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CaSSiDI: novel single-cell “Cluster Similarity Scoring and
Distinction Index” reveals critical functions for PirB and
context-dependent Cebpb repression
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PirB is an inhibitory cell surface receptor particularly prominent on myeloid cells. PirB curtails the phenotypes of activated
macrophages during inflammation or tumorigenesis, but its functions in macrophage homeostasis are obscure. To elucidate PirB-
related functions in macrophages at steady-state, we generated and compared single-cell RNA-sequencing (scRNAseq) datasets
obtained from myeloid cell subsets of wild type (WT) and PirB-deficient knockout (PirB KO) mice. To facilitate this analysis, we
developed a novel approach to clustering parameter optimization called “Cluster Similarity Scoring and Distinction Index” (CaSSiDI).
We demonstrate that CaSSiDI is an adaptable computational framework that facilitates tandem analysis of two scRNAseq datasets
by optimizing clustering parameters. We further show that CaSSiDI offers more advantages than a standard Seurat analysis because
it allows direct comparison of two or more independently clustered datasets, thereby alleviating the need for batch-correction
while identifying the most similar and different clusters. Using CaSSiDI, we found that PirB is a novel regulator of Cebpb expression
that controls the generation of Ly6Clo patrolling monocytes and the expansion properties of peritoneal macrophages. PirB’s effect
on Cebpb is tissue-specific since it was not observed in splenic red pulp macrophages (RPMs). However, CaSSiDI revealed a
segregation of the WT RPM population into a CD68loIrf8+ “neuronal-primed” subset and an CD68hiFtl1+ “iron-loaded” subset. Our
results establish the utility of CaSSiDI for single-cell assay analyses and the determination of optimal clustering parameters. Our
application of CaSSiDI in this study has revealed previously unknown roles for PirB in myeloid cell populations. In particular, we
have discovered homeostatic functions for PirB that are related to Cebpb expression in distinct macrophage subsets.

Cell Death & Differentiation (2024) 31:265–279; https://doi.org/10.1038/s41418-024-01268-8

INTRODUCTION
The murine “paired immunoglobulin-like receptor” (Pir)A and PirB
molecules are expressed on osteocytes and leukocytes (especially
myeloid cells), and transduce activatory and inhibitory signals
through “immunoreceptor tyrosine-based activation motifs”
(ITAMs) and the corresponding inhibitory motifs (ITIMs), respec-
tively [1–3]. PirB is also expressed on neurons, where it
blocks excessive axonal growth and neuronal regeneration [4].
Murine chromosome 7 carries six PirA genes and one PirB gene.
The human orthologs of these genes are referred to as “leukocyte
immunoglobulin-like receptors” (LILR) and are organized into
the activatory LILRA family (LILRA1–6) and the inhibitory LILRB
family (LILRB1–5).
Pir/LILR-mediated signaling modulates immune responses, and

PirB-deficient knockout (PirB KO) mice develop exacerbated graft-
versus-host disease [5]. Although the best characterized PirB

ligand is the β2m component of MHC class I, other ligands have
been implicated in PirB/LILRB-mediated responses, including non-
classical MHC class I molecules such as Qa2 and Cd1d [6], as well
as non-MHC molecules such as alarmins and pathogen epitopes
[2, 3]. In cancer tissues, abnormal PirB/LILRB expression is linked to
enhanced tumor growth and poor patient prognosis [7]. However,
MHC class I-LILRB3 interactions can induce the extrusion of
precancerous epithelial cells [8]. Therefore, it is unclear precisely
how PirB shapes myeloid cell responses.
Single-cell RNA sequencing (scRNAseq) assays provide valuable

insights into cellular heterogeneities and functions, but the wide
range of parameter choices (such as clustering resolution, number
of reduced dimensions) can preclude accurate elucidation of novel
activation states hidden within a cluster. In addition, most
scRNAseq-based studies either do not describe the systematic
methodology used to choose optimal parameter values such as
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clustering resolution or do not employ one at all. While deep-
learning and AI-based approaches can identify novel cellular
activation states [9–13], not all researchers have access to
advanced bioinformatics analysis pipelines. Here, based on the
Jaccard index and known features of cell lineages, we present a
data-driven, semi-automated parameter optimization method
called “Cluster Similarity Scoring and Distinction Index” (CaSSiDI)
(Fig. 1A). Use of CaSSiDI narrows down the clustering-related
parameter values to a manageable set of top choices that
correspond to meaningful clustering conditions. In the process of
developing CaSSiDI, we also constructed useful visualizations such
as the “Nebula plot”, which illustrates (in a single plot) the top
shared and differentially expressed genes (DEGs) and their
expression levels for a given cluster pair within the context of
average background expression. In this study, we use these tools
to explore the role of PirB in diverse myeloid cell subsets and
analyze its effects on their gene expression patterns. We present
results on normal macrophage populations in our main text, and
additional findings on tumor-associated macrophages (TAMs) in
our Supplemental Results.

RESULTS
CaSSiDI reveals heterogeneity and Cebpb derepression in
PirB−/−Ly6C+ bone marrow-derived monocytes
To examine PirB’s role in monocyte cell subsets, we used flow
cytometry to isolate Lin-CD11b+CD115+Ly6G-Ly6C+ bone marrow

(BM)-derived monocytes from WT and Pirb−/− (PirB KO) female
littermate mice and subjected them immediately to scRNAseq.
Our CaSSiDI approach (Fig. 1 and see Methods) determined that a
resolution (res) of 0.4 and 20 principal components (nPCs) was the
optimal set of parameter choices (hereafter, clustering condition)
for comparing WT to PirB KO monocytes (Fig. 2A). Seven WT and
PirB KO monocyte cluster pairs with high similarity were identified
(Fig. 2B, C), with 3 out of 7 pairs representing cycling cells. [Fig. 1B
shows a comprehensive legend for all 3-letter cluster identification
codes used in this paper.] Examination of cluster-associated
marker genes revealed cells expressing Fbxo5, Pbk, Cdk1, Aurkb
(linked to mitosis; MIT) in both WT and mutant cultures, as well as
cells expressing Cdca7, Asf1b, Ung (in G1 phase/S phase; G1P), and
those expressing Ccnb2, Birc5, Cenpa (in G2 phase, G2P) (Fig. 2D;
Supplementary Tables S1 and S2). Notably, the premonocytic
marker Cxcr4 [14] was expressed by WT and mutant cells in the
MIT and G1P clusters (Supplementary Tables S1 and S2).
We sought to elucidate the heterogeneity within specific

monocyte subsets from WT and PirB KO mice. In both WT and
mutant animals, a cluster termed MON showed high mRNA
expression of classical monocyte-associated marker genes, includ-
ing Ccr2 (monocyte egress from the BM) [15–17]; the transcription
factor (TF) Klf2 (inhibits proinflammatory monocyte activation)
[18]; as well as Plac8, Csf1r and the classical neutrophil marker
Cd177 (Fig. 2D, J). The monocyte-derived dendritic cell (MDC)
cluster showed high mRNA levels of the MHC class II molecules
H2-Ab1, H2-Eb1, and H2-Dmb1, as well as the DC-related markers

Fig. 1 CaSSiDI framework and cluster identities. A Inputs: a pair of raw gene expression matrices for datasets whose clusters are to be
matched, and uniformly sampled values from the parameter spaces to be optimized. 1. Pre-processing, clustering, and marker gene
identification steps for all parameter value pairs are conducted in parallel. 2. For each parameter value pair, an m ´ n cluster similarity score
(CSS) matrix is assembled containing scores for all possible cluster pairs between the two datasets using modified (weighted) Jaccard
similarity. 3. Finally, a single score for each CSS matrix, called the distinction index (DI), is computed in two steps. Row- and column-level DIs
are computed as the differences between the row-wise and column-wise maximums and means. The mean across these mþ n DIs yields the
matrix level DI. The final output is a ranked list of parameter value pairs from best to worst. B A listing of the 3-letter codes used throughout
this paper to identify cell subsets and/or clusters, followed by their definitions.
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Cd74, Cd209a, Batf3, Tmem176b [19–21] (Fig. 2D, J) (Supplemen-
tary Tables S1 and S2). The monocyte subset expressing high
mRNA levels of Irf7, Ifit3, Cxcl10 was termed the interferon-
stimulated gene (ISG) subset (Fig. 2D, Supplementary Fig. S1A).
The transitional cell (TRN) subset showed only a handful of

upregulated genes, including S100a6, a calcium-binding protein
and critical regulator of myeloid output and mitochondrial
metabolism in hematopoietic stem and progenitor cells [22].
However, most genes associated with the TRN subset were
downregulated (Fig. 2D, Supplementary Fig. S1A; Supplementary
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Tables S1 and S2), which is a common feature of progenitor or
transitory cell populations [23]. Notably, the PirB KO TRN subset
expressed Pdia3 (Supplementary Table S2), which facilitates
hematopoietic progenitor cell anchorage in the BM [24].
The phenotype of the TRN cluster prompted us to use it as the

starting point for a Slingshot analysis (Fig. 2E, F). As is typical for
progenitor-like cells, the trajectories of the WT and mutant MON,
MDC, and ISG subsets indicated that the TRN subset likely
possesses self-renewal capacity, with one differentiation path
confined to the cycling clusters G2P and G1P and another path
leading to the MON state. From there, we observed the MIT state
(likely MON amplification) and the emergence of MDC and ISG
cells from MON cells. These trajectory-related findings were
equivalent in the corresponding WT and PirB KO clusters.
One striking difference between almost all WT and PirB KO

monocyte subsets was an increase in mRNA levels of the
transcription factor Cebpb in the mutant cells (Fig. 2G). We
surmised that PirB might be required for Cebpb repression in BM-
derived monocytes, implicating PirB in regulating the differentia-
tion of Ly6Chi into Ly6Clo monocytes as well as into monocyte-
derived macrophages and DCs [25, 26]. Indeed, flow cytometric
assessment of blood monocyte subsets revealed a higher
proportion of Ly6Clo patrolling monocytes at the expense of
Ly6Chi monocytes in PirB KO mice compared to WT animals
(Fig. 2H, I).
Although all corresponding WT and mutant monocyte clusters

were highly similar (Fig. 2C), an impartial DE analysis and volcano
plotting revealed numerous differentially expressed genes (DEGs)
(Supplementary Fig. S1B–E). We identified 21 monocytic core
genes that were deregulated in the absence of PirB (Fig. 2J and
Supplementary Fig. S1A, black gene designations), as well as four
DEGs that differed in a cluster-specific manner (Fig. 2J and
Supplementary Fig. S1A, red gene designations). Global pathway
analysis revealed that PirB deficiency affected numerous pathways
but particularly “Response to L-ascorbic acid” and “Regulation of
transcription involved in cell fate commitment” (Fig. 2K and
Supplementary Fig. S1F). Taken together, these data indicate that
PirB restricts Cebpb expression in monocytes.

Benchmark validation of CaSSiDI as an approach to improve
clustering
The results above indicated that CaSSiDI determined an optimal
clustering condition that reliably predicted a range of established
monocyte subsets. To validate our CaSSiDI method, we compared
our data outcomes to those produced using a Standard Seurat
Pipeline (SSP) procedure for cluster determination (see Supple-
mental Results for a detailed description). The standard Seurat
approach recommends using res= 0.8 and determining the
number of PCs by elbow plots, plotting nPCs against the standard
deviation [27]. Accordingly, the optimal nPC value can be chosen
approximately where the curve takes an elbow turn (Fig. S1G). Our
application of SSP to our data above assigned parameters of

res=0.8 and nPC=10, generating nine WT and eight PirB KO
monocyte clusters (Fig. S1H). Inspection of the marker genes
associated with these clusters revealed the following insights,
which highlight the utility of CaSSiDI. 1) For the WT sample, the
MON, MDC, and the three cell cycle-associated clusters (G1P, G2P,
MIT) showed similar arrays of marker genes when analyzed by SSP
or CaSSiDI (Supplementary Table S3). However, SSP also assigned
the largest cluster (ART) to cells that did not display positively
regulated genes (Supplementary Table S3; Supplementary Fig.
S1H). This outcome is not biologically meaningful and thus can
only be interpreted as an artifact stemming from a suboptimal
data analysis pipeline. 2) SSP assigned two clusters (TRN and
TRN2) to cells containing only 41 or 12 positively regulated genes,
respectively. These genes were predominantly linked to progeni-
tor- and cell cycle-associated features, making it difficult to derive
distinct biological functions (Supplementary Table S3). 3) The last
two WT monocyte clusters (ISG and ISG2) identified by SSP shared
a similar ISG-related gene expression signature that included Irf7,
Stat1, Oasl2, Ifi47, which is likely also due to over-clustering
(Supplementary Table S3). 4) For the PirB KO monocyte dataset,
both SSP and CaSSiDI identified MON, MDC, ISG, G1P, G2P, and
MIT clusters with similar gene signatures. However, SSP generated
an additional cluster with a vast number of cell cycle-related genes
(CYC), as well as two transitional cell clusters (TRN and TRN2) with
fewer than 12 positively regulated marker genes each (Supple-
mentary Table S4). These clusters were functionally hard to
interpret, making the SSP-derived outcome less accurate and
harder to work with than those obtained with CaSSiDI-determined
clustering.
Our comparative analysis against SSP establishes that CaSSiDI-

based determination of optimal clustering conditions simplifies
the detailed comparison of two scRNAseq datasets, and produces
biologically more relevant outcomes. We repeated this CaSSiDI
versus SSP comparison for splenic macrophages and peritoneal
macrophages and found the same improvement in clustering
using the former over the latter (see below and Supplemental
Results).

CaSSiDI reveals two functional subsets of WT red pulp
macrophages
Having established that CaSSiDI could reliably identify known
subsets among BM-derived monocytes, we applied our approach to
sorted splenic red pulp macrophages (RPMs) from WT mice. The
primary function of RPMs is homeostatic scavenging of senescent
erythrocytes and recycling of their heme and iron [28, 29], but RPMs
may also control P. falciparum infections [28, 30]. It is unclear if
these differing functions are executed by two distinct RPM
subsets [31, 32]. We therefore isolated the Lin-F4/80+CD11bintMH-
CIIhi RPM population from digested spleens of WT female littermate
mice. CaSSiDI determined that the most suitable clustering
condition in this case was res= 0.4 and nPCs= 15 (Supplementary
Fig. S2A). As expected, the steady-state WT RPM population showed

Fig. 2 Steady-state monocytes: CaSSiDI reveals plausible WT and PirB KO clusters. A Top five parameter value pair choices as determined
by CaSSiDI (Res: clustering resolution, nPCs: number of principal components). The top choice of res= 0.4, nPCs= 20 was used to cluster the
WT and PirB KO datasets. B UMAP of separately clustered WT and PirB KO BM-derived monocytes. Please see Fig. 1B for definitions of
abbreviations. C CSS table corresponding to the top-ranking choice in A. D Prominent marker genes for the indicated (by color) clusters.
E UMAP of the combined clustering run of the WT and PirB KO monocyte populations. F Slingshot trajectory curves originating from the TRN
cluster for the separately clustered WT and PirB KO monocyte populations laid out on the combined UMAP space. G UMAPs showing Cebpb
expression for the WT and PirB KO monocyte populations in F. H Left: Flow cytometric gating strategy to identify blood-resident monocytes.
Right: Results of this strategy applied to WT and PirB KO blood monocytes. I Quantitation of Ly6Chi and Ly6Clo blood monocytes in the WT and
PirB-KO samples in H expressed as the percentage of total blood monocytes; WT n= 5, KO n= 6. ***P < 0.001 as determined by regression
analysis with two-way analysis of variance (ANOVA) followed by Sidak’s post hoc multiple comparison test. Data are representative of two
independent experiments. J Bubble plots showing prominent monocyte-related DEGs (PirB-dependent in black; cluster-specific in red)
between WT and PirB KO cells within the indicated clusters as determined by the CSS table in C. K Top differentially expressed pathways
identified by GSVA between WT and PirB KO cells within the indicated clusters. Also shown are t-value scores from a linear model analysis
conducted on GSVA scores.
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contamination by other cell populations (Fig. 3A). Inspection of
cluster-associated marker genes showed no over- or under-
clustering, meaning that CaSSiDI yielded biologically meaningful
clusters with a non-redundant distribution of marker genes. (Fig. 3B;
Supplementary Table S5). A small macrophage cluster expressed

Lyve1, Folr2, Fcrls, Pf4, likely representing a yolk sac-derived TLF
subset [33]. However, the pan-macrophage marker Mertk [34, 35]
and the bona fide RPM marker Spi-C [36, 37] were confined to two
enormous clusters (orange and blue) in the UMAP plot (Fig. 3A;
Supplementary Table S5). Another cluster (gray) showed elevated
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expression levels (as compared with other clusters) of only 16 genes,
with 13 being associated with mitochondria (Fig. 3B). The remaining
upregulated genes, namely Lgmn, Siglece, Hebp1, suggested
that these cells were in a transitory state (TRN, Supplementary
Table S5) [23].
Cluster and pathway analyses of the blue and orange clusters

(ILR and NPR, respectively, abbreviations defined below) revealed
two RPM subsets (Fig. 3A–E). Orange cluster cells expressed
classical RPM genes like Hmox1, Vcam1, Hepb1. Because this
cluster was linked to neuronal-associated pathways such as
“Synaptic transmission glycinergic”, “Glial cell fate specification”,
and “Noradrenergic neuron differentiation”, it was deemed to
contain “Neuronal-primed RPMs” (NPRs). Blue cluster cells
expressed a different set of classical RPM genes involved in either
iron storage or antigen presentation, including Csf1r, Ftl1, Ctsd, H2-
Ab1, CD74 (Fig. 3A–E, G, Supplementary Fig. S2B). We termed the
cells in this cluster “Iron-loaded RPMs” (ILRs). ILRs also showed
greater expression of Mertk, Spic, Fcgr3, Il18 as well as erythrocyte-
associated hemoglobin (Hbb-bs) and serotransferrin (Trf) (Fig. 3C,
G), suggesting that ILRs contain more iron than NPRs. The higher
iron load and IL-18 expression in ILRs may better equip these cells
to eliminate bacteria. Accordingly, GSVA pathway analysis of the
blue cluster highlighted the global gene expression programs
“MHC class II protein complex”, “Sequestering of iron ion”, and
“Positive regulation of antigen processing and presentation”
(Fig. 3D).
Next, we performed a COMET analysis [38] of WT RPMs to

determine the most suitable cell surface antigen combinations for
differential isolation of NPRs vs. ILRs (Fig. 3E). Unexpectedly, only
CD68 showed a sufficient difference in expression to facilitate
separation of ILRs and NPRs by flow cytometry (Supplementary
Fig. S2C). Separating Lin-F4/80+CD11bint into CD68lo and CD68hi

cells (NPRs and ILRs, respectively) revealed a positive correlation
between CD68 and CD11b expression (Fig. 3F). Thus, NPRs express
low levels of CD68 and CD11b, whereas ILRs express elevated
levels of both of these surface markers. Strikingly, this correlation
was also reflected in cell morphology, with ILRs exhibiting
increased cell size (FSC-A) and granularity (SSC-A) compared to
NPRs (Fig. 3F). These differences may reflect a maturation process
whereby macrophages that can engage in phagocytosis (NPRs)
become those that can no longer do so (ILRs) and instead rely on
iron-based mechanisms to combat pathogens.
Among DEGs (Fig. 3G), ILRs showed increased Ftl1, Trf, Slc48a1,

Hfe, Sod1, which are involved in heme/iron biology [29, 39]. In
contrast, the transcription factors Zeb2, Irf, Ikzf1 were more highly
expressed in NPRs than ILRs. Zeb2 safeguards tissue-specific
macrophage states, while Irf8 increases macroautophagy [40], and
Ikzf1 is associated with an anti-inflammatory macrophage
phenotype [41, 42].
To account for background gene expression derived from

clusters outside a population of interest, we custom-designed a
visualization that we call the “Nebula plot” and applied it to a
comparison of NPRs and ILRs (Fig. 3H). Genes in blue are the top
15 ILR-related genes, followed by the top 10 genes shared
between ILRs and NPRs in black, and the top 15 NPR-related genes
in orange. Close to 100% of ILRs and NPRs expressed Slc40a1

(ferroportin) [43] and Adgre1 (F4/80). Other shared surface
receptor genes were Mertk and Pira2 (co-expressed with PirB)
[34, 35]. Genes expressed primarily by ILRs included Ftl1, Trf, Hbb-
bs. In NPRs, the most highly expressed genes were Hmox1, Vcam1,
GM42418.
We sought to validate candidate genes identified by our scRNA-

seq DEG analysis pipeline. To this end, we sorted WT splenic
Lin-F4/80+CD11bint macrophages into the CD68lo and CD68hi

subsets, prepared cDNAs, and examined expression levels of
selected candidate genes by qPCR (Supplementary Fig. S2D). As
expected, there was no difference in Slc40a1 transcript levels
between ILRs and NPRs, confirming our original finding shown in
Fig. 3H. ILRs showed increased Ctsd mRNA levels, whereas Paqr9
and Cd44 mRNAs were reduced in ILRs compared with NPRs
(Supplementary Fig. S2D). Hmox1 and Vcam1 showed a trend
towards decreased expression in ILRs compared to NPRs but these
differences were not statistically significant.
Thus, our dissection of steady-state WT RPMs by CaSSiDI and

the Nebula plot has revealed two subsets with substantial bona
fide gene expression differences. NPRs display a neuronal-
associated gene expression program and express high levels of
Hmox1 and Hebp1 to recycle senescent erythrocytes. ILRs may be
fully loaded with iron and therefore prepared to fight bacteria
efficiently.

PirB deficiency alters gene expression patterns and subset
proportions among steady-state RPMs
To dissect PirB’s functions in RPMs, we compared RPM samples
from WT and PirB KO female littermate mice using a combined
clustering approach and detected the same ILR and NPR clusters
as revealed by CaSSiDI-based separate clustering (Fig. 4A,
Supplementary Fig. S3A, B). Visual inspection of UMAP plots
suggested an increase in NPRs at the expense of ILRs in the
mutant. Indeed, enumeration of WT and PirB KO cells per cluster
confirmed this trend, suggesting a role for PirB in RPM
differentiation or subset-specific proliferation (Fig. 4B). We next
performed an alluvial plot analysis confirming the close match
between the separate and combined clustering approaches
(Fig. 4C). The greatest difference was observed in the TRN cluster,
where most cells were correctly assigned to the separate PirB KO
TRN cluster (457 cells), but another 231 and 173 cells were
allocated to the separate PirB KO ILR and NRP clusters, respectively
(Supplementary Table S6). Flow cytometric differences in CD11b
expression, cell size (FSC-A), and granularity (SSC-A) differed to the
same degree between ILRs and NPRs of WT and PirB KO mice. F4/
80 expression was comparable across WT and mutant ILRs and
NPRs (Fig. 4D). Strikingly, unlike PirB KO monocytes, PirB KO RPMs
did not show elevated Cebpb (Fig. 4E).
A Slingshot trajectory analysis confirmed that both WT and

PirB KO steady-state monocytes become TRN RPMs that
differentiate into NPRs or ILRs (Fig. 4F). When we investigated
DEGs in WT vs. PirB KO ILRs, we found that mutant ILRs showed
drastic decreases in Itga9, Rbck1, Alas1, Cd36, whereas Pou2f2,
Slc6a6, Sash1, Gbp8, Gtf2ird1, Lilra5 were elevated in these cells
(Fig. 4G, Supplementary Fig. S3C). In comparing WT and PirB KO
NPRs, we found that Pou2f2, Slc6a6, Sash1, Itga9, Gbp8, Gtf2ird1

Fig. 3 Spleen: WT NPR vs. WT ILR clusters. A UMAP for clusters of WT splenic red pulp macrophages (RPMs) obtained using the indicated
top-ranked CSS parameter values. B Prominent marker genes for the clusters (indicated by color) in A. C Ridge plots showing expression levels
of the indicated DEGs between WT ILRs (blue) and NPRs (orange). D Top differentially expressed pathways identified by GSVA between WT
ILRs (blue) and NPRs (orange). E UMAPs showing expression levels of the indicated genes in WT splenic RPMs. F Left: Flow cytometric gating
strategy to identify ILRs and NPRs among WT RPMs. CD3+, CD19+ and NK1.1+ cells were excluded (please see Methods). ILRs (blue) and NPRs
(orange) were distinguished by their CD68 expression. Right: Flow cytometric analysis to show differences in CD11b expression and cell
morphology between WT ILRs and NPRs. G Bubble plots organized by the indicated gene groups illustrating DEGs between WT ILRs and NPRs.
H Nebula plot showing prominent ILR-specific (blue, left), shared (gray, middle), and NPR-specific (orange, right) marker genes. Please see
Methods for a full explanation of this plot type.
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transcripts were less abundant in PirB KO NPRs, but that Rbck1,
Lilra5, Alas1, CD36 mRNAs were all elevated (Fig. 4H, Supple-
mentary Fig. S3D). Prdx1 and Cd5l (inflammatory mediators)
were significantly increased in both the ILRs and NPRs of the
mutant compared to the WT (Fig. 4G, H). GSVA comparing WT vs.

PirB KO NPRs and ILRs showed increased expression of pathways
involving secretion and regulation of IL-10, IL-12, and IL-13 in
both mutant subsets (Supplementary Fig. S3E). Thus, a lack of
PirB impinges on global RPM and subset-specific gene expres-
sion patterns at steady-state.
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Lastly, as noted above, we applied SSP to the above splenic
macrophage dataset and obtained inferior clustering outcomes
(Supplementary Fig. S8A, B; Supplemental Results). This result
bolsters the validity of our CaSSiDI method.

Validation of the CaSSiDI approach by analysis of Zeb2 in
splenic myeloid cells
The TF Zeb2 drives expression of essential RPM-related genes. To
validate our CaSSiDI approach in a biological context, we chose a
published study by Scott et al. that contained scRNAseq data
obtained from steady-state WT and Zeb2 KO RPMs [44]. The
combined clustering analysis carried out therein focused on WT
vs. Zeb2 KO differences and did not pinpoint cluster-associated
features or identify RPM subsets. We processed the Scott data
through our CaSSiDI pipeline and compared the Scott results with
data from our scRNAseq analysis of steady-state WT RPMs.
When we compared clusters of steady-state PirB WT and Zeb2

WT samples, both were found to contain the ILR and NPR RPM
subsets (Supplementary Fig. S4A). The TRN cluster was absent
from both WT populations, but a myeloid cell cluster with an ISG
signature (Cxcl9, Stat1, Ifit2, Marco, Ifi47, Fcgr4, Cd274, Icam1) was
present in both samples (Supplementary Fig. S4A, Supplementary
Tables S7 and S8). Importantly, NPRs and ILRs were readily
identified in the independent biological replicates represented by
the PirB WT and Zeb2 WT samples, despite their differences in
quality and quantity of contaminating non-macrophage cell types
(Supplementary Fig. S4A, B). Thus, CaSSiDI operates in a manner
analogous to data integration pipelines. Moreover, the top
clustering condition chosen by CaSSiDI in Supplementary Fig.
S4C (res= 0.4, nPCs= 35) differs from that in comparing PirB WT
and PirB KO RPMs in Fig. 4 (res= 0.4, nPCs= 15). This outcome
indicates that CaSSiDI is sensitive to the nature of the input data.
We then used CaSSiDI to compare steady-state Zeb2 WT and

Zeb2 KO clusters. Once again, the ILR and NPR RPM subsets were
identified, ISG cells appeared, and the TRN cluster was absent
(Fig. 5A, B). Each WT RPM cluster was highly similar to the
corresponding Zeb2 KO cluster (Fig. 5B), but a previously
unidentified cluster (ABR, red) appeared in Zeb2 KO RPMs (Fig. 5A,
B). In line with Zeb2’s control of classical DC development [45–47],
these red cluster cells co-expressed genes typical of not only
macrophages but also DCs and mast cells, in particular Itgax
(CD11c), Zbtb46, Ly6e, Slpi, Gm2a (Fig. 5C, Supplementary Fig. S4D).
Compared to PirB deficiency, loss of Zeb2 had a greater skewing
effect on the proportions of ILR vs. NPR cells among RPMs
(Fig. 5D). These results confirmed the vital function of Zeb2 in RPM
subset differentiation and bolstered our confidence in our CaSSiDI
method.

PirB deficiency alters gene expression patterns of peritoneal
macrophage subsets
RPMs, alveolar macrophages (AMs), and peritoneal macrophages
(PMs) are tissue-resident macrophages (TRMs) that maintain their
numbers by slow and local self-renewal [33]. In contrast, skin- and
dermis-associated TRMs are constantly replaced by circulating
monocytes [48, 49]. The factors controlling local self-renewal
versus monocyte-dependent replacement are not fully

understood but may include sex-dependent differences and
elements of the tissue-specific microenvironment [50, 51].
There are two PM subsets: large PMs (LPMs) and small PMs

(SPMs). SPMs are 10x less abundant than LPMs and express F4/80lo

(Adgre1), Cd226, Retnla. Irf4 is indispensable for SPM generation
[50, 52, 53]. In contrast, LPM differentiation is governed by Gata6,
Cebpb, retinoic acid, and omentum-derived factors [54, 55]. It is
mainly LPMs that conduct immunosurveillance of the peritoneal
cavity and adjacent viscera [56, 57]. To determine if PirB
contributes to PM heterogeneity and function, we compared
scRNAseq datasets from steady-state WT and PirB KO PMs. CaSSiDI
established that the optimal clustering condition was res= 0.4
and nPCs= 15 (Fig. 6A), which yielded 8 WT and 6 PirB KO total
PM cell clusters (Fig. 6B, C). Among WT PMs, we identified three
clusters (G1P, G2P, and MIT) that each contained small numbers of
cells showing an overrepresentation of cell cycle-related genes.
Only the G1P and G2P clusters appeared in the KO PM population
(Fig. 6B, D) (Supplementary Tables S9 and S10). It is possible that
an MIT cluster was not detected due to the low cell numbers in
that cluster and/or an ovelap in cell cycle genes with other
clusters. Notably, PirB deficiency caused global derepression of
Cebpb in PMs as it did in monocytes (Fig. 6E).
The WT PM population also contained a cluster (yellow) that

likely represented an intermediate state (INT) and was lacking in
the KO population (Fig. 6B–D). The INT cluster exhibited few
upregulated genes but did include Prtn3 (a neutrophil serine
protease; NSP), which contributes to the control of LPM vs. SPM
differentiation [54]. NSPs are repressed during the monocyte-
macrophage transition [58]. Prtn3 limits the self-renewal of
hematopoietic progenitors [59] and may do the same for self-
renewing LPMs. INT cells also expressed Slpi, an anti-apoptotic
regulator that controls NSP activities and safeguards the
granulocyte lineage [60–62]. Additional INT cluster-linked genes
were Ypel3 (p53 target) [63, 64]; Rgs2 (negative regulator) [65]; and
Cirbp (mediates hemorrhagic shock and sepsis) [66] (Fig. 6C, D;
Supplementary Table S9). Combined clustering confirmed the
absence of the INT cluster in PirB KO PMs (Fig. 6E). Notably, cells of
the PirB KO SPM cluster (green), which expressed the SPM
signature gene Retnla (Fig. 6D), spread into the region of the WT
INT cluster (Fig. 6E). This observation suggests that the WT INT
cluster is stabilized in a prospective SPM state; that is, it contains
monocytes destined to undergo SPM differentiation. The absence
of an equivalent INT cluster in the PirB KO PM population
reinforces the reported effect of PirB deficiency on BM-derived
monocytes, which rapidly adopt a macrophage-like state upon BM
egress [67, 68]. Interestingly, our PirB KO SPMs expressed the WT
INT gene Slpi (Fig. 6F, G, Supplementary Table S10).
Consistent with previous work [51], our CaSSiDI pipeline

elucidated three subsets of WT mature functional LPMs: T2M
(Tlr2-expressing macrophages), T4M (Timd4-expressing macro-
phages), and HSM (Heat stable antigen (CD24)-expressing macro-
phages). For details on the phenotypes of these subsets, please
see Supplemental Results.
We next set out to test potential functional differences between

WT and PirB KO PMs. Of note, Cebpb expression is known to be a
prerequisite for LPM generation [55]. We adoptively transferred

Fig. 4 Spleen: WT NPR and ILR vs. PirB KO NPR and ILR clusters. A UMAPs showing combined clustering results of WT and PirB KO splenic
RPMs, with cells grouped as indicated: by combined cluster identities, by genotype, and by identities obtained from clustering the WT and KO
cells separately. B Quantitation of percentages of NPRs and ILRs among WT and PirB KO RPMs in A. C Alluvial diagram linking the combined
clusters and the separate clusters, showing the flow of cells and the regroupings between the combined and separate clustering strategies.
D Quantitation of the mean fluorescent intensities (MFI) of the indicated features discriminating between NPRs and ILRs isolated from spleens
of WT and PirB KO mice (WT n= 4, KO n= 4) using the gating strategy shown in Fig. 3F. *P < 0.05, **P < 0.01, ****P < 0.0001 as determined by
regression analysis with two-way ANOVA followed by Sidak’s post hoc multiple comparison test. Data are representative of two independent
experiments. E UMAPs showing CebpbmRNA levels in WT and PirB KO RPMs. F Slingshot trajectory curves originating from the MON cluster for
the separately clustered WT and PirB KO RPM populations laid out on the combined UMAP space. G, H Bubble plots comparing prominent
DEGs in WT vs. PirB KO ILRs and WT vs. PirB KO NPRs.
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WT or PirB KO CD3-CD19-CD11c-Ly6CloCD11bhiF4/80hi LPMs
(CD45.2+) into B6 recipient mice harboring the congenic marker
CD45.1. Consistent with the elevated Cebpb mRNA levels observed
in PirB KO PMs, we recovered greater than four-fold more
CD45.2+, donor-derived PirB KO LPMs from recipients than WT
LPMs at 21 days post-transplantation (Supplementary Fig. S5A). To
overcome potential biases due to individual and/or host-
dependent transplantation factors, we performed a competitive
adoptive transfer experiment in which equal numbers of purified
and dye-labeled CD45.2+ WT (CellTrace CSFE) and CD45.2+ PirB
KO (CellTrace Violet) LPMs were co-transplanted into the same
recipient mouse bearing unlabeled CD45.1+ WT LPMs. By 12 days
after co-transplantation (the manufacturer-indicated guarantee of
dye stability), significantly more CellTrace Violet+ PirB KO LPMs
than CellTrace CSFE+ WT LPMs were recovered from recipients
(Fig. 6H). These data indicate that PirB-deficient LPMs have a
competitive edge over WT LPMs following adoptive transfer.
Taken together, these data identify PirB as a molecule that

represses Cebpb expression to limit the differentiation or
expansion of PMs in the peritoneal cavity. However, as was true
for RPMs, loss of PirB has only mild effects on non-differentiating
PM subsets at steady-state.
Finally, as noted above, we applied SSP to the above peritoneal

macrophage dataset and obtained inferior clustering outcomes
(Supplementary Fig. S8C, D; Supplemental Results). Once again,
this result demonstrates the beneficial qualities of our CaSSiDI
approach.

DISCUSSION
In this study, we have devised a novel single-cell cluster matching
and optimization approach called CaSSiDI, and have used it to
elucidate several cell type-associated differences in gene expression
patterns between WT and PirB KO myeloid cell subsets. CaSSiDI
proved to have several important advantages compared to a
Standard Seurat Pipeline (SSP) in producing interpretable clustering
outcomes. The objective of CaSSiDI is to find similar clusters in any
two independently clustered scRNAseq datasets. To this end,
CaSSiDI utilizes a marker gene-based quantitative score to carry out
side-by-side comparisons of clusters across multiple resolutions and
numbers of principal components in a grid-search fashion (See
Methods for further details). Importantly, CaSSiDI considers only
positive marker genes (genes overexpressed in a cluster compared
to the background population) to determine cluster similarities.
Negative markers (genes underexpressed in a cluster compared to
the background population) were often found to be redundant
across clusters and therefore unreliable for use in cluster identifica-
tion. Moreover, CaSSiDI prevents the distortion of cell cluster
allocations stemming from genetically divergent samples (e.g., WT
vs. KO) that can occur when a classical combined clustering
approach requiring batch correction is utilized. That being said, joint
application of the separate and combined clustering approaches
can help reveal biological relevance and correlations between two
scRNAseq samples of interest. In this study, we have illustrated this
utility by our analyses of murine RPMs, PMs, and TAMs (see
Supplemental Results).

Fig. 5 Validation of CaSSiDI utilizing scRNA-seq data from Zeb2 KO RPMs. A UMAPs showing combined clustering results of WT and Zeb2
KO RPMs, with cells grouped as indicated: by genotype, and by identities obtained from clustering the WT and KO samples separately. B CSS
table comparing clusters obtained using CaSSiDI on data from splenic WT and Zeb2 KO samples presented in ref. [44]. C Bubble plots
illustrating prominent DEGs between the Zeb2 WT NPR and Zeb2 KO ABR populations of ref. [44]. D Quantitation of percentages of NPRs and
ILRs among the Zeb2 WT and Zeb2 KO RPM populations of ref. [44].
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In addition to circumventing the need for batch correction,
CaSSiDI’s rank and score tables highlight cluster similarities in a
graded fashion and thus also indicate potential cluster trajectories in
a single glance. Notably, we used CaSSiDI to straightforwardly identify
known monocyte and PM subsets in our WT samples. Based on this

success, we were able to use CaSSiDI to explore heterogeneities
within TRM populations that are less well-described in the literature.
Our data have thus expanded knowledge in this field.
CaSSiDI’s enhanced ability to refine complex single-cell data

analysis should be useful in several scenarios. First, as
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demonstrated for the scRNAseq data in this study, CaSSiDI can be
applied to optimize parameters for a combined clustering run by
pitting the combined dataset (WT+ KO) against the WT or KO
samples individually. Depending on how much the WT and KO
datasets differ, running CaSSiDI twice, once with WT and once
with KO, may yield either the same best parameter value pair or
two different choices. In the latter situation, the final decision on
which of the two choices must be accepted for the combined
clustering can be made by carefully considering the biological
relevance and contexts associated with the clusters.
Second, CaSSiDI can effectively identify cell types in an

uncharacterized dataset using a dataset for which the number
and types of clusters have already been characterized. A CaSSiDI
run with the characterized and uncharacterized datasets as inputs
will systematically look for the best cluster matches at optimal
resolution and nPCs and, in the process, characterize or label the
clusters in the new dataset.
Third, CaSSiDI is not restricted to just RNAseq data or optimizing the

resolution and nPCs parameters. It can be applied to data from other
types of single-cell assays such as CYTOF and CITE-seq, and will work
with any parameter pair that significantly influences clustering
outcomes in a setting where one-to-one matches are expected to
exist across cluster sets originating from a pair of datasets. The
framework can also be easily expanded to include more than two
parameters at a time for optimization, as long as computational
resources are adequate. If, for example, we introduce a third
parameter with 10 sampled values in addition to our usual set of
res and nPCs, we would then have to run the module 1260 times,
yielding as many CSS matrices. Since the runs are entirely
independent, they can be done in parallel using amulticore computer
cluster or a cloud-based computing service, both of which are
ubiquitous and cheap to access at present. Once the clustering runs
are complete and the CSS matrices are prepared, the DI computations
are simple enough to execute on a standard laptop computer.
Fourth, depending on available computational resources, the

number of samples from each parameter space can be increased
to improve the power and accuracy of the search. For example, we
have chosen our nPCs values to range from 10 to 75 in steps of 5,
yielding 14 values. We can increase this to 33 values by reducing
the step size to 3. Similarly, we can increase the resolution space
by reducing the step size to 0.1 from 0.2. Consequently, many
more parallel runs of the modules would be required. Never-
theless, since the runs are independent and can be executed in
parallel, they should not consume any additional computational
time if a sufficient number of parallel cores are available.
CaSSiDI does have a few limitations. First, CaSSiDI employs a

grid-search style parameter optimization approach, which con-
fines the method’s output to the predefined grid points and
ranges for each parameter search. If the actual optimal values fall
outside the specified ranges or reside between the grid values,
CaSSiDI may yield near-approximations instead. This hurdle is a
fundamental challenge associated with grid searches in general,
and can be mitigated to some extent by widening the parameter
ranges and employing denser search spaces (provided sufficient
computational resources are available). Second, while CaSSiDI can
hint at possible cluster trajectories, it is not designed as a primary
trajectory inference method and should not be employed as such.

It may overlook intricate trajectory structures and complex
networks, which can only be unveiled through dedicated methods
specifically designed for these purposes. Third, CaSSiDI is not an
independent clustering method. Its performance relies on the
quality of the initial clustering approach used to create clusters at
different resolutions. Hence, selecting the most appropriate
clustering method for the specific data type is paramount, as it
forms the foundation upon which CaSSiDI operates effectively.
Turning to our biological results, perhaps this study’s most

critical conclusion is our unexpected finding that PirB is important
for repressing Cebpb in some myeloid cell subsets at steady-state.
Cebpb induces the differentiation of classical Ly6Chi monocytes
[26] and is also required for proper macrophage differentiation in
normal BM, peritoneal cavity, and lung [26, 55, 69]. However, this
engagement appears to be tissue-specific since, although PirB KO
PMs showed elevated Cebpb mRNA levels and a precocious
monocyte-to-macrophage transition, PirB KO RPMs did not differ
from the WT in their Cebpb abundance.
Another factor to consider is that the Cebpb mRNA encodes two

activating TFs called “Liver-enriched activator proteins” (LAPs) and
one repressive TF called “Liver-enriched inhibitory protein” (LIP);
the expression of these TFs is known to be differentially regulated
[68, 70]. Furthermore, the translation of LAPs vs. LIP may be
context- and cell type-dependent, and also cross-regulated by
other cell signaling pathways [71]. Thus, the differential and
antagonistic functions of LAPs and LIP, as well as their multi-
faceted pre- and post-translational control, makes the dissection
of Cebpb regulation challenging. We found that loss of PirB
upregulated some genes in certain macrophage subsets while
downregulating others, suggesting that signaling through PirB
controls gene expression in ways other than through Cebpb
repression. Additional study is required to resolve precisely how
PirB-mediated signaling affects Cebpb-derived TFs during the
generation of various myeloid cell subsets. These findings also
highlight the need to elucidate the natural PirB ligands in various
tissues and contexts that are required to invoke Cebpb expression
and/or repression.
Lastly, our analyses have uncovered a previously unknown RPM

differentiation/maturation process that generates NPRs and ILRs.
These subsets differ in cell size, morphology, and surface
expression of CD11b and CD68. Our scRNA-based analyses
suggest that NPRs are Irf8+ and represent a macrophage state
that is ‘ready to eat’, whereas ILRs are ‘done eating’, generate IL-
18, and bear an increased iron content that may allow them an
alternative means of combatting pathogens. Future studies will be
needed to determine the factors that govern PM maturation.
In conclusion, we believe that our novel CaSSiDI method makes

a valuable contribution to the field of single-cell assay analysis,
and that we have established its utility by demonstrating a role for
PirB in the repression of Cebpb in certain subsets of myeloid
lineage cells.

METHODS
Mice
PirB knockout mice (Pirb−/− 129/B6 mice; [72]) were purchased from The
Jackson Laboratory. Female littermates, age 11-13 weeks, were used for all

Fig. 6 Peritoneum: WT vs. PirB KO PMs. A Top five parameter value pair choices as determined by CaSSiDI. The top choice of res= 0.4,
nPCs= 15 was used to cluster the WT and PirB KO PM datasets. B CSS table corresponding to the top-ranking choice in A. C UMAPs of separately
clusteredWTand PirB KO PM populations.D Prominentmarker genes for the indicated (by color) clusters. E UMAPs showing combined clustering
results of WT and PirB KO PMs, with cells grouped as indicated: by genotype, and by identities obtained from clustering the WT and KO samples
separately. The far-right plots are color-coded by Cebpb expression level. Volcano (F) and bubble (G) plots comparingmarkers and DEGs expressed
byWT vs. PirB KO cells that occupied the INT cluster as identified using the combined clustering approach.H Left: Flow cytometric gating strategy
for the identification of unlabeled CD45.1+ recipient LPMs or donor CD45.2+ LPMs, which were either labeled WT (CellTrace CSFE) or PirB KO
(CellTrace Violet) LPMs. Right: Quantitation of WT and PirB KO LPMs recovered from CD45.1 recipients (WT n= 7, KO n= 7) at day 12 after co-
transplantation. ***P < 0.001 as determined by two-tailed, paired t-test. Data are representative of two independent experiments.
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scRNAseq experiments. All animals were maintained in fully accredited
facilities at the Princess Margaret Cancer Centre. No particular means for
animal randomization or blinding investigators were implemented during
experimentation.

Cell preparations, cell sorting, and flow cytometry
Cell preparations and flow cytometric analyses were performed essentially
as described [73]. In brief, mice were humanely euthanized utilizing CO2

displacement and cervical dislocation. Bone marrow-derived monocytes
were recovered by flushing the bone marrow of femur plus tibia with ice-
cold FACS buffer (PBS−/− supplemented with 2% heat-inactivated FCS and
2mM EDTA). To obtain splenocyte single-cell suspensions, spleens were
crushed through a 70 µm filter using a syringe and suspended in 4ml ice-
cold FACS buffer. For peritoneal lavage, 5-7 ml ice-cold FACS buffer was
injected into the peritoneal cavity followed by abdominal massage. Buffer
containing peritoneal cells was aspirated by syringe equipped with a 20 G
needle. All cell suspensions were subjected to red blood cell (RBC) lysis
using a commercially available buffer (Sigma). Cells were pelleted by
centrifugation (300 × g, 5 min, 4 °C), resuspended in ice-cold FACS buffer,
and subjected to cell count determinations.
All single-cell suspensions were treated with Fc-blocking antibody (anti-

CD16/32; 2.4G2; Tonbo) before staining with titered antibody dilutions. The
following antibodies were used for cell surface staining. Lin- staining: anti-
CD3 (145-2c11), anti-CD19 (1D3), anti-NK1.1 (PK136), anti-Ter119 (Ter119),
anti-TCRgd (GL3). Target cell identification: anti-CD11b (M1/70), anti-CD11c
(N418), anti-F4/80 (BM8), anti-CD115 (AFS98), anti-CD45.1 (A20), anti-CD45.2
(104), anti-CD68 (FA-11), anti-Ly6C (HK1.4), anti-Ly6G (1A8), anti-Cx3cr1
(SAO11F11), anti-MerTK (108928), anti-CD64 (X54-5/7.1). All antibodies were
purchased from BD Biosciences, BioLegend, or Thermo Fisher Scientific.
Dead cells were stained and excluded using 12.5 ng/ml DAPI (Sigma).

Adoptive transfer of peritoneal macrophages
Peritoneal cells were harvested by lavage of the peritoneal cavity with 7ml
cold PBS. Cells were washed using FACS buffer (PBS with 2% heat-
inactivated FBS) and passed through a 70 µm filter before being stained
with the appropriate antibodies as indicated in the Results section, the
Figures, and the Figure legends. LPMs were sorted as indicated using a BD
FACSAria Fusion cell sorter. WT and PirB KO LPMs were counted and
labeled with CellTrace CSFE or CellTrace Violet, respectively, according to
the manufacturer’s instructions (Thermo Fisher Scientific). Equal numbers
of purified and dye-labeled CD45.2+ WT and PirB KO LPMs were co-
transplanted into the same recipient mouse bearing unlabeled CD45.1+

WT LPMs.

Single-cell RNA sequencing
Processing of murine cells for scRNAseq was performed essentially as
previously described [33]. In brief, BM monocytes, splenic macrophages,
peritoneal macrophages, or B16 tumor cells were isolated by flow
cytometric cell sorting at low pressure. Single-cell suspensions were
prepared according to the Chromium Single Cell 3’ Reagent Kits User
Guide (v2 Chemistry). Samples were loaded onto a 10x Chromium
instrument to produce sequencing libraries, which were processed
according to methods provided by 10x Genomics. Cells were sequenced
and processed to generate expression matrices using Cell Ranger (10x
Genomics). Raw base call (BCL) files from a HiSeq2500 sequencer were
demultiplexed into FASTQ files, which were aligned (STAR) and filtered,
followed by barcode and UMI counting to generate the counts table. The
scRNAseq package Seurat v3.1.0 [74] was used for all downstream analyses
using R 3.6.1. To take advantage of some improved plotting features,
Seurat v3.2.3 in R v4.0.3 was also selectively used.

CaSSiDI: cluster similarity scoring methodology
The rationale and derivation of CaSSiDI are presented in detail in
Supplemental Methods. In brief, one of the main challenges we faced in
analyzing our scRNAseq data was in arriving at the most meaningful set of
values for the computational parameters that wield a significant influence
on biological inference: the clustering resolution (res) and the number of
principal components (nPC) that are input for clustering. We also had the
unique requirement of comparing and contrasting the PirB KO datasets
with their corresponding WT counterparts. Therefore, it was necessary to
find a set of parameter values that, on the one hand, revealed as many
direct one-to-one cluster mappings as possible between WT and KO (thus
identifying the same or similar cell types/states), while on the other hand

identified any stand-alone clusters that were unique to either the WT or KO
population.
To achieve these objectives, we devised a multi-step strategy that: 1)

sampled from the space defined by res and nPCs; 2) computed the clusters
corresponding to each pair of parameter values chosen from the space; 3)
evaluated clustering quality using a score; and 4) used the scores to
determine the best pair of parameter values satisfying predefined criteria.
The score characterizing clustering quality was designed such that it
rewards parameter value pairs that identify clear one-to-one matches
between WT and KO clusters along with any clusters unique to one
genotype, but penalizes parameter value pairs that yield partial or unclear
matches or too many clusters (over-clustering). In other words, we sought
to find the parameter value pair that brought out the most striking one-to-
one correspondences between WT and KO cluster sets while, at the same
time, kept the number of clusters as small as possible to avoid over-
clustering.
The first step in our strategy involves choosing the set of values for the

res and the nPC parameters that will represent our sampled space of
search. For all our analyses, we set nPC to range from 10 to 75 in steps of 5
and res to range from 0.4 to 2 in steps of 0.2. This translates into 14 nPC
values and 9 res values, or a total of 126 value pairs. We ran Seurat’s
clustering module for each of these pairs for both the WT and KO datasets
and identified markers for the clusters. Only markers satisfying an adjusted
p-value threshold of 0.05 were retained. These markers were then used to
compute a cluster similarity score (CSS) between each WT cluster and KO
cluster using a weighted and enhanced similarity metric derived from the
popular Jaccard similarity coefficient (https://www.jstor.org/stable/
2427226). For two clusters with marker gene sets M1 and M2, a CSS can
be defined using the original Jaccard similarity coefficient as

CSSbasic ¼ C12

C12 þ U1 þ U2

where C12 is the number of common markers between clusters 1 and 2, U1
is the number of markers unique to cluster 1, and U2 is the number of
markers unique to cluster 2. The score ranges between 0 and 1, with 1
representing identical clusters with all markers being shared and 0
representing the most dissimilar clusters with no common marker genes.
While the CSSbasic formulation is an acceptable measure of similarity, it is
too simple in this context as it is solely based on gene names and does not
take into consideration other essential measurements such as the
proportion of cells expressing each marker, the average expression
strength, or how exclusively the gene serves as a marker for a cluster.
All of these additional measurements are important indicators of the
effectiveness of a marker gene for a cluster. We reasoned that
incorporating these measures into the CSS formulation would enhance
the score’s sensitivity in defining similar and different clusters. The
proportions of cells expressing a marker in a cluster (pct1) compared to the
background (pct2), and the average relative expression level compared to
the background (avgLogFC), are generated by Seurat in the marker lists
and so can be extracted straightforwardly.
To quantify the degree to which a marker is unique to a particular

cluster, we define a marker uniqueness score inspired by the work of Carson

et al. [75] as ui ¼ 1�
ffiffiffiffi
Li
Ln

q
, where ui is the uniqueness score, Li is the

number of clusters associated with each marker gene, and Ln is the total
number of clusters in the WT and KO sets combined. Upon incorporating
these additional measurements into CSSbasic , we get an enhanced
formulation CSSenh as

CSSenh ¼
PC12

i¼1 wi1�ui þ
PC12

i¼1 wi2�uiPC12
i¼1 wi1�ui þ

PC12
i¼1 wi2�ui þ

PU1
j¼1 wj1�uj þ

PU2
k¼1 wk2�uk

where C12, U1, and U2 carry the same meanings as in CSSbasic . Variables ui ,
uj , and uk are the uniqueness scores and wi1, wi2, wj1, and wk2 are the
weights for genes i, j, and k as indicated in the first subscript and
corresponding to the clusters indicated in the second subscript. The

weight wi1 for gene i in cluster 1 is defined as avgLogFCi1
pctFi1

2

pctBi1

� �
, where

avgLogFCi1 is the average log fold change, pctFi1 is the proportion of cells
expressing gene i in cluster 1, and pctBi1 is the proportion of cells
expressing gene i in the appropriate background population for cluster 1.
All other weights, wi2, wj1, and wk2 are defined in the same manner.
Before arriving at the above final formulation, six other variations of this

score, including the introduction of only one measurement at a time or
combinations thereof, were tested and the results analyzed. In the end, the
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above formulation, which simultaneously incorporates the uniqueness,
strength of expression, and extent of expression (i.e., the percentage of
cells that express the gene), proved to be most effective in improving the
sensitivity of the score in defining similar and different clusters. A gene
that is close to being uniquely expressed, is more strongly expressed, and
is more widely expressed is awarded a higher weight than a gene that is
shared, weakly expressed, and narrowly expressed. Just like CSSbasic , CSSenh
values range between 0 and 1.
For a given pair of res and nPCs values, if there are m WT clusters and n

KO clusters, there would be a total of m ´ n CSSenh values. These can be
assembled into a structure we call the CSS matrix. The CSS matrix provides
a snapshot of the one-to-one relationships between the WT and KO
clusters. It lists the pairwise similarity scores, comparing each WT cluster
with every KO cluster to quantify how similar or different they are. For
example, for our spleen data, the WT-KO dataset pair generated a total of
126 CSS matrices, one for every combination of res and nPCs.
The goal of the second major step of our strategy is to compute a single

metric representing each CSS matrix that aims to quantify the overall
clustering quality of the res and nPCs parameter value pair associated with
the CSS matrix. To achieve this goal, we first compute, for each row and
column, a distinction index (DI) equal to the difference between the
maximum element and the mean of the remaining elements. This yields a
total of m row-level and n column-level distinction indices. We express the

mean value of this set of m ´ n indices as 1
mn

Pm
i¼1drowji þ

Pn
j¼1dcoljj

h i
, which

we refer to as the distinction index for the entire CSS matrix (CaSSiDI). Thus,
CaSSiDI represents a quantification of the clustering quality associated with a
given res/nPCs parameter pair choice. Clustering quality can have many
different meanings depending on the context. Here, we interpret the DI of a
CSS matrix and, by extension, the corresponding res/nPCs parameter pair
choice, as a metric that quantifies how well the parameter pair choice has
been able to identify matchingWT and KO clusters while also identifying and
segregating any clusters in either genotype that do not have a good match
in the other genotype. For our spleen data, the set of 126 CaSSiDI values for a
pair of WT-KO datasets can then be directly used to rank the parameter pair
choices from best to worst, with the highest CaSSiDI value corresponding to
the best parameter pair choice.

Nebula plot
In Fig. 3H, for each gene, four violin plots are shown. The inner two violins
correspond to the ILR (left) and NPR (right) subsets, while the outer two
violins correspond to their respective background populations used by
Seurat for marker identification. Black diamonds represent the average
expression level used by Seurat. Genes are ordered as follows: from left to
right, those labeled in blue are in decreasing order of inner blue violin
diamond level, while those labeled in orange are in increasing order of
inner orange violin diamond level. Those labeled in gray are ordered based
on the mean of the inner blue and orange violin diamond levels, with
highest mean at the center and falling off on either side. The bar plots at
the top show the proportion of cells in the cluster (ILR or NPR) that
expresses the given gene.
Thus, through the Nebula plot, it is possible to get an overview of the

most important genes characterizing a given cluster in terms of differential
expression compared to background. Moreover, it is possible to compare
two clusters at a time and get an idea of how widely each gene is
expressed in a population through the bar plots.

DATA AVAILABILITY
The 10X single-cell sequencing raw data files and processed matrices associated with
this study have been deposited in the Gene Expression Omnibus database under the
accession code GSE252466.

CODE AVAILABILITY
A software implementation of CaSSiDI along with critical scripts used to analyze the
scRNAseq data presented in the paper can be found at https://github.com/
CodeInTheSkies/CaSSiDI-PirB-Macrophage-Paper.

REFERENCES
1. Takai T. Paired immunoglobulin-like receptors and their MHC class I recognition.

Immunology. 2005;115:433–40.

2. Takeda K, Nakamura A. Regulation of immune and neural function via leukocyte
Ig-like receptors. J Biochem. 2017;162:73–80.

3. van der Touw W, Chen HM, Pan PY, Chen SH. LILRB receptor-mediated regulation
of myeloid cell maturation and function. Cancer Immunol Immunother.
2017;66:1079–87.

4. Atwal JK, Pinkston-Gosse J, Syken J, Stawicki S, Wu Y, Shatz C, et al. PirB is a
functional receptor for myelin inhibitors of axonal regeneration. Science.
2008;322:967–70.

5. Nakamura A, Kobayashi E, Takai T. Exacerbated graft-versus-host disease in Pirb
−/− mice. Nat Immunol. 2004;5:623–9.

6. Li D, Wang L, Yu L, Freundt EC, Jin B, Screaton GR, et al. Ig-like transcript 4 inhibits
lipid antigen presentation through direct CD1d interaction. J Immunol.
2009;182:1033–40.

7. Kang X, Kim J, Deng M, John S, Chen H, Wu G, et al. Inhibitory leukocyte
immunoglobulin-like receptors: Immune checkpoint proteins and tumor sus-
taining factors. Cell Cycle. 2016;15:25–40.

8. Ayukawa S, Kamoshita N, Nakayama J, Teramoto R, Pishesha N, Ohba K, et al.
Epithelial cells remove precancerous cells by cell competition via MHC class
I-LILRB3 interaction. Nat Immunol. 2021;22:1391–402.

9. Li X, Wang K, Lyu Y, Pan H, Zhang J, Stambolian D, et al. Deep learning enables
accurate clustering with batch effect removal in single-cell RNA-seq analysis. Nat
Commun. 2020;11:2338.

10. Pasquini G, Rojo Arias JE, Schafer P, Busskamp V. Automated methods for cell
type annotation on scRNA-seq data. Comput Struct Biotechnol J. 2021;19:961–9.

11. Bej S, Galow AM, David R, Wolfien M, Wolkenhauer O. Automated annotation of
rare-cell types from single-cell RNA-sequencing data through synthetic over-
sampling. BMC Bioinforma. 2021;22:557.

12. Menden K, Marouf M, Oller S, Dalmia A, Magruder DS, Kloiber K, et al. Deep
learning-based cell composition analysis from tissue expression profiles. Sci Adv.
2020;6:eaba2619.

13. Bassler K, Schulte-Schrepping J, Warnat-Herresthal S, Aschenbrenner AC, Schultze
JL. The Myeloid Cell Compartment-Cell by Cell. Annu Rev Immunol.
2019;37:269–93.

14. Chong SZ, Evrard M, Devi S, Chen J, Lim JY, See P, et al. CXCR4 identifies tran-
sitional bone marrow premonocytes that replenish the mature monocyte pool
for peripheral responses. J Exp Med. 2016;213:2293–314.

15. Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat
Rev Immunol. 2011;11:762–74.

16. Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and
tissue homeostasis. Nat Rev Immunol. 2014;14:392–404.

17. Winkler CW, Woods TA, Robertson SJ, McNally KL, Carmody AB, Best SM, et al.
Cutting Edge: CCR2 Is Not Required for Ly6C(hi) Monocyte Egress from the Bone
Marrow but Is Necessary for Migration within the Brain in La Crosse Virus
Encephalitis. J Immunol. 2018;200:471–6.

18. Das M, Lu J, Joseph M, Aggarwal R, Kanji S, McMichael BK, et al. Kruppel-like
factor 2 (KLF2) regulates monocyte differentiation and functions in mBSA and IL-
1beta-induced arthritis. Curr Mol Med. 2012;12:113–25.

19. Cheong C, Matos I, Choi JH, Dandamudi DB, Shrestha E, Longhi MP, et al.
Microbial stimulation fully differentiates monocytes to DC-SIGN/CD209(+) den-
dritic cells for immune T cell areas. Cell. 2010;143:416–29.

20. Tussiwand R, Lee WL, Murphy TL, Mashayekhi M, Kc W, Albring JC, et al. Com-
pensatory dendritic cell development mediated by BATF-IRF interactions. Nature.
2012;490:502–7.

21. Picotto G, Morse LR, Nguyen N, Saltzman J, Battaglino R. TMEM176A and
TMEM176B Are Candidate Regulators of Inhibition of Dendritic Cell Maturation
and Function after Chronic Spinal Cord Injury. J Neurotrauma. 2020;37:528–33.

22. Grahn THM, Niroula A, Vegvari A, Oburoglu L, Pertesi M, Warsi S, et al. S100A6 is a
critical regulator of hematopoietic stem cells. Leukemia. 2020;34:3323–37.

23. Sun J, Ramos A, Chapman B, Johnnidis JB, Le L, Ho YJ, et al. Clonal dynamics of
native haematopoiesis. Nature. 2014;514:322–7.

24. Santana-Codina N, Carretero R, Sanz-Pamplona R, Cabrera T, Guney E, Oliva B,
et al. A transcriptome-proteome integrated network identifies endoplasmic
reticulum thiol oxidoreductase (ERp57) as a hub that mediates bone metastasis.
Mol Cell Proteom. 2013;12:2111–25.

25. Jaitin DA, Weiner A, Yofe I, Lara-Astiaso D, Keren-Shaul H, David E, et al. Dissecting
Immune Circuits by Linking CRISPR-Pooled Screens with Single-Cell RNA-Seq.
Cell. 2016;167:1883–96.e1815.

26. Mildner A, Schonheit J, Giladi A, David E, Lara-Astiaso D, Lorenzo-Vivas E, et al.
Genomic Characterization of Murine Monocytes Reveals C/EBPbeta Transcription
Factor Dependence of Ly6C(-) Cells. Immunity. 2017;46:849–62.e847.

27. Satija R. Quickly Pick Relevant Dimensions. Available from: https://satijalab.org/
seurat/reference/elbowplot (2019).

28. Borges da Silva H, Fonseca R, Pereira RM, Cassado Ados A, Alvarez JM, D’Imperio
Lima MR. Splenic Macrophage Subsets and Their Function during Blood-Borne
Infections. Front Immunol. 2015;6:480.

R. Nechanitzky et al.

277

Cell Death & Differentiation (2024) 31:265 – 279

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE252466
https://github.com/CodeInTheSkies/CaSSiDI-PirB-Macrophage-Paper
https://github.com/CodeInTheSkies/CaSSiDI-PirB-Macrophage-Paper
https://satijalab.org/seurat/reference/elbowplot
https://satijalab.org/seurat/reference/elbowplot


29. A-Gonzalez N, Castrillo A. Origin and specialization of splenic macrophages. Cell
Immunol. 2018;330:151–8.

30. Lai SM, Sheng J, Gupta P, Renia L, Duan K, Zolezzi F, et al. Organ-Specific Fate,
Recruitment, and Refilling Dynamics of Tissue-Resident Macrophages during
Blood-Stage Malaria. Cell Rep. 2018;25:3099–109.e3093.

31. A-Gonzalez N, Quintana JA, Garcia-Silva S, Mazariegos M, Gonzalez de la Aleja A,
Nicolas-Avila JA, et al. Phagocytosis imprints heterogeneity in tissue-resident
macrophages. J Exp Med. 2017;214:1281–96.

32. Sukhbaatar N, Weichhart T. Iron Regulation: Macrophages in Control. Pharma-
ceuticals. 2018;11:137.

33. Dick SA, Wong A, Hamidzada H, Nejat S, Nechanitzky R, Vohra S, et al. Three tissue
resident macrophage subsets coexist across organs with conserved origins and
life cycles. Sci Immunol. 2022;7:eabf7777.

34. Gautier EL, Shay T, Miller J, Greter M, Jakubzick C, Ivanov S, et al. Gene-expression
profiles and transcriptional regulatory pathways that underlie the identity and
diversity of mouse tissue macrophages. Nat Immunol. 2012;13:1118–28.

35. Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M, et al.
Tissue-resident macrophage enhancer landscapes are shaped by the local
microenvironment. Cell. 2014;159:1312–26.

36. Kohyama M, Ise W, Edelson BT, Wilker PR, Hildner K, Mejia C, et al. Role for Spi-C
in the development of red pulp macrophages and splenic iron homeostasis.
Nature. 2009;457:318–21.

37. Haldar M, Kohyama M, So AY, Kc W, Wu X, Briseno CG, et al. Heme-mediated SPI-C
induction promotes monocyte differentiation into iron-recycling macrophages.
Cell. 2014;156:1223–34.

38. Delaney C, Schnell A, Cammarata LV, Yao-Smith A, Regev A, Kuchroo VK, et al.
Combinatorial prediction of marker panels from single-cell transcriptomic data.
Mol Syst Biol. 2019;15:e9005.

39. Danzeisen R, Achsel T, Bederke U, Cozzolino M, Crosio C, Ferri A, et al. Superoxide
dismutase 1 modulates expression of transferrin receptor. J Biol Inorg Chem.
2006;11:489–98.

40. Agod Z, Pazmandi K, Bencze D, Vereb G, Biro T, Szabo A, et al. Signaling Lym-
phocyte Activation Molecule Family 5 Enhances Autophagy and Fine-Tunes
Cytokine Response in Monocyte-Derived Dendritic Cells via Stabilization of
Interferon Regulatory Factor 8. Front Immunol. 2018;9:62.

41. Mougiakakos D, Bach C, Bottcher M, Beier F, Rohner L, Stoll A, et al. The IKZF1-
IRF4/IRF5 Axis Controls Polarization of Myeloma-Associated Macrophages. Cancer
Immunol Res. 2021;9:265–78.

42. Oh KS, Gottschalk RA, Lounsbury NW, Sun J, Dorrington MG, Baek S, et al. Dual
Roles for Ikaros in Regulation of Macrophage Chromatin State and Inflammatory
Gene Expression. J Immunol. 2018;201:757–71.

43. Donovan A, Lima CA, Pinkus JL, Pinkus GS, Zon LI, Robine S, et al. The iron
exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab.
2005;1:191–200.

44. Scott CL, T’Jonck W, Martens L, Todorov H, Sichien D, Soen B, et al. The Tran-
scription Factor ZEB2 Is Required to Maintain the Tissue-Specific Identities of
Macrophages. Immunity. 2018;49:312–325 e315.

45. Bagadia P, Huang X, Liu TT, Durai V, Grajales-Reyes GE, Nitschke M, et al. An Nfil3-
Zeb2-Id2 pathway imposes Irf8 enhancer switching during cDC1 development.
Nat Immunol. 2019;20:1174–85.

46. Huang X, Ferris ST, Kim S, Choudhary MNK, Belk JA, Fan C, et al. Differential usage
of transcriptional repressor Zeb2 enhancers distinguishes adult and embryonic
hematopoiesis. Immunity. 2021;54:1417–32.e1417.

47. Wu X, Briseno CG, Grajales-Reyes GE, Haldar M, Iwata A, Kretzer NM, et al.
Transcription factor Zeb2 regulates commitment to plasmacytoid dendritic cell
and monocyte fate. Proc Natl Acad Sci USA. 2016;113:14775–80.

48. Liu Z, Gu Y, Chakarov S, Bleriot C, Kwok I, Chen X, et al. Fate Mapping via Ms4a3-
Expression History Traces Monocyte-Derived Cells. Cell. 2019;178:1509–25.e1519.

49. Bain CC, Bravo-Blas A, Scott CL, Perdiguero EG, Geissmann F, Henri S, et al.
Constant replenishment from circulating monocytes maintains the macrophage
pool in the intestine of adult mice. Nat Immunol. 2014;15:929–37.

50. Bain CC, Hawley CA, Garner H, Scott CL, Schridde A, Steers NJ, et al. Long-lived
self-renewing bone marrow-derived macrophages displace embryo-derived cells
to inhabit adult serous cavities. Nat Commun. 2016;7:ncomms11852.

51. Bain CC, Gibson DA, Steers NJ, Boufea K, Louwe PA, Doherty C, et al. Rate of
replenishment and microenvironment contribute to the sexually dimorphic
phenotype and function of peritoneal macrophages. Sci Immunol.
2020;5:eabc4466.

52. Kim KW, Williams JW, Wang YT, Ivanov S, Gilfillan S, Colonna M, et al. MHC II+
resident peritoneal and pleural macrophages rely on IRF4 for development from
circulating monocytes. J Exp Med. 2016;213:1951–9.

53. Accarias S, Genthon C, Rengel D, Boullier S, Foucras G, Tabouret G. Single-cell
analysis reveals new subset markers of murine peritoneal macrophages and
highlights macrophage dynamics upon Staphylococcus aureus peritonitis. Innate
Immun. 2016;22:382–92.

54. Okabe Y, Medzhitov R. Tissue-specific signals control reversible program of
localization and functional polarization of macrophages. Cell. 2014;157:832–44.

55. Cain DW, O’Koren EG, Kan MJ, Womble M, Sempowski GD, Hopper K, et al.
Identification of a tissue-specific, C/EBPbeta-dependent pathway of differentia-
tion for murine peritoneal macrophages. J Immunol. 2013;191:4665–75.

56. Bain CC, Jenkins SJ. The biology of serous cavity macrophages. Cell Immunol.
2018;330:126–35.

57. Ansel KM, Harris RB, Cyster JG. CXCL13 is required for B1 cell homing, natural
antibody production, and body cavity immunity. Immunity. 2002;16:67–76.

58. Cheung P, Schaffert S, Chang SE, Dvorak M, DonatoM, Macaubas C, et al. Repression
of CTSG, ELANE and PRTN3-mediated histone H3 proteolytic cleavage promotes
monocyte-to-macrophage differentiation. Nat Immunol. 2021;22:711–22.

59. Karatepe K, Zhu H, Zhang X, Guo R, Kambara H, Loison F, et al. Proteinase 3 Limits
the Number of Hematopoietic Stem and Progenitor Cells in Murine Bone Marrow.
Stem Cell Rep. 2018;11:1092–105.

60. Klimenkova O, Ellerbeck W, Klimiankou M, Unalan M, Kandabarau S, Gigina A,
et al. A lack of secretory leukocyte protease inhibitor (SLPI) causes defects in
granulocytic differentiation. Blood. 2014;123:1239–49.

61. McGarry N, Greene CM, McElvaney NG, Weldon S, Taggart CC. The Ability of
Secretory Leukocyte Protease Inhibitor to Inhibit Apoptosis in Monocytes Is
Independent of Its Antiprotease Activity. J Immunol Res. 2015;2015:507315.

62. McNeely TB, Dealy M, Dripps DJ, Orenstein JM, Eisenberg SP, Wahl SM. Secretory
leukocyte protease inhibitor: a human saliva protein exhibiting anti-human
immunodeficiency virus 1 activity in vitro. J Clin Invest. 1995;96:456–64.

63. Baker SJ. Small unstable apoptotic protein, an apoptosis-associated protein,
suppresses proliferation of myeloid cells. Cancer Res. 2003;63:705–12.

64. Kelley KD, Miller KR, Todd A, Kelley AR, Tuttle R, Berberich SJ. YPEL3, a p53-
regulated gene that induces cellular senescence. Cancer Res. 2010;70:3566–75.

65. Lee HK, Park DW, Bae JH, Kim HJ, Shin DG, Park JS, et al. RGS2 is a negative
regulator of STAT3-mediated Nox1 expression. Cell Signal. 2012;24:803–9.

66. Qiang X, Yang WL, Wu R, Zhou M, Jacob A, Dong W, et al. Cold-inducible RNA-
binding protein (CIRP) triggers inflammatory responses in hemorrhagic shock
and sepsis. Nat Med. 2013;19:1489–95.

67. Ma G, Pan PY, Eisenstein S, Divino CM, Lowell CA, Takai T, et al. Paired
immunoglobin-like receptor-B regulates the suppressive function and fate of
myeloid-derived suppressor cells. Immunity. 2011;34:385–95.

68. Marigo I, Bosio E, Solito S, Mesa C, Fernandez A, Dolcetti L, et al. Tumor-induced
tolerance and immune suppression depend on the C/EBPbeta transcription
factor. Immunity. 2010;32:790–802.

69. Liu SS, Lv XX, Liu C, Qi J, Li YX, Wei XP, et al. Targeting Degradation of the
Transcription Factor C/EBPbeta Reduces Lung Fibrosis by Restoring Activity of the
Ubiquitin-Editing Enzyme A20 in Macrophages. Immunity. 2019;51:522–34.e527.

70. Begay V, Baumeier C, Zimmermann K, Heuser A, Leutz A. The C/EBPbeta LIP
isoform rescues loss of C/EBPbeta function in the mouse. Sci Rep. 2018;8:8417.

71. Spike AJ, Rosen JM. C/EBPss Isoform Specific Gene Regulation: It’s a Lot more
Complicated than you Think! J Mammary Gland Biol Neoplasia. 2020;25:1–12.

72. Ujike A, Takeda K, Nakamura A, Ebihara S, Akiyama K, Takai T. Impaired dendritic
cell maturation and increased T(H)2 responses in PIR-B(−/−) mice. Nat Immunol.
2002;3:542–8.

73. Nechanitzky R, Akbas D, Scherer S, Gyory I, Hoyler T, Ramamoorthy S, et al.
Transcription factor EBF1 is essential for the maintenance of B cell identity and
prevention of alternative fates in committed cells. Nat Immunol. 2013;14:867–75.

74. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell tran-
scriptomic data across different conditions, technologies, and species. Nat Bio-
technol. 2018;36:411–20.

75. Carson MB, Liu C, Lu Y, Jia C, Lu H. A disease similarity matrix based on the
uniqueness of shared genes. BMC Med Genomics. 2017;10:26.

ACKNOWLEDGEMENTS
We thank the Princess Margaret Genomics Centre and the UHN Bioinformatics and HPC
Core for RNA sequencing; Shawn P. Kubli for the B16 subcutaneous transplantation
protocol; and Ryan Harrietha, and Kyle T. Gill for support with animal breeding and
genotyping. We are also grateful to the Genotyping Facility and the Animal Resource
Centre at the Princess Margaret Cancer Centre (Toronto). Lastly, we thank Drs. Tracy
McGaha, Jeffrey Pollard and Florent Petitprez for careful reading of the manuscript.

AUTHOR CONTRIBUTIONS
R.N. and T.W.M. conceived the biological study and obtained funding. R.N. conceived
CaSSiDI with input from P.R. P.R. conceived, developed, and designed the
mathematical framework for CaSSiDI with input from R.N. P.R. performed all
bioinformatic analyses including the implementation of CaSSiDI. R.N. and D.N.
designed experiments and analyzed data. R.N. and D.N. performed experiments with
support from W.L., A.C.W., and J.H. R.N. and P.R. wrote the original draft of the

R. Nechanitzky et al.

278

Cell Death & Differentiation (2024) 31:265 – 279



manuscript with input from D.N. and S.E. M.E.S. provided scientific editing advice.
T.W.M supervised the research. All authors have reviewed and approved the
manuscript in its current form.

FUNDING
This work was supported by a grant to TWM from the Canadian Institutes of Health
Research (CIHR) and a postdoctoral fellowship to RN from EMBO and Marie Curie
(ALTF 725-2015).

COMPETING INTERESTS
The authors declare that they have no competing financial interests concerning the
work described in this manuscript. TWM owns equity in Treadwell Therapeutics and
Agios Pharmaceuticals, and is a consultant for AstraZeneca and Tessa Therapeutics.

ETHICS APPROVAL
The Ontario Cancer Institute Animal Care Committee approved all animal research
and mouse experiments used in this study.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41418-024-01268-8.

Correspondence and requests for materials should be addressed to Robert
Nechanitzky or Tak W. Mak.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

R. Nechanitzky et al.

279

Cell Death & Differentiation (2024) 31:265 – 279

https://doi.org/10.1038/s41418-024-01268-8
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	CaSSiDI: novel single-cell “Cluster Similarity Scoring and Distinction Index” reveals critical functions for PirB and context-�dependent Cebpb repression
	Introduction
	Results
	CaSSiDI reveals heterogeneity and Cebpb derepression in PirB−/−Ly6C+ bone marrow-derived monocytes
	Benchmark validation of CaSSiDI as an approach to improve clustering
	CaSSiDI reveals two functional subsets of WT red pulp macrophages
	PirB deficiency alters gene expression patterns and subset proportions among steady-state�RPMs
	Validation of the CaSSiDI approach by analysis of Zeb2 in splenic myeloid�cells
	PirB deficiency alters gene expression patterns of peritoneal macrophage subsets

	Discussion
	Methods
	Mice
	Cell preparations, cell sorting, and flow cytometry
	Adoptive transfer of peritoneal macrophages
	Single-cell RNA sequencing
	CaSSiDI: cluster similarity scoring methodology
	Nebula�plot

	References
	References
	Acknowledgements
	ACKNOWLEDGMENTS
	Author contributions
	Funding
	Competing interests
	Ethics approval
	ADDITIONAL INFORMATION




