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Abstract
Cell cycle progression is a tightly regulated process by which DNA replicates and cell reproduces. The major driving force
underlying cell cycle progression is the sequential activation of cyclin-dependent kinases (CDKs), which is achieved in part
by the ubiquitin-mediated proteolysis of their cyclin partners and kinase inhibitors (CKIs). In eukaryotic cells, two families
of E3 ubiquitin ligases, anaphase-promoting complex/cyclosome and Skp1-Cul1-F-box protein complex, are responsible for
ubiquitination and proteasomal degradation of many of these CDK regulators, ensuring cell cycle progresses in a timely and
precisely regulated manner. In the past couple of decades, accumulating evidence have demonstrated that the dysregulated
cell cycle transition caused by inefficient proteolytic control leads to uncontrolled cell proliferation and finally results in
tumorigenesis. Based upon this notion, targeting the E3 ubiquitin ligases involved in cell cycle regulation is expected to
provide novel therapeutic strategies for cancer treatment. Thus, a better understanding of the diversity and complexity of
ubiquitin signaling in cell cycle regulation will shed new light on the precise control of the cell cycle progression and guide
anticancer drug development.

Facts

(1) The cell cycle is a tightly orchestrated cellular process
that governs the timely DNA replication and cell
division events.

(2) Sequential activation of cyclin-dependent kinases
(CDKs) drives cell cycle progression in a timely and
precisely regulated manner.

(3) The activity of CDKs is modulated by cyclin partners
and CDK inhibitors (CKIs), which are tightly
controlled by the ubiquitin–proteasome system.

(4) Two important types of E3 ligases, the anaphase-
promoting complex or cyclosome (APC/C) and Skp1-
Cul1-F-box (SCF) complexes, are dedicated to cell
cycle control.

(5) Targeting E3 ubiquitin ligases provides effective
therapeutic strategies for cancer treatment.

Open questions

(1) Unlike proteolytic signals, relatively little is known
regarding the roles and mechanisms of non-proteolytic
signals, such as the ones mediated by K6, K27, and K29
polyubiquitin chain, underlying the cell cycle control.

(2) The specificity and diversity of deubiquitinating
enzymes (DUBs) in regulating mitosis need to be
further investigated.

(3) How is the balance of ubiquitination–deubiquitination
achieved to ensure accurate cell cycle progression
remains elusive.

(4) Unlike CDC20, the regulation of the enzymatic activity
of CDH1 is not well defined yet.

(5) The detailed mechanisms underlying spindle checkpoint
imposed various E3 ligase activities of CDC20 toward
different substrates need to be further investigated.

(6) How those ubiquitination signaling events at the spindle
checkpoint are integrated and orchestrated in a
space–time-dependent manner remains not fully
understood.
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Introduction

The cell cycle is a series of tightly orchestrated molecular
events that coordinately regulate DNA replication and
chromosome segregation, eventually resulting in cell divi-
sion and genetic material transmission. In eukaryotic cells,
the cell cycle consists of four distinct phases, G1 phase
(gap 1), S phase (DNA synthesis), G2 phase (gap 2), and M
phase (mitotic) that proceed in a unidirectional manner
(Fig. 1). The progression through each phase of the cell

cycle is precisely regulated by a series of cyclin-dependent
kinases (CDKs). The protein abundance of CDKs is con-
stant, while their activities fluctuate throughout the cell
cycle, which is mainly achieved by the periodic expression
of cyclin coactivators and CDK inhibitors (CKIs). Briefly,
in mid-to-late G1 phase, activation of Cyclin D-CDK4/6
complex mediates partial phosphorylation of the RB1 pro-
tein, releasing E2F transcription factors and thus allowing
the expression of a set of genes that mediate cell cycle
progression [1]. At the end of the G1 phase, the accumu-
lation of Cyclin E activates CDK2 and promotes full
phosphorylation of RB1 [2, 3], initiating cell cycle transi-
tion from G1 phase to S phase. As cell cycle enters S phase,
Cyclin A, in replace of Cyclin E, associates with CDK2 to
regulate the initiation of DNA replication and prevents the
re-replication by phosphorylating particular DNA replica-
tion machinery components, such as CDC6 [4, 5].
Approaching late S phase, Cyclin A-CDK1 kinase activity
is augmented, which coordinates with Cyclin A-CDK2 in
G2 phase to promote mitotic entry [6–8]. The abundance of
Cyclin B accumulates in M phase, resulting in Cyclin B-
CDK1 complex activation and mitosis progression [9–11].
In addition to the fluctuating accumulation of cyclin acti-
vators, two families of CKIs, namely INK4 and CIP/KIP,
also contribute to the periodic activation of CDKs over the
course of the cell cycle. Briefly, the INK4 proteins (inhi-
bitors of CDK4) specifically inhibit the catalytic subunit of
CDK4 and CDK6, dephosphorylating RB1 and rendering
its inhibitory effect on E2F transcription factors, while
inhibitors of the CIP/KIP family have relatively more broad
effects by modulating the kinase activities of Cyclin A-, B-
and E-dependent kinases [12]. It is well characterized that
the removal of cyclins is tightly regulated by the ubiquitin
pathway and thus governs cell cycle progression in a time-
efficient manner [13]. Moreover, the negative regulators of
cyclin-CDK complex (CKIs), such as p21 and p27, have
also been shown to be targeted for proteasomal degradation
[14–16]. Altogether, these findings demonstrate that the cell
cycle progression is predominantly regulated by the
ubiquitin–proteasome system [17, 18].

Ubiquitin is an ubiquitously expressed small regulatory
protein in living cells [19]. The addition of ubiquitin to a
substrate protein is called ubiquitination, which is catalyzed
by three types of enzymes, ubiquitin-activating enzymes
(E1s), ubiquitin-conjugating enzymes (E2s), and ubiquitin
ligases (E3s), involving three major steps [20]. Briefly, the
ubiquitin protein is first activated by E1-mediated catalysis
of the acyl-adenylation of the C-terminus of the
ubiquitin protein, followed by transferring ubiquitin to an
active cysteine residue in the context of ATP providing
energy. Then, E2 ubiquitin-conjugating enzymes
catalyze the transfer of the ubiquitin from E1 to the active
site cysteine of E2. Finally, an E3 ubiquitin ligase brings the

Fig. 1 Overview of the mammalian cell cycle. The stages of the cell
cycle are divided into four major phases: (1) G1 phase, also called
the first gap phase. During the G1 phase, cells grow physically
larger and duplicate cellular contents to prepare for the later steps;
(2) S phase, cells synthesize a complete copy of DNA and duplicate
the centrosome; (3) G2 phase, the second gap phase, cells grow
more and prepare for mitosis; (4) M (mitotic) phase, during this
phase, cells divide their copied DNA and cellular components,
making two identical daughter cells. G0 phase is a quiescent stage
that occurs outside of the cell cycle. During the G0 phase, cells are
neither dividing nor preparing to divide. Sequential activation of
Cyclin/CDKs drives cell cycle progression in a timely orchestrated
manner. Briefly, Cyclin D1/CDK4 mainly functions in G1 phase to
facilitate RB1 phosphorylation, releasing its suppression on E2F
transcription factors; Cyclin E/CDK2 functions in S phase to con-
trol DNA replication; Cyclin A/CDK2 functions in later S phase to
prepare the cell cycle entry into M phase; Cyclin B/CDK1 functions
in M phase to be involved in regulation of chromatin separation.
Additionally, three cell cycle checkpoints, G1/S checkpoint, G2-M
DNA damage checkpoint, and spindle assembly checkpoint (SAC),
are orchestrated to ensure the proper progression of the cell cycle.
Protein structures of Cyclin/CDKs and RB1/E2F used here are as
follows: RB1/E2F/DP (2AZE); Cyclin D1/CDK4 (2W9Z); Cyclin
E/CDK2 (1W98); Cyclin A/CDK2 (6P3W); Cyclin B/CDK1
(4YC3).
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substrate and ubiquitin-loaded E2 together, catalyzing the
transfer of the ubiquitin from E2 to the substrate (Fig. 2).
The ubiquitination process can involve either a single ubi-
quitin protein (monoubiquitination) or a chain of ubiquitin
linked via different lysine residues of the ubiquitin molecule
(termed as polyubiquitination). As ubiquitin possesses
seven lysine residues (K6, K11, K27, K29, K33, K48, and
K63) and one N-terminal methionine (M1) that can serve as
docking points of additional ubiquitin chain formation,
polyubiquitination of target protein exhibits distinct func-
tional consequences depending on the lysine residue of the
ubiquitin that is linked (Fig. 3).

Briefly, K11-linked ubiquitin chain was found to regulate
the substrates of the anaphase-promoting complex/cyclo-
some (APC/C) complex and control progression through
mitosis, while Skp1-Cul1-F-box (SCF) ubiquitin ligase
complex catalyzed K48-linked polyubiquitination and sub-
sequent proteasomal degradation of substrates to modulate
cell cycle progression [21–23]. To gain more insights into
the functional diversity and specificity of linear-, mono- and
linkage-dependent polyubiquitination modification, readers
are encouraged to refer to the extensive literature which has
been summarized previously [24–26]. Here, we will mainly
focus on summarizing the physiological role of the ubi-
quitin signaling in cell cycle control and tumorigenesis,
with primary purpose to provide a better understanding of
ubiquitination-mediated cell cycle regulation and ubiquitin
ligase targeted anticancer therapies.

Overview of the function of APC/C and SCF
E3 ligases in modulating cell cycle
progression

Progression through the cell cycle is determined by phos-
phorylation of CDK substrates [27, 28]. To ensure the cell

cycle progression occurs in an ordered manner, the oscil-
lating activity of CDKs is established and tightly orche-
strated by multiple mechanisms including transcription,
phosphorylation, as well as periodic degradation of
their cyclin coactivators and CKIs as mentioned above
[13–16, 29]. Of note, the proteolytic degradation of reg-
ulators of CDKs is primarily controlled by two families of
E3 ubiquitin ligases in mammalian cells, APC/C, and SCF
protein complex [30].

The APC/C is a multi-subunit cullin-RING E3 ubiquitin
ligase that functions in mitotic phase and G1 phase, reg-
ulating cell cycle progression through M phase and entry
into S phase [31, 32]. The temporal regulation of APC/C
activity is prominently achieved through combination of
two structurally relevant coactivators, CDC20 and CDH1,
which are sequentially activated to regulate mitotic progress
and G1 stabilization. Briefly, mitotic phosphorylation of
APC1 relieves its auto-inhibition and promotes APC/C
activation by facilitating CDC20 engagement [33, 34].
Activation of APC/CCDC20 then mediates the proteasomal
degradation of Cyclin B1 and Securin, facilitating chro-
mosome segregation and anaphase onset [31, 35, 36]. In
addition, degradation of Cyclin B1 inactivates CDK1, pre-
venting APC/C-CDC20 combination while releasing its
inhibitory phosphorylation of CDH1 [37]. Simultaneously,
CDC14 is released and activated with the onset of anaphase,
dephosphorylating and activating the APC/CCDH1 E3 ligase
[38, 39]. Together, suppression of CDK1 and activation of
CDC14 build up a swift transition from APC/CCDC20 to
APC/CCDH1 during anaphase. Activation of CDH1
then mediates a large number of mitotic and G1 regulators
for ubiquitination and proteasomal degradation, such as
Cyclin B1, PLK1, CDC20, FOXM1, and SKP2, facilitating
irreversible mitotic exit and G1 maintenance [40]. As cells
reach late G1 phase, multiple mechanisms are then
employed, such as CDK-mediated phosphorylation,
degradation of the E2 enzyme UBE2C, and accumulation
of pseudo-substrate EMI1, to inactivate CDH1 to facilitate
G1/S transition [40]. Collectively, our current knowledge
suggests that the APC/C is mainly active from
mitosis through late G1 phase over the course of the cycle
(Fig. 4).

The SCF complex contains three core subunits Cullin,
SKP1, and RBX1, as well as a variable F-box protein. In
comparison to APC/C, the number of substrates of SCF
complex is enormous due to the variety of F-box proteins.
Although almost 70 F-box proteins have been reported in
mammals [41], only four of them, SKP2, FBXW7, βTrCP,
and Cyclin F, have been well characterized in the cell cycle
regulation [42–44].

In the early G1 phase, the E3 ligase activity of SKP2 is
suppressed due to the active presence of APC/CCDH1

[45, 46]. However, when cells approach late G1 phase, the

Fig. 2 A schematic diagram of the ubiquitination process. Ubi-
quitination is an enzyme-mediated posttranslational modification by
which the ubiquitin protein is attached to a substrate protein. This
process involves three main steps: (1) activation step, the ubiquitin
protein is activated by an E1 ubiquitin-activating enzyme, with ATP
providing energy; (2) conjugation step, the ubiquitin protein is trans-
ferred from E1 to the active site of an E2 ubiquitin-conjugating
enzyme; (3) ligation step, the ubiquitin protein is attached to the
substrate (sub) with the catalyzation of an E3 ubiquitin ligase. Protein
structures used here are as follows: Ub (1UBQ); E1–Ub complex
(6DC6); E2–E3–Ub complex (4AP4).
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enzymatic activity of CDH1 is diminished and phosphor-
ylation of SKP2 by Cyclin E-CDK2 protects it from APC/
CCDH1-mediated proteasomal degradation, conferring acti-
vation of the SCFSKP2 E3 ligase complex [40, 47]. Mean-
while, the activated Cyclin E-CDK2 complex mediates
phosphorylation and ubiquitination of p27 [48, 49]. Sub-
sequently, the phosphorylated p27 is recognized and ubi-
quitinated by SKP2, leading to its proteasomal degradation
[50]. Consequently, degradation of p27 relieves its sup-
pression on Cyclin E-CDK2, leading to a positive feedback
loop which contributes to RB1 full phosphorylation and the
G1/S transition [2, 3]. In addition to p27, the proteolytic
degradation of the other two CIP/KIP members, p21 and
p57, is also controlled by SKP2 [51, 52]. Given the
importance of the CIP/KIP family of CKIs in regulating cell
cycle transition [12, 53], it is conceivable that the disruption
of SKP2 E3 ligase activity would cause dysregulation of
cell cycle progression. As mentioned above, Cyclin A
association with CDK2, in replace of Cyclin E, is involved
in the regulation of the initiation of DNA synthesis when
cells enter S phase [4, 5]. Thus, the timely removal of free

Cyclin E is necessary to ensure cell progresses forward
through the cell cycle. In support of this notion, SKP2 was
found to be capable of ubiquitinating free Cyclin E for
proteasomal degradation [54].

When cells entry into G2 phase, Cyclin F ubiquitinates
and restricts the activity of E2Fs, the main and most critical
transcriptional engines of the cell cycle [55, 56]; mediates
degradation of SLBP to limit H2A.X accumulation and
apoptosis upon genotoxic stress [57]; controls genome
integrity and centrosome homeostasis by degrading Ribo-
nucleotide Reductase M2 (RRM2) and CP110, respectively
[58, 59]. Interestingly, the protein stability of Cyclin
F is modulated by βTrCP to control timely mitotic pro-
gression [60].

During the early stage of mitosis, Cyclin A associates
and activates CDK1, driving the initiation of chromosome
condensation [61–63]. Once the activity of APC/CCDC20 is
turned on in prometaphase, Cyclin A is ubiquitinated and
degraded by the proteasome [64, 65]. Of note, destruction
of Cyclin B, another crucial mitotic cyclin that can be tar-
geted by the APC/CCDC20 for proteasomal degradation, is

Fig. 3 Molecular structure of the ubiquitin molecule and linkage-
dependent function of ubiquitination. Ubiquitin is a small protein
(8.6 kDa) that is expressed in all eukaryotic cells. There are eight
amino acids (the N-terminal methionine M1 and seven lysine residues:
K6, K11, K27, K29, K33, K48, and K63) that can serve as docking

points for additional ubiquitin addition. The ubiquitination can be
either a single ubiquitin protein (monoubiquitination) or a chain of
ubiquitin (polyubiquitination). The variety of different modifications
confers the diversity of linkage-dependent function of ubiquitination.
Structure of ubiquitin is 1UBQ.
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initiated during the metaphase, and occurs significantly later
than the destruction of Cyclin A [66, 67]. Investigation of
this difference of temporal degradation between Cyclin A
and Cyclin B suggests that destruction of Cyclin A is likely
spindle checkpoint independent, while the proteolytic
degradation of Cyclin B1 is largely sensitive to the spindle
assembly checkpoint (SAC) [68, 69]. Therefore, degrada-
tion of Cyclin B1 by APC/CCDC20 is blocked by MAD2 in
prometaphase when chromosomes are not fully attached to
the mitotic spindles [70, 71]. Moreover, protein stability of
CDT2 was found to be regulated by FBXO11 ubiquitin
ligase [72]. Collectively, the tightly orchestrated sequential

destruction of mitotic regulators contributes to dictate the
timing of events during mitotic exit.

The protein abundance of CDH1 diminished during late
G1 phase (Fig. 5), which is partially mediated by βTrCP-
and Cyclin F-directed proteasomal degradation [73, 74].
Moreover, βTrCP has been found to play dual roles in
controlling CDK1 activity, turning it on by inducing WEE1
and Claspin degradation during G2 phase [75, 76], and
turning it off by inducing the degradation of EMI1 and
CDC25A in M and S phase, respectively [77, 78]. Activa-
tion of CDK1 in G2 phase phosphorylates EMI1, priming it
for recognition and degradation by βTrCP, ensuring the

Fig. 4 Function and regulation of the APC/C and SCF E3 ligases
throughout the cell cycle. APC/C and SCF E3 ligases serve as the
two important types of E3 enzymes to regulate the cell cycle pro-
gression. Briefly, APC/C-CDC20 functions in prophase to metaphase
to mediate the ubiquitination and proteasomal destruction of Cyclin
A/B, Securin; APC/C-CDH1 functions from anaphase to G1 phase to
modulate the protein stability of CDC6, PLK1, FOXM1, Cyclin A/B,
and Aurora A/B, ensuring M phase progression and G1 phase main-
tenance. Four F-box proteins of SCF E3 ligase complex have been
well-documented to function in regulation of the cell cycle progres-
sion: FBXW7, βTrCP, SKP2, and Cyclin F. FBXW7 functions largely
as a tumor suppressor to mediate the protein destruction of MYC and
Cyclin E. By contrast, SKP2 is believed to serve as an oncogene,

which mediates the ubiquitination and degradation of CDK inhibitors,
such as p21, p27, and p57. βTrCP is found to play a dual role in
controlling CDK1 activity, turning it on by inducing Claspin and
WEE1 degradation in G2 phase, and turning it off by inducing the
degradation of CDC25A, EMI1, and REST. Cyclin F functions in G2
phase to restrict the activity of E2F, the synthesis of replicative his-
tones (SLBP), and the levels of ribonucleotides (RRM2), as well as
regulate centrosomal duplication (CP110). In addition, the APC/C and
SCF E3 ligases control each other. For example, CDH1 mediates the
degradation of SKP2 in G1 phase, while βTrCP and Cyclin F were
reported to control the destruction of CDH1. Moreover, CDH1 is
responsible for mediating CDC20 for proteasomal degradation, while
the protein stability of Cyclin F was shown to be controlled by βTrCP.

Fig. 5 Protein accumulation profiles of APC/C and SCF adapter
proteins during the cell cycle. A Western blot showing the protein
abundance of APC/C and SCF adapter proteins over the course of the

cell cycle. B Quantification of protein density showing the accumu-
lation of protein levels of APC/C and SCF adapter proteins throughout
the cell cycle.
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timely activation of APC/C [77, 79]. In addition, βTrCP
also controls APC/C E3 ligase activity in part by mediating
the degradation of REST, a repressor of MAD2 transcrip-
tion [80]. In addition to the well-established SKP2, βTrCP,
FBXW7, and Cyclin F, roles of other F-box proteins
involved in regulating cell cycle progression have been
summarized elsewhere [81].

Role of ubiquitination signaling in cell cycle
checkpoints

It is well established that three checkpoints operate in
eukaryotic cells to ensure ordered and accurate cell cycle
progression (Fig. 1). In addition to the roles of ubiquitina-
tion in cell cycle regulation mentioned above, ubiquitin
signaling is also involved in mediating cell cycle checkpoint
response. In the G1/S checkpoint, phosphorylation and
degradation of CDH1 are required to release its inhibition
on SKP2, allowing p27 destruction and consequent Cyclin
E-CDK2 activation. The G2/M checkpoint prevents cells
initiating mitosis in the context of damaged or incompletely
replicated DNA. Upon DNA damage, activation of ATR
phosphorylates and activates CHK1 protein kinase, which
then mediates phosphorylation and proteasomal degradation
of CDC25A in a SCFβTrCP-dependent manner [82, 83].
Suppression of CDC25A prevents CDK1 from depho-
sphorylation and activation, arresting cells in G2 phase
for sufficient DNA damage repair [83, 84]. Moreover,
CHK1-mediated phosphorylation of RAD51 counteracts
EMI1-dependent degradation, thereby restoring RAD51-
dependent homologous recombination (HR) repair [85]. Of
note, recent findings showed that DNA damage-induced
activation of ATM phosphorylates p53 and facilitates its
binding with FBXW7, leading to subsequent p53 ubiquiti-
nation and proteasomal degradation [86]. In addition to the
ubiquitination of key cell cycle regulators, histone ubiqui-
tination also plays crucial roles in DNA damage response
and cell cycle advance. For example, site-specific ubiqui-
tination of H2A organizes the spatio-temporal recruitment
of DNA repair factors to contribute to DNA repair pathway
choice between homologous recombination (HR) and non-
homologous end joining (NHEJ) [87], while deubiquitina-
tion of H2A is required for chromosome segregation when
cells enter mitosis [88]. The M checkpoint is also known as
spindle assembly checkpoint (SAC), by which cells assess
whether all chromosomes are properly attached to the
spindle. In the context of chromatids being misplaced,
kinetochores activate the SAC, which then inhibits the E3
ligase activity of APCCDC20 and delays cell division until
accurate chromosome segregation can be guaranteed [89].
By contrast, once all chromosomes are correctly attached to

the microtubule spindle apparatus, APCCDC20 mediates
Cyclin B1 and Securin for ubiquitination and proteasomal
degradation, allowing for chromosome segregation and
metaphase-to-anaphase transition [31, 35, 36].

Substrate recognition by APC/C and SCF E3
ligase

Recognition of the substrates by corresponding E3 ligases is
achieved by short destruction-mediating sequence elements,
which is named degron [90]. The best-studied degron in tar-
gets of APC/C are the nine-amino acid destruction box (D-
box: RxxLxxxxN) and the KEN box (KENxxxN), which are
preferred by CDH1 and CDC20 or CDH1, respectively
[13, 91] (Table 1). Nonetheless, a spectrum of other amino
acid sequences has also been found to be recognized by the
APC/C complex, such as the ABBA motif ([ILVF]x[ILMVP]
[FHY]x[DE]) which was identified in Cyclin A, BUBR1,
BUB1, and Acm1 [92]. In comparison to APC/C, F-box
proteins recognize their substrates in multiple ways, among
which the best-characterized F-box proteins bind to phos-
phodegrons in their substrates [93]. Thus, phosphorylation of
the substrates plays an important role for F-box protein-
mediated recognition and ubiquitination. βTrCP recognizes
the DSGxxS/T degron in which the serine residues or serine
and threonine residues are phosphorylated [93, 94] (Table 1).
For example, CDK1 phosphorylation of the DSG degron of
EMI1 primes its recognition and destruction by βTrCP to
activate APC/C complex [77, 95]. Substrates of FBXW7
usually contain a canonical degron S/TPPxS/T [93, 96]
(Table 1). Serving as an example, CDK2 phosphorylation of
the TPPxS of Cyclin E determines its recognition and ubi-
quitination by FBXW7 [97, 98]. Unlike βTrCP and FBXW7,
SKP2-dependent ubiquitination and degradation of CKIs,
such as p27, requires not only the CDK-mediated phosphor-
ylation, but also an accessory protein, CKS1, representing a
cofactor-dependent substrate recognition [48–50, 99]. Cyclin
F contains three separate modules, the pseudo-catalytic, sub-
strate recruitment, and regulatory modules. It was reported to
utilize the hydrophobic patch in the cyclin domain to bind the
CY-containing substrates [44]. Mechanisms and functions of
substrate recognition by F-box protein have been extensively
summarized in [44, 93].

Role of APC/C and SCF E3 ligases in
tumorigenesis

Accumulating evidence have shown that CDC20 is fre-
quently overexpressed in a wide range of cancers, indicating
that it might function as an oncoprotein [32, 100]. From the

432 F. Dang et al.



perspective of cell cycle, degradation of Cyclin B and
Securin is required for the onset of anaphase [35, 101]. It is
thus conceivable that the loss of CDC20 causes metaphase
arrest in mouse embryos [102]. In support of the oncogenic
role, genetic ablation of CDC20 results in efficient tumor
regression [103], while the loss of CDC20 inhibition pro-
motes tumorigenesis [104], advocating CDC20 as a poten-
tial therapeutic target for cancer treatment [105]. In contrast,
CDH1 has been found to be downregulated in a large
variety of human cancers [32, 100]. CDH1-deficient cells
proliferate inefficiently and CDH1 heterozygous animals
show increased susceptibility to spontaneous tumors, lar-
gely conferring CDH1 a tumor suppressor role [106]. In
addition, accumulation of SKP2 due to the loss of CDH1 is
considered to promote proteasomal degradation of CIP/KIP
family of CKIs and thus facilitate tumorigenesis.

Regarding the role of SCF E3 complex in cancer devel-
opment, emerging evidence suggest that it acts in a F-box
protein- and context-dependent manner [107–109]. Specifi-
cally, SKP2 is a well-defined oncoprotein and was found to
be overexpressed in various human cancers [109, 110]. Tar-
gets of SKP2 are mainly tumor suppressor proteins including
p21, p27, p57, p130, and CDT1 [50–52, 111, 112]. Therefore,
SKP2 exerts its oncogenic function mainly through degra-
dation of its tumor suppressive targets. In support of the
oncogenic role of SKP2, pharmacological inhibition of SKP2
was found to be able to restrict cancer progression [113]. In

contrast to SKP2, FBXW7 is believed to function mainly as a
tumor suppressor by targeting various oncogenic proteins for
degradation [96, 107–109]. For example, proteasomal
destruction of Cyclin E through FBXW7-mediated ubiquiti-
nation blocks CDK2 activation in late G1 phase and thus
delays G1/S transition, arresting cells in G1 phase
[97, 98, 114]. Another well-established oncogenic substrate of
FBXW7 is MYC [115], which serves as a transcription factor
involved in the genesis of many human cancers [116].
Regarding Cyclin F, it is believed to function as a tumor
suppressor by controlling genome integrity and centrosome
duplication by regulating the protein stability of RRM2 and
CP110, respectively [44, 58, 59]. Looking at the substrate list
of βTrCP, it is obvious that βTrCP plays a dual role in reg-
ulating CDK1 activity, turning it on by inducing WEE1 and
Claspin destruction [75, 76], while turning it off by targeting
EMI1 and CDC25A for proteasomal degradation [77, 78].
Importantly, preclinical studies have validated WEE1 inhibi-
tion as a viable therapeutic target in treating cancer [117], and
CDC25A is also deemed as a suitable therapeutic target for
cancer treatment [118], establishing βTrCP as a tumor sup-
pressor. On the other hand, βTrCP was found to be involved
in mediating the proteasomal degradation of tumor sup-
pressors, such as FOXO3 and DEPTOR [119, 120]. Taking
these results into consideration, βTrCP might be expected to
be oncogenic and exert a tumor suppressive role in a context-
dependent manner [107, 109].

Table 1 Examples of key APC/C and SCF substrates involved in cell cycle control.

E3 Adapter Substrate Degron Gene function Role in cancer Refs.

APC/C CDC20 Cyclin A D-box
(RxxLxxxxN)

CDK1/2 activation and G1/S, G2/M transition Oncogenic [69]

Cyclin B1 CDK1 activation and mitosis progression Oncogenic [66, 67]

Securin Inhibition of chromosome segregation and p53 activity Oncogene [31]

CDH1 Aurora A D-box
(RxxLxxxxN)
or
KEN-box
(KENxxxN)

Regulation of mitosis progression Oncogene [147]

CDC20 Activator of APC/C complex Oncogenic [91]

PLK1 Regulation of mitosis progression Oncogene [148]

SKP2 Substrate recognition component of SCF E3 ligase Oncogene [45, 46]

FOXM1 Transcription factor involved in DNA replication and mitosis Oncogene [149]

SCF SKP2 p21/p27/p57 N/A CDK inhibitor Tumor suppressor [50–52]

p130 Transcription factor regulating cell cycle entry Tumor suppressor [111]

CDT1 Regulator of DNA replication and mitosis Oncogenic [112]

FBXW7 MYC S/TPPxS/T Transcription factor Oncogene [115]

Cyclin E CDK2 activation and G1/S transition Oncogenic [97, 98]

JUN Transcription factor Oncogene [150]

βTrCP FOXO3 DSGxxS/T Transcription factor Tumor suppressor [119]

WEE1 CDK1 inhibition Oncogenic [75]

CDC25A CDK1 activation Oncogenic [78, 82]

EMI1 Regulator of APC activity Oncogenic [77, 79]

Cyclin F SLBP CY motif Histone pre-mRNA processing Not defined [57]

RRM2 Catalyzes the biosynthesis of deoxyribonucleotides Oncogene [58]

CP110 Necessary for centrosome duplication Not defined [59]
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Conclusion and perspective

In the present review, we mainly summarized the proteo-
lytic signals involved in the cell cycle control. Moreover,
non-proteolytic ubiquitination of the cell cycle regulators
also plays crucial roles in controlling cell cycle progression.
For example, the endoplasmic reticulum lipid associated
protein 2 was found to interact and facilitate K63-linked
ubiquitination and stabilization of Cyclin B1, facilitating
mitosis exit [121]. Di-ubiquitination of the minichromo-
some maintenance protein 10 is required for its interaction
with PCNA to facilitate DNA elongation in S phase [122].
Although accumulating evidence supporting critical roles of
non-proteolytic ubiquitin signals in regulating cell cycle
progression, unlike the functions of proteolytic ubiquitin
signals which have been studied extensively, relatively little
is known regarding the roles and mechanisms underlying
cell cycle control that go beyond proteasomal degradation.
In addition, it is well characterized that ubiquitination is a
reversible process as the ubiquitin can be removed from the
modified proteins by an array of deubiquitinating enzymes
(DUBs) [123]. Of note, DUBs have been found to play
critical roles in regulation of mitosis [124], and small
molecular inhibitors against DUBs are expected to offer
novel therapeutic opportunities for cancer treatment [125].
However, the roles and substrates of DUBs in regulating
cell cycle events remain not well understood. In particular,
how is the balance of ubiquitination–deubiquitination
achieved to ensure accurate cell cycle progression remains
elusive and needs additional in-depth investigations.

With respect to the well-established APC/C E3 ligase
complex, activation of CDC20 is required for anaphase
onset, while CDH1 plays a central role in mediating mitosis
exit and G1 maintenance. The ordered activation of CDC20
and CDH1 is essential for accurate mitosis progression.
Mitotic phosphorylation of APC/C relieves its auto-
inhibition and facilitates CDC20 engagement [33, 34],
while BUB1-mediated phosphorylation of CDC20 upon
spindle checkpoint activation inhibits the ubiquitin ligase
activity of APCCDC20, ensuring the fidelity of chromosome
segregation [126]. Although the protein stability of CDH1
has been reported to be modulated by βTrCP and Cyclin F
[73, 74], regulation of CDH1 E3 ligase activity is not well
known yet. A previous study has shown that there are
19 serine and threonine residues on CDH1 that can be
phosphorylated by multi-kinases in vivo, indicating that the
phosphoregulation of CDH1 is much more complex [127].
Another intriguing phenomenon is about the timing of
degradation of proteins controlled by the same substrate
adapters. We know that CDC20 functions as an upstream
adapter protein for Cyclin A, Cyclin B, and Securin, med-
iating their ubiquitination and proteasomal degradation
during mitosis. Interestingly, degradation of Cyclin A

proceeds before that of Cyclin B and Securin, which is
governed by the presence of spindle checkpoint signaling
[128]. However, the detailed mechanisms underlying the
spindle checkpoint imposed various E3 ligase activities of
CDC20 toward different substrates need to be further
investigated.

Overall, the cell cycle progression is tightly regulated to
ensure the genomic integrity and identity in daughter cells,
and ubiquitin signaling involves almost each step of the cell
cycle. Dysregulation of the ubiquitination modification led
to uncontrolled cell cycle progression and eventually
resulted in tumorigenesis [18]. Based upon this notion,
targeting the ubiquitin system has provided effective ther-
apeutic strategies for cancer treatment [129–146]. At the
moment, how these signaling events are integrated and
orchestrated in a time–space-dependent manner remains not
fully understood. In addition, only a handful of drugs tar-
geting the ubiquitin system have been approved by the
FDA. Therefore, a better understanding of the ubiquitin
signaling in cell cycle control will expand and diversify the
range of anticancer strategies and benefit the clinical treat-
ment of cancer patients in the future.
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