracellular domain (NICD) for translocation into
the nucleus to mediate the transcription of pro-survival or
anti-apoptosis genes, such as Survivin, B-cell lymphoma-
2, or inhibitors of apoptosis proteins (IAPs)26–28.
Increasing evidence demonstrated that inhibition of the
activation of the Notch pathway may enhance the effi-
ciency of antitumor agents in HCC cells29,30. Therefore,
targeting ADAM-17 may be a novel strategy for inhibiting
Notch activation and enhancing the sensitivity of HCC
cells to antitumor treatment. In the present study, miR-
3163, a microRNA targeting the 3′iuntranslated region
(3′-UTR) of ADAM-17, was identified using an online
tool (miRDB database). The in-vitro or in-vivo models
showed that overexpression of miR-3163 enhanced the
antitumor activation of molecular targeted agents.

Material and methods
Patients and agents
The collection of HCC clinical specimens and methods

were approved by the Ethic Committee of the Fifth
Medical Center of General Hospital, Chinese People’s
Liberation Army (formerly named the 302nd Hospital,
Chinese People’s Liberation Army). The HCC patients
provided written informed consent for the collection and
usage of specimens, which were previously described
(Supplementary Table 1)31,32. A total of 52 patients were
included and real-time quantitative PCR (qPCR) was
performed to examine the expression of genes in clinical
specimens. The primers used in the qPCR experiments
are shown in Supplementary Table 2. Lentivirus particles
containing NICD, pre-miR-3163, ADAM-17, or with a
mutation of miR-3163 target sequences in the 3′-UTR of
ADAM-17 were constructed by Vigene Corporation
(Jinan, China). The vectors containing the full-length
sequences of ADAM-17 were purchased from Vigene
Corporation (Jinan, China) and the vectors containing
ADAM-17 with mutagenized miR-3163-binding sites
were constructed by PCR methods. Hepatic cell lines: L-
02 (a non-tumor hepatic cell line), MHCC97-H, or LM-3
(two highly metastatic cell lines of HCC), HepG2, Hu7,
BEL-7402, or SMMC-7721 (cell lines of HCC), and
MHCC97-L (a lowly metastatic cell line of HCC) were

purchased from the Type Culture Collection of the Chi-
nese Academy of Sciences (Shanghai, China) or the
National Infrastructure of Cell Line (Institute of Basic
Medicine, Chinese Academy of Medical Science, Beijing,
China); these are the two culture collection centers of the
Chinese government. Five patient-derived HCC (PDC)
cell lines were provided by Dr Fan Feng at the Research
Center for Clinical and Translational Medicine at the
302nd Hospital of Chinese People’s Liberation Army
(Beijing, China)33. The cell lines were maintained in our
lab under conditions, which were previously descri-
bed34,35. Molecular targeted agents (i.e., sorafenib: catalog
number S7397; regorafenib: catalog number S1178; len-
vatinib: catalog number S1164; anlotinib: catalog number
S8726; or apatinib: catalog number S5248) were pur-
chased from Selleck Corporation (Houston, TX, USA).
These agents (4 mg each) were dissolved in a mixture of
dimethyl sulfoxide (15 μl), polyethylene glycol 400 (60 μl),
and Tween80 (40 μl). Physiological saline was carefully
added to the solution (agents dissolved in organic solvent)
to a total volume of 20ml36,37. Therefore, the con-
centration of agents was 0.2 mg/ml.

Subcellular fractionation and western blotting
Subcellular fractionation methods were used to examine

the subcellular distribution of NICD in HCC cells38,39.
HCC cells that were stably infected with control miRNA
or miR-3163 by using lentivirus particles were collected
and homogenized using a Dounce homogenizer. For
subcutaneous tumor tissue formed by HCC cells, a 200-
mesh steel sieve was used to grind the tumor tissue and
obtain a cell suspension. Subsequently, the cell suspension
was washed with physiological saline to obtain single cells.
The homogenate was centrifuged at 366 × g for 10 min at
4 °C to collect the nuclear sub-fraction. Subsequently, the
supernatant was centrifuged again at 13,201 × g for 15 min
at 4 °C and the final supernatant was the cytoplasmic sub-
fraction. Western blotting experiments were performed
following a standard protocol. The antibodies against
Lamin A (catalog number ab8980), β-actin (catalog
number ab205), or antibodies conjugated with horse-
radish peroxidase were purchased from Abcam PLC
(Cambridge, UK). Moreover, the antibody of NICD (cat-
alog number sc-373891) was obtained from Santa Cruz
Corporation (Dallas, TX, USA). β-Actin was used as a
cytoplasmic indicator and Lamin A was selected as the
indicator of the nuclear fraction.

Extraction of RNA samples and qPCR experiments
Extraction of RNA samples and qPCR experiments were

performed according to the methods described by Liang
et al.40 and Ji et al.41. Briefly, the total RNA sample of
cultured HCC cells or tumor tissues was extracted and
reverse-transcribed into cDNA using an RNeasy Mini kit
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(Qiagen, Valencia, CA, USA) according to the protocol
provided by the manufacturer. The TaqMan miRNA
qRT-PCR (Applied Biosystems, Foster City, CA, USA)
was used to detect and quantify the miRNA expression of
miR-3163 as previously described by Ji et al.41 and Liang
et al.40. The relative expression level of the miRNA was
calculated using the comparative cycle threshold method.
Universal small nuclear RNA U6 was used as the endo-
genous control for the miRNAs. The sequences of the
primers used for the qPCR analysis are shown in Sup-
plementary Table 2.

Examination of cell survival using the MTT method
Cells were cultured and collected to prepare a cell

suspension. Subsequently, cells were seeded into 96-well
plates (8000 cells per well). Following the full attachment
of cells to the bottom of the plates, the cells were treated
with the indicated concentrations of molecular targeted
agents (i.e., 10, 3, 1, 0.3, 0.1, 0.03, and 0.01 μmol/l) for
48 h. Subsequently, the cells were analyzed through
Thiazolyl Blue Tetrazolium Bromide [3-(4,5-dimethyl-2-
thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide] (MTT)
analysis following previously described methods42. The
inhibition rate was calculated as follows: (optical density
[OD] 490 nm control group−OD 490 nm administration
group)/(OD 490 nm control group)43,44.

In-vivo tumor model
The protocols of the animal experiments were approved

by the Institutional Animal Care and Use Committee of
the 302nd Hospital, Chinese People’s Liberation Army,
and were performed in accordance with the UK Animals
(Scientific Procedures) Act, 1986, and its associated
guidelines45. For the subcutaneous tumor model,
MHCC97-H cells infected with lentivirus particles were
injected into a subcutaneous location. Following the
injection (4–5 days), the mice received oral administration
of molecular targeted agents every 2 days. After 3 weeks of
treatment (~10 administrations), the mice were collected
and the tumor volumes/tumor weights were examined.
The tumor volumes were calculated as follows: tumor
width × tumor width × tumor length/246. The inhibition
rate of molecular targeted agents was calculated as fol-
lows: [(tumor volumes of the control group)− (tumor
volumes of the treatment group)]/(tumor volumes of the
control group) × 100% or [(tumor weights of the control
group)− (tumor weights of the treatment group)]/(tumor
weights of the control group) × 100%.
For the intrahepatic migration model, MHCC97-H cells

infected with lentivirus particles were injected into nude
mice to form a subcutaneous tumor or into the liver via
hepatic portal vein injection47. Following the injection
(4–5 days), the mice received oral administration of
molecular targeted agents every 2 days. After 3 weeks of

treatment (~10 administrations), the mice were analyzed
using micro positron emission tomography (microPET)
according to the methods described by Li et al.48. Sub-
sequently, the mice were collected and the livers with
nodules formed by MHCC97-H of nude mice were col-
lected. Photographs were captured and quantitatively
analyzed to determine the total amount of nodules using
the Image J software (version number: 1.51j8; the National
Institutes of Health, Bethesda, MD, USA), according to
the methods described by Shao et al.47. The radioactivity
in the organs and blood (i.e., radio-activation of the liver
to blood) was measured using a NaI (Tl) well counter
(China Atom Corporation, Beijing, China). The inhibition
rate was calculated as follows: [control group relative
nodule area (percentages of nodules to the total area of
the liver, %)− treatment group relative nodule area]/
(control group relative nodule area) × 100%; [control
group relative radio-activation (the radio-activation of the
liver to blood, folds)− treatment group relative radio-
activation]/(control group relative radio-activation) ×
100%

Statistical analysis
Statistical analysis was performed using Bonferroni’s

correction without two-way analysis of variance (SPSS
software [Version Number 9.0]; IBM Corporation,
Armonk, NY, USA). The half maximal inhibitory con-
centration (IC50) values of agents were calculated using
the Origin software (Version Number 6.1, OriginLab
Corporation, Northampton, MA, USA). A P-value < 0.05
denoted statistical significance.

Results
High endogenous expression of ADAM-17 is associated
with poor prognosis in patients with advanced HCC, who
received sorafenib
First, miR-3163 was identified as a microRNA targeting

ADAM-17 using the online tool miRDB. As shown in
Fig. 1, the bold and italicized fonts indicated the binding
site of miR-3163 located in the 3′-UTR of ADAM-17
(Fig. 1a). Figure 1a also shows that mutations were
introduced into the miR-3163-binding sites located in the
3′-UTR of ADAM-17. The expression of miR-3163
and ADAM-17 in HCC clinical specimens was exam-
ined to identify potential interactions. As shown in Fig. 1b,
the expression of miR-3163 was negatively associated
with ADAM-17 expression in the HCC specimens
(Y=− 0.02488 × X+ 0.0002473; P < 0.0001).
Subsequently, the involvement of ADAM-17 and miR-

3163 in treatment with sorafenib was investigated. The
endogenous level of ADAM-17 or miR-3163 was mea-
sured in clinical specimens obtained from patients with
advanced HCC, who received sorafenib. By determining
the median values of this expression level, the patients
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were divided into two groups for each factor: ADAM-17-
high group or ADAM-17-low group; miR-3163-high
group or miR-3163-low group. The statistical data indi-
cated that patients in the ADAM-17-high group were
linked to a poor prognosis vs. those in the ADAM-17-low
group (Table 1 and Fig. 1c–e). In contrast, patients in the
miR-3163-high group were associated with a better
prognosis vs. those in the miR-3163-low group (Table 2
and Fig. 1f–h). The results are shown as survival curves
(Fig. 1c–h), mean+ 95% confidence level of overall sur-
vival, or time to progression (Tables 1 and 2), or per-
centage of complete response, partial response, or stable
disease (Tables 1 and 2).
Moreover, a high level of ADAM-17 was detected in

HCC cell lines compared with L-02, a non-tumor haptic

Fig. 1 The miR-3163/ADAM-17 axis plays roles in the regulation of HCC treatment. a The binding site of miR-3163 in the 3′-UTR of ADAM-17.
The bold and italicized fonts indicate the wild-type or mutant forms of putative miR-3163 targeting sequences. b The relationship between the
expression level of miR-3163 and ADAM-17 in advanced HCC specimens was assessed through the Spearman’s rank correlation analysis. c A total of
52 patients were divided into two groups (ADAM-17-high group or ADAM-17-low group) according to the median value of ADAM-17 expression. d, e
Kaplan–Meier survival curves and log-rank tests were used to analyze the OS (d) or TTP (e) in advanced HCC patients with low or high levels of
ADAM-17, who received treatment with sorafenib. f A total of 52 patients were divided into two groups (miR-3163-high group or miR-3163-low
group) according to the median value of miR-3163 expression. g, h Kaplan–Meier survival curves and log-rank tests were used to analyze the OS (g)
or TTP (h) in advanced HCC patients with low or high levels of miR-3163, who received treatment with sorafenib. *P < 0.05

Table 1 ADAM-17 expression and clinical outcome of
sorafenib treatment

ADAM-17 mRNA expression P

High (n= 26) Low (n= 26)

TTP 9.0 12.0 0.024

7.3–10.7 (M) 9.4–12.1 (M)

OS 10.0 13.0 0.033

6.6–11.4 (M) 10.8–14.6 (M)

Overall response rate (PR) 0 (0%) 4 (15.38%)

Disease control rate (PR+ SD) 4 (15.38%) 9 (34.61%)

CR complete remission, M months, OS overall survival, PR partial remission, SD
stable of disease, TTP time to progress
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cell line. In addition, the expression of ADAM-17 in LM-3
or MHCC97-H cells, two highly aggressive HCC cell lines,
was much higher than that observed in other HCC cell
lines (Supplementary Fig. 1). To further examine the roles
of ADAM-17 or miR-362 in HCC, MHCC97-H cells—a
highly aggressive HCC cell line—was infected with lenti-
virus particles and was injected into nude mice to form
subcutaneous tumors. As shown in Supplementary Fig. 2,
overexpression of ADAM-17 enhanced the subcutaneous
growth of MHCC97-H cells in nude mice and decreased
the antitumor effect of sorafenib on HCC cells. Trans-
fection of miR-3163 inhibited the subcutaneous growth of
MHCC97-H cells in nude mice (Supplementary Fig. 3)
and ADAM-17Mut or NICD could block the effect of
miR-3163 on the subcutaneous growth of MHCC97-H
cells (Supplementary Fig. 3). Therefore, the miR-3163/
ADAM-17 axis plays an important role in the regulation
of HCC.

miR-3163 inhibits the expression of ADAM-17 by targeting
the 3′-UTR of ADAM-17 mRNA
The expression vectors of ADAM-17 with mutated miR-

3163-targeted sequences were also constructed to confirm
whether miR-3163 targets ADAM-17. As shown in Fig. 2,
compared with the control miRNA, miR-3163 significantly
repressed the expression of ADAM-17 in MHCC97-H
(Fig. 2a, b) or LM-3 (Fig. 2c, d). This effect was not
observed for ADAM-17Mut, which contains a mutation in
the miR-3163-binding sites. Transfection of the miR-3163
inhibitor almost blocked the decreasing effect of miR-3163
on the expression of ADAM-17 (Fig. 2). Moreover, the
interaction between the 3ʹ-UTR of ADAM-17 and miR-
3163 was confirmed through luciferase experiments
(Supplementary Figs. 4 and 5). Therefore, ADAM-17 may
be a target of miR-3163. It is suggested that miR-3163 may
repress the expression of ADAM-17 in HCC cells by tar-
geting the 3′-UTR of ADAM-17.

Overexpression of miR-3163 inhibits the activation of the
Notch signaling pathway
The accumulation of NICD in the nucleus was exam-

ined to further identify the effect of miR-3163 on the
activation of the Notch signaling pathway. As shown in
Fig. 3, overexpression of miR-3163 significantly inhibited
the expression of ADAM-17 in the cytoplasm of
MHCC97-H (Fig. 3a) or LM-3 cells (Fig. 3b), and
decreased the accumulation of the NICD of Notch protein
in the nucleus of MHCC97-H (Fig. 3a) or LM-3 (Fig. 3b)
cells. Transfection of ADAM-17Mut or the inhibitor of
miR-3163 almost blocked the inhibitory effect of miR-
3163 on the cleavage of Notch protein and the accumu-
lation of NICD in the nucleus (Fig. 3a, b). Subsequently,
HCC cells infected with lentivirus particles were injected
into nude mice to form subcutaneous tumors and the
accumulation of NICD in the nucleus of single cells. As
shown in Fig. 3, overexpression of miR-3163 significantly
inhibited the expression of ADAM-17 in the cytoplasm of
MHCC97-H (Fig. 3c) or LM-3 cells (Fig. 3d) separated
from subcutaneous tumors. Moreover, it decreased the
accumulation of the NICD of Notch protein in the
nucleus of MHCC97-H (Fig. 3c) or LM-3 (Fig. 3d) cells.
Transfection of ADAM-17Mut almost blocked the inhibi-
tory effect of miR-3163 on the cleavage of the Notch
protein and the accumulation of NICD in the nucleus of
cells separated from subcutaneous tumors (Fig. 3c, d).
Subsequently, the expression of the following down-

stream factors of the Notch pathway was determined:
epithelial–mesenchymal transition (EMT)-related factors
(E-cadherin, an epithelial indicator; N-cadherin or
Vimentin, two mesenchymal indicators; EMT-related
transcription factors, ZEB1 or Snail), and pro-survival/
anti-apoptosis-related factors (Survivin, cellular IAP-1
(cIAP-1), or cIAP2). As shown in Fig. 4, overexpression of
miR-3163 inhibited the expression of N-Cadherin,
Vimentin, Survivin, cIAP-1, cIAP-2, Snail, or ZEB1. In
contrast, it enhanced the expression of E-Cadherin.
Transfection of ADAM-17Mut (Fig. 4a, b) or the inhibitor
of miR-3163 (Fig. 4a) almost blocked the effect of miR-
3163. Similar results were obtained in cultured MHCC97-
H cells (Fig. 4a) or subcutaneous tumors (Fig. 4b) formed
by MHCC97-H cells. Therefore, miR-3163 inhibits the
activation of the Notch signaling pathway by repressing
the expression of ADAM-17.

Overexpression of miR-3163 enhances the sensitivity of
HCC cells to molecular targeted agents
Subsequently, the effect of miR-3163 on the antitumor

activity of molecular targeted agents was examined. As
shown in Table 3, overexpression of miR-3163 enhanced
the sensitivity of MHCC97-H cells to sorafenib. Of note,
the IC50 values of sorafenib decreased from 1.04 ±
0.05 μmol/l to 0.10 ± 0.01 μmol/l. Transfection of ADAM-

Table 2 miR-3163 expression and clinical outcome of
sorafenib treatment

miR-3163 mRNA expression P

Low (n= 26) High (n= 26)

TTP 9.0 11.0 0.023

7.2–10.2 (M) 9.3–13.1 (M)

OS 11.0 16.0 0.012

8.0–14.0 (M) 10.4–21.6 (M)

Overall response rate (PR) 1 (3.84%) 3 (11.54%)

Disease control rate (PR+ SD) 2 (7.69%) 12 (46.15%)

CR complete remission, M months, OS overall survival, PR partial remission, SD
stable of disease, TTP time to progress
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17Mut reduced the effect of miR-3163, with the IC50 values
of sorafenib increasing from 0.10 ± 0.01 μmol/l to 0.77 ±
0.14 μmol/l (Table 3). Similar results were obtained in
LM-3 cells (Table 3). Subsequently, the effect of miR-3163
on the sensitivity of PDC cells to molecular targeted
agents was examined in patient-derived cell lines. As
shown in Table 4, overexpression of miR-3163 enhanced
the sensitivity of five PDCs to the molecular targeted
agents (i.e., sorafenib, regorafenib, lenvatinib, anlotinib, or
apatinib).
To further examine the effect of miR-3163 on the

antitumor activity of sorafenib, MHCC97-H cells were
seeded into nude mice to form subcutaneous HCC
tumors. As shown in Fig. 5, oral administration of sor-
afenib inhibited the subcutaneous growth of MHCC97-H
cells. Overexpression of miR-3163 enhanced the sensi-
tivity of HCC cells to sorafenib. Subsequently, the intra-
hepatic migration model was applied. As shown in Fig. 6,
injection of MHCC97-H cells into the liver of nude mice
via portal vein injection resulted in the formation of
multiple disseminated lesions. Notably, the intrahepatic
growth could be identified through microPET. Oral
administration of sorafenib inhibited the images of
microPET in the liver of nude mice and the area of lesions
in the liver (Fig. 6). Overexpression of miR-3163 enhanced
the antitumor effect of sorafenib on the intrahepatic
growth of MHCC97-H cells (Fig. 6). Moreover, the

specificity of miR-3163 on sorafenib was examined. As
shown in Fig. 7 and Fig. 8, the expression of ADAM-17Mut

or NICD decreased the effect of miR-3163 on sorafenib.
Similar results were obtained from PDCs: miR-3163
enhanced the sensitivity of PDCs to molecular targeted
agents by targeting ADAM-17 (Table 5). To examine the
specificity of miR-3163′ function, the expression level of
downstream factors Notch pathways, pro-survival factors
or EMT-related factors in the subcutaneous tumors of
Fig. 8 were examined by western blotting experiments.

Discussion
In the present study, miR-3163 was identified as a

microRNA potentially targeting ADAM-17. Over-
expression of miR-3162 through infection lentivirus par-
ticles inhibited the cleavage of Notch protein and
enhanced the sensitivity of HCC cells to molecular tar-
geted agents such as sorafenib. The effect of miR-3163 on
the Notch signaling pathway or sensitivity of HCC cells to
sorafenib was almost blocked by transfection of mutated
ADAM-17, the inhibitor of miR-3163, or NICD. This
confirmed the effect of miR-3163 on ADAM-17 and the
sensitivity of HCC cells to molecular targeted drugs by
inhibiting the expression of ADAM-17. In addition, it
confirmed that the miR-3163/ADAM-17 axis acts
through the Notch signaling pathway. Therefore, our
results indicated that miR-3163 may enhance the

Fig. 2 miR-3163 suppresses the expression of ADAM-17. MHCC97-H (a, b) or LM-3 (c, d) cells transfected with control miRNA, miR-3163, miR-
3163+ ADAM-17Mut (ADAM-17 with mutated miR-3163 binding sites), or miR-3163+ its inhibitor, were collected for western blotting experiments.
The protein level of ADAM-17 or GAPDH was examined using antibodies. GAPDH was selected as loading control. The results are shown as images of
western blotting (a, c) or quantitative analysis (b, d). *P < 0.05
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Fig. 3 miR-3163 inhibits the accumulation of NICD in the nuclear sub-fraction of HCC cells.MHCC97-H cells (a, c) or LM-3 cells (b, d) transfected
with vectors (control miRNA, miR-3163, miR-3163+ ADAM-17Mut, or miR-3163+NICD) were analyzed in the subcellular fractionation experiments. The
accumulation of ADAM-17 or NICD in cultured cells (a, b) or single cells separated from subcutaneous tumor tissues (c, d) formed by MHCC97-H (c) or
LM-3 (d) cells was examined using antibodies. Lamin A, a nuclear skeleton protein, was used as an indicator of the nuclear sub-fraction; β-actin was
used as an indicator of the cytoplasmic sub-fraction. The results are shown as images of western blotting or quantitative analysis. *P < 0.05
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sensitivity of HCC cells to sorafenib by inhibiting the
cleavage of Notch protein. In addition to screening for
miRNAs targeting ADAM-17, there are other strategies:
(1) Jia et al.49 used rhamnetin to inhibit the activation of
the Notch signaling pathway and enhance the sensitivity
of HCC cells to sorafenib by enhancing miR-34a, which
targets Notch protein; (2) Zhang et al.50 identified a novel
inhibitor of ADAM-17; and (3) the inhibitors of the
presenilin-dependent gamma secretase complex may also
be useful in the treatment of HCC51–54.
Moreover, our results showed that miR-3163 inhibited

the EMT process in HCC cells. It is established that the
EMT process in cancer cells is associated with poor
patient survival. Mechanism data indicated that the EMT
is a key step in the progression of cancer and participates
in metastasis55. During the EMT process, the adhesion
feature of cancer cells is decreased (e.g., E-cadherin loss).
Furthermore, mesenchymal markers (i.e., Vimentin or N-
Cadherin) decrease the polarity of cancer cells and
accelerate migration and invasion56,57. Recently, the EMT
process has been proposed as an important regulator of

drug resistance58–60. Accumulating data have confirmed
that mechanisms of resistance to sorafenib may involve
the EMT and the Notch signaling pathway is a key reg-
ulator of the EMT process61–63. In this study, miR-3163
significantly inhibited the EMT process in HCC cells. This
means that a decrease in the expression of ADAM-17 may
inhibit the activation of the Notch signaling pathway, and
enhance the sensitivity of HCC cells to antitumor agents
by inhibiting the EMT process. In addition to EMT, we
also investigated the expression of other cell-promoting
and anti-apoptotic Notch downstream proteins, including
Survivin, cIAP-1, and cIAP-225. Downregulation of the
activity of the Notch signaling pathway by various path-
ways can reduce the resistance of cells to various dama-
ging factors. This increases the sensitivity of cells to
molecular targeted drugs and offers safer and more
effective treatments (i.e., cytotoxic chemotherapy drugs
and radiation therapy)64–67.
Furthermore, patient-derived tumor cells are an

important model of pharmacologically relevant research
that reflects the actual conditions of patients68,69. Con-
structing appropriate research models, especially animal
models, contributes to the development of relevant
research and provides a basis for predicting patient sen-
sitivity and prognosis in patients who received treatment.
This study used a variety of tumor animal models,
including subcutaneous tumor models and intrahepatic
tumor models in nude mice. The former is a common
model used in oncology research. Hepatic portal vein
injection was used to inoculate HCC cells into the liver of
nude mice, simulating the recurrence or metastasis of

Table 3 miR-3163 enhances the sensitivity of HCC cells to
sorafenib

Cell lines control miRNA miR-3163 miR-3163+ ADAM-17Mut

IC50 values of sorafenib on HCC cells’ survival

MHCC97-H 1.04 ± 0.05 0.10 ± 0.01 0.77 ± 0.14

LM-3 0.95 ± 0.35 0.14 ± 0.07 0.89 ± 0.20

Fig. 4 miR-3163 inhibits the activation of the Notch signaling pathway. MHCC97-H cells transfected with vectors (control miRNA, miR-3163,
miR-3163+ ADAM-17Mut, or miR-3163+ NICD) were analyzed in the qPCR experiments. The expression of Survivin, cIAP-1, cIAP2, E-Cadherin, N-
Cadherin, Vimentin, ZEB1, Snail, or Twist in cultured cells (a) or subcutaneous tumor tissues formed by MHCC97-H (b) was examined through qPCR.
The results are shown as a heat-map according to the relative mRNA level of Survivin, cIAP-1, cIAP-2, E-Cadherin, N-Cadherin, Vimentin, ZEB1, Snail,
or Twist
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Fig. 5 miR-3163 enhances the antitumor effect of sorafenib on the subcutaneous growth of MHCC97-H cells. MHCC97-H cells transfected
with vectors (control miRNA or miR-3163) were injected into nude mice to form subcutaneous tumors. The mice received oral administration of
indicated concentrations of sorafenib and were harvested to collect tumor tissues. The results are shown as images of subcutaneous tumor tissues
(a), tumor volumes (b), tumor weights (c), inhibition rates according to tumor volumes (d), or inhibition rates according to tumor weights (e).
*P < 0.05

Table 4 miR-3163 enhanced the antitumor effect of sorafenib on cultured HCC cells’ surviving

PDCs Groups Sorafenib Regorafenib Lenvatinib Anlotinib Apatinib

IC50 values (μmol/L) of molecular targeting agents on cultured HCC cells’ surviving

No. 1 Control 1.46 ± 0.10 1.60 ± 0.16 0.73 ± 0.41 1.83 ± 0.33 1.98 ± 0.86

miR-3163 0.33 ± 0.11 0.61 ± 0.08 0.12 ± 0.02 0.40 ± 0.14 0.99 ± 0.63

miR-3163+ ADAM-17Mut 1.55 ± 0.08 1.58 ± 0.52 0.67 ± 0.20 1.55 ± 0.58 1.91 ± 0.11

No. 2 Control 1.51 ± 0.52 1.68 ± 0.45 0.36 ± 0.11 1.65 ± 0.59 1.59 ± 0.29

miR-3163 0.28 ± 0.05 0.57 ± 0.24 0.07 ± 0.01 0.52 ± 0.08 0.54 ± 0.07

miR-3163+ ADAM-17Mut 1.44 ± 0.85 1.86 ± 0.34 0.33 ± 0.04 1.48 ± 0.62 1.74 ± 0.43

No. 3 Control 1.24 ± 0.38 1.61 ± 0.09 0.85 ± 0.07 3.81 ± 0.53 0.99 ± 0.16

miR-3163 0.68 ± 0.45 0.48 ± 0.06 0.22 ± 0.13 1.62 ± 0.44 0.23 ± 0.06

miR-3163+ ADAM-17Mut 1.35 ± 0.26 1.40 ± 0.11 0.74 ± 0.20 2.84 ± 0.74 0.75 ± 0.15

No. 4 Control 2.39 ± 0.44 1.96 ± 0.33 1.10 ± 0.33 2.73 ± 0.98 2.16 ± 0.44

miR-3163 0.98 ± 0.19 0.22 ± 0.04 0.58 ± 0.09 0.87 ± 0.30 0.90 ± 0.54

miR-3163+ ADAM-17Mut 1.88 ± 0.69 1.63 ± 0.30 1.36 ± 0.68 2.07 ± 0.36 1.93 ± 0.84

No. 5 Control 3.10 ± 0.46 2.62 ± 0.64 1.66 ± 0.40 2.81 ± 0.10 2.74 ± 0.71

miR-3163 1.27 ± 0.51 0.79 ± 0.28 0.40 ± 0.07 0.98 ± 0.56 1.22 ± 0.28

miR-3163+ ADAM-17Mut 3.06 ± 0.47 1.70 ± 0.53 1.47 ± 0.88 1.44 ± 0.47 2.53 ± 0.21

PDCs patients-derived HCC cell lines
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HCC cells in patients. In addition Meng et al.70–72

established a research model for the invasion of malignant
tumor cells in the liver of nude mice. Li et al.73 developed
a breast cancer lung metastasis model in nude mice. In
the future, we plan to establish new tumor models for

more in-depth research. In terms of antitumor agents, this
study not involved several molecular targeted drugs:
sorafenib, regorafenib, lenvatinib, anlotinib, and apatinib.
Regorafenib is a new secondary-line therapy option for
advanced HCC developed by Bayer Corporation

Fig. 6 miR-3163 enhances the antitumor effect of sorafenib on the intrahepatic growth of MHCC97-H cells in the liver of nude mice.
MHCC97-H cells transfected with vectors (control miRNA or miR-3163) were injected into the liver of nude mice through hepatic portal vein injection.
The mice received oral administration of indicated concentrations of sorafenib. After treatment, the mice underwent microPET screening and were
harvested to collect tumor tissues. The results are shown as images of micro-PET or quantitative analysis (a), images of livers with lesions (b),
represented images of livers with lesions from each group (c), relative radio-activation of livers (d), or the relative area of lesions (e). *P < 0.05
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Fig. 7 miR-3163 enhances the antitumor effect of sorafenib on the intrahepatic growth of MHCC97-H cells in the liver of nude mice by
targeting ADAM-17. MHCC97-H cells transfected with vectors (control miRNA, miR-3163, miR-3163+ ADAM-17Mut, or miR-3163+ NICD) were
injected into the liver of nude mice through hepatic portal vein injection. Mice received oral administration of 2 mg/kg dose of sorafenib. After
treatment, the mice underwent microPET screening and were harvested to collect tumor tissues. The results are shown as images of micro-PET or
quantitative analysis (a), images of livers with lesions (b), represented images of livers with lesions from each group (c), relative radio-activation of
livers (d), or the relative area of lesions (e). *P < 0.05
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Fig. 8 miR-3163 enhances the antitumor effect of sorafenib on the subcutaneous growth of MHCC97-H cells by targeting ADAM-17.
MHCC97-H cells transfected with vectors (control miRNA, miR-3163, miR-3163+ ADAM-17, miR-3163+ ADAM-17Mut, or miR-3163+ NICD) were
injected into nude mice to form subcutaneous tumors. The mice received oral administration of 2 mg/kg dose of sorafenib and were harvested to
collect tumor tissues. The results are shown as images of subcutaneous tumor tissues (a), tumor volumes (b), tumor weights (c), inhibition rates
according to tumor volumes (d), or inhibition rates according to tumor weights (e). The expression level of downstream factors Notch pathways: pro-
survival factors (f) or EMT-related factors (g) in the represented subcutaneous tumors (the No. 1, 5 and 9 of tumors) of Fig. 8 were examined by
western blotting experiments (f, g). *P < 0.05
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(Leverkusen, Nordrhein-Westfalen, Germany), whereas
lenvatinib is a first-line therapy for HCC developed by
Eisai Official Corporate (Tokyo, Japan)74,75. Anlotinib and
apatinib are molecular targeted drugs developed by Chi-
nese manufacturers (HENGRUI Medicine, Lian-yung-
gang City, Jiangsu Province, China, or CHIATAI Tianqing
Corporation, Nanjing City, Jiangsu Province, China)76,77.
The mechanism of action of these drugs is similar. In the
future, clinical studies investigating the use of anlotinib
and apatinib for the treatment of advanced HCC may also
be performed. This study found that the antitumor effect
of lenvatinib may be superior to that of several other
molecular targeted drugs. This provides a reference for
future research.
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