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Abstract
Necroinflammation is defined as the inflammatory response to necrotic cell death. Different necrotic cell death pathways
exhibit different immune reponses, despite a comparable level of intracellular content release (referred to as damage
associated molecular patterns or DAMPs). In addition to DAMP release, which is inevitably associated with necrotic cell
death, the active production of pro/anti-inflammatory cytokines characterizes certain necrotic pathways. Necroptosis,
ferroptosis and pyroptosis, therefore, are immunogenic to a different extent. In this review, we discuss the clinical relevance
of necroinflammation highlighting potential human serum markers. We focus on the role of the adrenal glands and the lungs
as central organs affected by systemic and/or local DAMP release and underline their role in intensive care medicine. In
addition, data from models of acute kidney injury (AKI) and kidney transplantation have significantly shaped the field of
necroinflammation and may be helpful for the understanding of the potential role of dialysis and plasma exchange to treat
ongoing necroinflammation upon intensive care unit (ICU) conditions. In conclusion, we are only beginning to understand
the importance of necroinflammation in diseases and transplantation, including xenotransplantation. However, given the
existing efforts to develop inhibitors of necrotic cell death (ferrostatins, necrostatins, etc), we consider it likely that
interference with necroinflammation reaches clinical routine in the near future.

Facts

● Plasma membrane rupture causes the release of
intracellular content, the immune response to which is
referred to as necroinflammation

● Distinct modes of cell death are associated with specific
patterns of necroinflammation

● Inhibition of Regulated Necrosis (RN), such as necrop-
tosis, pyroptosis, ferroptosis, not only preserves cellular
function, but also prevents necroinflammation

● Necroinflammation drives the pathophysiology of auto-
immunity, ischemic injury, sepsis, acute respiratory
distress syndrome (ARDS) and many other diseases

● Antibody-mediated rejection of solid organ allografts
may be a consequence of necroinflammation

● The adrenal gland and the lungs are central organs
affected by necroinflammation

Open questions

● How is necroinflammation detected in clinical routine?
● What is the relative contribution of different RN modes

(necroptosis, pyroptosis, ferroptosis) to overall organ
damage in distinct diseases?

● Which combination therapy of necrostatin, inflamma-
some inhibitors, ferrostatins, etc. best prevents necroin-
flammation in different setting?
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● How can the adrenal gland and the lungs be protected
during systemic necroinflammation?

Introduction to the immunogenicity of
regulated cell death pathways

Apoptosis, necroptosis and pyroptosis are tightly inter-
connected cell death pathways, all of which are mediated or
prevented by caspase activation. In contrast to the perox-
idation/autoxidation-controlled ferroptotic cell death sys-
tem, we therefore refer to apoptosis, necroptosis and
pyroptosis as the “caspase-controlled” cell death system
(Fig. 1). Hardly anything is known about interconnections
between these two major cell death modalities. Those
pathways that result in necrosis (defined by the irreversible
loss of plasma membrane integrity) release damage asso-
ciated molecular patterns (DAMPs), which were recently
classified into seven classes (Table 1) [1]. This is not the
case during apoptosis which is not associated with plasma
membrane rupture. For further details, we kindly refer the
reader to a recently published comprehensive review on
DAMPs [1].

The caspase-controlled cell death system

Apoptosis

With more than 10 billion cells dying by apoptosis each
day, it represents the default pathway of regulated cell death
(RCD) [2]. Unfortunately, RCD is still used synonymously
with apoptosis. This nomenclature is clearly incorrect
because signaling pathways of necrosis are regulated as
well, and in fact regulate apoptosis signaling [3]. Caspases,
the main mediators of apoptosis, also mediate pyroptosis
[4, 5] (see below) and, in the case of caspase-8, inhibit
necroptotic signaling [6, 7]. This demonstrates the inter-
connectivity of apoptosis, necroptosis and pyroptosis.
However, the caspase system has not been demonstrated to
affect ferroptotic signaling that appears to be independent of
the caspase system. Fig. 1 provides a simplified overview
about the interconnectivity of these four RCD-pathways,
categorized into the ferroptosis system and the caspase
system. Importantly, apoptosis occurs in most all physio-
logical conditions in which systemic inflammation as a
consequence of cellular turnover would be disadvantageous.
We therefore consider apoptosis the least immunogenic
form of RCD.

Necroptosis

Our knowledge about the signaling pathway of necroptosis
has recently been summarized in several excellent reviews

in detail [3, 8–19]. Undoubtedly, the (pseudo)kinases in the
necroptosis pathway (mixed lineage kinase domain like
MLKL, RIPK1 and RIPK3) represent excellent therapeutic
targets [20–22]. With the details of the necroptosis signaling
cascade in mind, we like to emphasize that it still remains
unclear how the plasma membrane loses its integrity during
necroptosis. While phosphorylation of MLKL is required
for necroptosis [23, 24], data are accumulating that it is not
sufficient [25–27]. The only known kinase capable of
phosphorylating MLKL is RIPK3 following oligomeriza-
tion and assembly of the necrosome, a higher order structure
the assembly of which is prevented by the RHIM domain of
RIPK1 [28, 29]. Caspase-8 controls necroptosis signaling
and effectively prevents it, at least in mice that (unlike
humans) do not express caspase-10. The role of caspase-10
in humans in this sense is incompletely investigated.
However, the reversal of the lethal phenotype of caspase-8
deficient mice on a RIPK3-[6, 7] or MLKL-deficient
[30] background clearly demonstrates that necroptosis is
part of the caspase-controlled cell death system (Fig. 1). In
addition to caspases, however, polyubiquitination and
other means of posttranslational modification regulate
RIPK1-dependent necroptosis at least downstream of
TNFR1 signalling. The details of RIPK1 polyubiquitin
modifications by linear and/or K63 linkages are beyond the
scope of this review and have been reviewed in detail
elsewhere [13, 31, 32].

It has been reported that active production of cytokines
occurs during necroptosis progression (see below), but the
precise mechanisms are incompletely understood. However,
prevention of necroptosis signaling by necrostatins should
prevent the release of immune modifying cytokines, but it
remains unclear if necrostatins affect CD8+ T cell cross
priming by dendritic cells [33].

Pyroptosis

The activation of inflammatory caspases (caspase-1 and
caspase-4/5 (caspase-11 in mice)) results in the cleavage of
critical proinflammatory proteins and cell death by pyr-
optosis [4, 5, 34, 35]. Maturation of pro-IL-1β and pro-IL-
18 to their active forms is mediated by caspase-mediated
cleavage. In addition, the intracellular protein gasdermin D
(GSDMD) is cleaved by caspase-11, thereby releasing the
N-terminal fragment (GSDMD-NT), which may oligomer-
ize and form a membrane pore that may allow the release of
IL-1β and IL-18 into the extracellular space [36]. It is
unclear to which extent this pore formation may be transient
or associated with the necrotic cell death of pyroptosis, but
the GSDMD-NT fragment is absolutely required for pyr-
optosis execution [37, 38]. It is beyond the scope of this
review to list the upstream inflammasomal components that
trigger pyroptosis in various scenarios, but it should be
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mentioned that caspase-8 can result in similar maturation of
proinflammatory cytokines upon genetic interference with
caspase-1. Along these lines, it has been reported that
RIPK3 [39–41] and MLKL [42] can function as upstream
regulators of inflammasome assembly and pyroptosis sig-
naling.This highlights why pyroptosis is a part of the
caspase-controlled cell death system (Fig. 1).

In humans, the gasdermins are a family of at least six
members: GSDMA, GSDMB, GSDMC, GSDMD, GSDME
(also known as DFNA5 [43]) and DFNB59 (also referred to
as pejvakin). Similar pore forming functions and involve-
ment in necrotic cell death may be anticipated for the other
members. Interestingly, caspase-3 was demonstrated to be
capable of inducing necrotic cell death through GSDME

Fig. 1 An overview of the pathways of regulated cell death. In general,
two systems may be best differentiated when regulated cell death is
considered. The caspase-controlled system includes apoptosis,
necroptosis and pyroptosis, and has been studied in great detail over
the last decades. In contrast, the peroxidation-controlled system of
ferroptotic cell death functions entirely independent of the caspase-
controlled network. Importantly, both systems contribute to human
diseases. Targeting clinically relevant cell death, therefore, should at

least require a combination therapy of these two systems that may
exhibit some redundant functions. Similarly, within the caspase-
controlled system, inhibition of either pathway may result in alter-
native pathways. With the idea of necroinflammation in mind, it may
be helpful to shift a deadly signal from a highly immunogenic pathway
(such as pyroptosis) towards a pathway with less immunogenic
potency (such as apoptosis)

Table 1 Classification of DAMPs as drivers of necroinflammation—According to Sarhan et al. [1]

Classes of DAMPs Categories of cognate recognition receptors/sensors

Class Ia DAMPs sensed via binding to “classical” recognition receptors (= PRRs such as TLRs, RLRs) on/in innate immune cells such as
phagocytes incl. DCs, thereby triggering signaling pathways

Class Ib DAMPs recognized by “non-classical” recognition receptors such as the scavenger receptor CD91 and the purinergic receptors P2X7
thereby contributing to phagocytes incl. DCs activation

Class II DAMPs sensed by NLRP3 receptor to form assembly of the NLRP3 inflammasome contributing to phagocytes incl. DC activation

Class III DAMPs recognized by the activating NKG2D receptor, e.g., on NK cells thereby contributing to NK cell activation

Class IV DAMPs recognized by binding to pre-existing natural IgM antibodies to activate the complement cascade thereby contributing to
inflammation

Class V DAMPs dyshomeostasis-associated molecular patterns (such as accumulation of unfolded proteins in the ER; intracellular ion
perturbations, hypoxia, redox imbalance; etc). sensed by sensors of the UPR (e.g., PERK) or sensed by NLRP3 receptor
thereby contributing to inflammation and DC activation.

Class VI DAMPs recognized by the “non-classical” recognition receptor GPR91 thereby promoting inflammation

Class VII DAMPs sensed by nociceptors such as TRPA1 channels and TRPV1

CD cluster of differentiation, DAMPs damage-associated molecular patterns, DCs dendritic cells, IgM immunoglobulin M, NK natural killer,
NKG2D natural killer group 2 member D, NLRP3 NLR family, pyrin domain-containing protein 3, PERK the protein kinase R (PKR)-like
endoplasmic reticulum kinase, PRRs pattern recognition receptors, P2X7 purinergic receptor P2X7, RLRs retinoic acid–inducible gene (RIG)-
I–like receptors, TLR toll-like receptor, TRPA1 transient receptor potential cation channel subfamily A member 1, TRPV1 transient receptor
potential vanilloid subtype 1, UPR unfolded protein response
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[43]. Activation of caspase-3, therefore, can no longer be
considered to detect apoptotic cell death.

Due to its highly immunogenic nature, pyroptosis
appears to be involved in a plethora of pathological settings
(see below). This is highlighted by the clinical use of the
recombinant human IL-1R antagonist anakinra and the anti-
IL-1β-antibody canakimumab. However, with an increase in
understanding of the upstream nature of the pyroptosis
pathway, a therapeutic approach that targets inflammasomes
directly should be favorable. Prevention of caspase activity
specific for pyroptosis without interference with apoptosis
(compare Fig. 1) may represent a useful approach to avoid
proinflammatory cytokine maturation. In summary, pyr-
optosis may be considered the most proinflammatory and
therefore the prototype of immunogenic cell death as the
release of the long lasting, highly proinflammatory cyto-
kines IL-1β and IL-18 is associated with this form of death.

The lipid peroxidation/autoxation-controlled
necrosis system

Ferroptosis

In contrast to the caspase-controlled system, ferroptosis
prototypically represents the peroxidation-controlled system
(Fig. 1) of RCD [44]. Ferroptosis has been recently
reviewed in detail [44]. Briefly, the system of ferroptosis
was discovered by screening for lethal compounds that
induced cell death in tumor cell lines. The small molecule
erastin was demonstrated to be effective in killing RAS-
transformed cancer cells in vitro [45]. Mechanistically,
Erastin inhibits system Xc, a cystin-glutamate antiporter,
thereby reducing the source to generate intracellular glu-
tathione (GSH), the loss of which was lethal to cells in an
iron-dependent manner [46, 47]. GSH or other cysteine-
derived thiols were demonstrated to be required for the
GSH peroxidase 4 (GPX4) to prevent ferroptosis and lipid
peroxidation of defined phosphatidylethanolamine (PE)
residues. Genetic depletion of GPX4 in renal tubules or
kidney ischemic injury results in ferroptosis and acute
kidney injury (AKI) in mice [48, 49]. Remarkably, GPX4 is
a selenocysteine-containing protein, explaining the
requirement for nutritional uptake of selenium for normal
physiology, the deficiency of which results in epileptic
seizures [50]. Specific poly-unsaturated fatty acids (PUFAs)
are more prone to peroxidation than others. Recently, the
lipoxygenase ALOX15 has been identified to regulate
sensitivity towards lipid peroxidation during ferroptosis
[48, 51, 52]. However, ALOX15 activation itself is not
sufficient to “activate” membrane bound PUFAs to execute
cell death, but requires to be transactivated upon binding
to PEBP1 [53, 54]. New data, however, indicate that
besides lipoxygenase (LOX)-mediated peroxidation,

LOX-independent autoxation may be more important for
the death process itself [55, 56]. This is crucial to distin-
guish when lipoxygenases are discussed as potential ther-
apeutic targets. Despite these new insights, mechanisms of
cell death execution and plasma membrane rupture down-
stream of lipid peroxidation remain unknown. However,
cells undergoing ferroptosis deplete NADPH in a lipid
peroxidation dependent manner [57, 58].

Therapeutically, several inhibitors of ferroptosis have
been reported, such as ferrostatin-1, liproxstatin-1, 11-92
and 16-86 [21, 48, 59, 60]) most of which prevent lipid
peroxidation [61]. In contrast, ferroptosis inducers (FINs)
have been separated in two classes of drugs. Type 1 FINs
function through the depletion of GSH (e.g., erastin)
whereas type 2 FINs directly target the active center of
GPX4 (e.g., RSL3 [62]). A novel mechanism was reported
for FINO2, an endoperoxide-containing 1,2-dioxolane that
indirectly inhibits GPX4 enzymatic function and directly
oxidizes iron [63]. The newly described class 3 inducers,
mainly FIN56 [64], work through depletion of CoQ10 and
GPX4, instead of inhibiting GPX4 activity.

Regarding its immunogenicity, ferroptosis has been
hardly investigated at all. Therefore, we do not have good
reason to believe that ferroptosis modulates the immune
system in either way unless data will be provided. Oxidized
lipids, however, may be proinflammatory also during fer-
roptotic cell death through the establishment of neoepitopes.
In the hierarchial model (Fig. 2), we currently rank fer-
roptosis less immunogenic than pyroptosis, but less anti-
inflammatory than necroptosis.

Clinically relevant necroinflammation

Markers of systemic inflammation in humans

White blood counts have been traditionally used as surro-
gate markers of inflammation in general, and despite the
decades of clinical experience with this marker, the last 30
years have brought up a series of proinflammatory cyto-
kines and acute phase proteins that are most commonly used
in every day clinical routine. Some of these may be upre-
gulated because of necroinflammation. In the following
paragraphs, we revisit our knowledge about classical mar-
kers of inflammation and other pathophysiological instances
as potentially useful tools for the assessment of
necroinflammation.

C-reactive protein is an acute phase protein that is
expressed predominantly upon IL-6/IL6Rα-
STAT3 signaling in hepatocytes. IL-6 is less commonly
measured directly because of its relatively short half life.
However, with IL-6 representing a proinflammatory signal
downstream in the NF-kB pathway, it is commonly
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expressed downstream of TNFR1- and/or Toll-like (TLR)
receptor signaling and might be actively produced during
necroptosis depending on the cell culture or the tissue [65].
Because TNFR1 and TLR that signal through the RHIM-
domain containing protein TRIF are default necroptosis
receptors, IL-6 and CRP may be useful markers for
necroinflammation, but certainly useful for TNF and TLR-
driven diseases.

IL-1β and IL-18 can be easily determined in human sera,
but at least in the case of IL-18 it would be overexaggerated
to consider this cytokine a standard marker for inflammation.
However, its relatively high specificity for pyroptosis/

gasdermin-mediated necrosis may change this view, at least
when clinical trials are considered. In this respect, some
brilliant studies have already looked at IL-18 in preclinical
sepsis models [66] which are now translated to clinical trials.
Along these lines, it is remarkable that GSDMD-deficient
mice are resistant to LPS-induced lethal shock [67].

IL-33 and CXCL1 are not routinely measured to evaluate
inflammatory responses in humans, and data about the
therapeutic potential of either IL-33 interference or appli-
cation of IL-33 as a therapeutically active recombinant
protein are controversial. When IL-33 was first suggested as
the “necroptotic DAMP” [68], distinction to pyroptosis

Fig. 2 Necroinflammation mediated by nonspecific DAMPs and
additional specific factors—a hierarchical model. Necrotic cell death
by definition results in plasma membrane rupture. This feature is
common to all pathways of regulated necrosis (RN) and accidental
necrosis. DAMPs and intracellular organelles are released during
necrosis and the immune system may establish first contacts with these
intracellular features. In addition, during the time necessary to undergo
specific RN signals, certain RN-specific factors are activated. In this
sense, during necroptosis, CXCL1 may inhibit infiltrating NK cells
and IL-33 may signal to stabilize regulatory T cells through ST2

receptors, respectively. In contrast to these anti-inflammatory com-
ponents, pyroptosis is associated with the production/maturation and
the gasdermin D-dependent release of IL-1b and IL-18, long lasting
cytokines that increase the setpoint for body temperature and thereby
induce fever. Hardly anything is known about the immunogenicity of
ferroptotic cell death. Given these specific immunomodulatory fea-
tures, necrosis does not always result in stereotype activation of the
immune system. However, DAMP release per se is immunogenic and
may be sufficient to induce dendritic cell cross priming. Importantly,
DAMPs are not released during apoptosis
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signaling has not been taken into consideration. In the case
of CXCL1, published as a selective necroptosis-mediated
chemokine that might signal through the mincle ligand,
consequences for necroinflammation may be hard to predict
from the published data [69]. However, accumulating evi-
dence strongly suggests that necroptosis has anti-
inflammatory properties [70] that may limit the DAMP-
induced immune response to a local environment. This may
at least be partially explained through IL-33-ST2 signalling
that may stabilize Tregs in the microenvironment of tumors
and/or the necroptotically dying cells [71]. Importantly,
both pro- and anti-inflammatory properties have been
reported for CXCL1, and it is not entirely clear how pre-
cisely CXCL1 functions in a post-sihemic scenario.

Potassium

Potassium is an important electrolyte, which is mostly
located intracellularly. However, if cells loose membrane
integrity, large amounts of intracellular potassium are
released, promoting extracellular and thus systemic acido-
sis. Upon renal failure, hyperkalemia may cause detrimental
cardiac arrhythmias. Rather than being a suitable marker for
necroinflammation, serum potassium may be valuable as an
additive non-specific damage marker in patients with
chronic renal failure. Importantly, a potassium-dependent
inward-rectifying current was interpreted as a priming sig-
nal for inflammasomes, but precise mechanisms remain
unclear today [72]. This confirms a role of extracellular
potassium in the context of regulated necrosis.

Anti-nuclear antibodies (ANA) / ds-DNA

ANAs are markers of a variety of autoimmune diseases. In
contrast to anti-neutrophil cytoplasmic antibodies (ANCAs)
(see below), they constitute an epiphenomenon and are not
causative of the autoimmune disease. Double-stranded
DNA-(dsDNA) autoantibodies have been described to be
more specific, but both ANAs and dsDNA antibodies are
recognized diagnostic criteria for systemic lupus erythe-
mathosus (SLE). Other diseases associated with ANAs are
Crohn´s disease and rheumatoid/mixed-tissue diseases. Due
to their frequent use in clinical routine, ANAs and dsDNA
antibodies are a good example for the potential of bio-
markers for necroinflammation. In theory, necrosis is the
sole possible form of cell death that allows generation of
autoantibodies with intracellular epitopes. Along similar
lines, it was recently demonstrated that impaired effer-
ocytosis (the phagocytic uptake of necrotic debris from
tissues) by mononuclear cells results in autoimmunity in
mice. As one example, the loss of the protein rubicon results

in the dysfunction of LC3-associated phagocytosis (also
referred to as non-canonical autophagy or LAP). Conse-
quently, rubicon-deficient mice exhibit a lupus-like pheno-
type that is associated with ANAs and dsDNA antibody
formation [73].

Lactate dehydrogenase (LDH)

Some infectious diseases of the lung, e.g., Pneumocystis
jirovecii (former Pneumocystis carinii) infections typically
are associated with an increase in serum lactate dehy-
drogenase levels [74]. This may well represent a form of
necroinflammation as these fungi may be cleared from the
infected lung cells by necrosis, although secondary necrosis
following apoptotic clearing might as well result in LDH
release. Therefore, sole measurement of LDH levels is not
sufficient to detect necrosis. Whereas this may cause a
specific signal, trauma and intoxications are also associated
with increased serum LDH levels. However, in the latter
cases, therapeutic intervention may be virtually impossible
unless a continuous pathophysiological process underlies
the increase of serum LDH levels.

Specific clinical situations

It is impossible to list all clinically important conditions that
may involve necroinflammation. We subjectively selected
those that appeared to be of outstanding importance in our
point of view, some of which are discussed in the following
paragraphs, others are listed in Table 2. Obviously, the
investigation of necroinflammation requires future studies
in the fields of basic research and clinical trials.

Focus 1:Necroinflammation in the adrenal gland

The clinical importance of cell death in the adrenal
gland During shock, the systolic blood pressure drops
below the heart rate (positive shock index). The blood
pressure is controlled by several factors, including cate-
cholamines, aldosterone, glucocorticoids and others. Epi-
nephrine and norepinephrine, the major catecholamines for
the maintainance of the blood pressure, are produced in the
medulla of the adrenal gland (glandulasuprarenalis).
Aldosteron and glucocorticoids are produced in the cortex
(zona glomerulosa and zona fasciculata, respectively) [75].
Therefore, the adrenal gland is the epicenter of hormone-

mediated blood pressure regulation during sepsis and shock
[76]. Necrotic damage in adrenal gland cells has dramatic
consequences to all vital signs and is therefore most
recognized not only by endocrinologists, but in intensive
care medicine (see below). The capillary network within
the adrenal gland is depicted in (Fig. 3). Importantly, the
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adrenal medulla receives blood from two different sources.
While sinusoids spanning the entire cortex confluent in the

medullary plexus, medullary arteries from a subcapsular
reservoir pass the cortex without branching to directly enter
the adrenal medulla. DAMPs released from cortical adrenal
gland cells, therefore, directly affect the medullary micro-
environment without passing the capillary network in the
lungs. In addition, circulating DAMPs that originate from
damage in distant organs, also reach the adrenal medulla
without previous dilution in the cortex. The adrenal gland
may therefore be recognized as a primarily susceptible
organ to affection by necroinflammation. Given the
importance of the hormone producing cells for blood
pressure regulation in the organism, dysfunction of such
cells may have fatal consequences. We therefore decided to
put the adrenal gland into the focus on this review on the
clinical relevance of necroinflammation. This notion is
additionally supported by the striking correlation between
fatal murine sepsis and adrenal gland (necro-)inflammation
[77]. In addition, cell death in the adrenal is of clinical
importance during the development of adrenal insufficiency
[78] and during aging (adrenopause).
Currently, data available on cell death in the adrenal gland

are limited and the most reliable publications date back to
the days before regulated necrosis was described [79].
Whereas it is clear that TLRs are involved in an adequate
response of the adrenal gland to stress [80], the role of TRIF
and other RHIM-domain containing proteins, and the entire
signaling pathway of necroptosis have not been investi-
gated. Some data suggested apoptosis to occur during
sepsis, but these conclusions were based on TUNEL
positivity and not on the direct in situ detection of cleaved
caspases or even caspase activity. Recent data from adrenal
tumors suggested at least a partial role for apoptosis and
caspase activation was reported to be controlled by the

Table 2 Clinically relevant settings associated with necroinflammationa

Clinically relevant setting Necroinflammatory response

Acute respiratory distress syndrome
(ARDS)

Necrotic debris from any trauma, following the blood flow, accumulates in the pulmonary capillaries.
This may trigger necroinflammation, ferroptosis and necroptosis to result in ARDS [132–135].

Solid organ transplantation Necrotic debris derived from transplanted organs that contain necrotic parenchymal or endothelial cells
was demonstrated to induce necrotic cell death in the lungs [88, 136].

Extracorporal circulation and dialysis Mechanical necrosis of blood cells occurs during extracorporal treatments such as dialysis, plasma
exchange, etc.. This may drive necroinflammation [128, 137].

Trauma / surgery Trauma-associated, sterile inflammation represents a prototype model for necroinflammation [138–
141].

Infections diseases, SIRS and Sepsis Several pathways of regulated necrosis contribute to the pathogenesis of SIRS and sepsis. This has
been demonstrated for necroptosis [112, 118, 142–147] and pyroptosis [148–151].

Intoxications Diverse necrosis-inducing toxins trigger necroinflammation [152–154], as first assessed in vivo 100
years ago [155]. Data for an involvement of pyroptosis exist [156].

Ischemia Sterile inflammation following ischemic injury is at least partially driven by necrosis and DAMP
release [157–161].

aIt is imporssible to mention all clinically relevant situations that involve necroinflammation. The given clinically relevant settings were selected on
an entirely subjective opinion of the authors

Fig. 3 Anatomic basis of necroinflammation in the adrenal glands. The
adrenal gland blood flow is regulated in a highly controlled manner
during physiological conditions and during adrenal stress, such as
sepsis and the acute drop of blood pressure. Importantly, the adrenal
medulla, the major production site of catecholamines that maintain
blood pressure, is supplied by two different sources of areterial blood.
A significant fraction of the arterial blood directly reaches the medulla
without previous flowthrough of the cortical parenchymal compart-
ment. During DAMP release from either distant organs or the cortical
adrenal cells of the zona reticularis, fasciculata and glomerulosa,
respectively, the adrenal medulla is the first site of contact, similar to
the lungs in systemic vasculature. The adrenal gland, therefore, should
be considered a major organ responsible for complications upon dis-
eases that involve necroinflammation
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BIRC7 system [81]. A role for p53 was suggested also in
adrenocortical carcinomas [82], but ferroptosis has not been
discussed. Adrenal cell derived cell lines are also limited.
H295T, a human adrenocortical carcinoma cell line, has
been analyzed without great detail. In summary, data on cell
death and necroinflammation are limited, but given the
clinical importance of this system during intensive care
conditions, we predict that novel data on the role of
regulated necrosis pathways will significantly forward this
field and advice to focus on the adrenal gland if
necroinflammation is planned to be investigated. Joining
forces of endocrinologists and cell death researchers to
unravel the mechanisms of necrosis in the adrenal glands
will allow directing protective agents (necrostatins, ferros-
tatins) to these well-perfused organs with potentially great
benefit for critically ill patients.

Focus 2: AKI and its therapy

Accumulating data generated from in vivo and ex vivo
models of AKI have contributed to our understanding of
necroinflammation in vivo, rendering the kidney probably
the best investigated organ for necroinflammation [83, 84].
Distant organ effects following AKI have first been
described by the group of Hamid Rabb [85–87]. Later, these
data obtained from AKI have been confirmed during kidney
transplantation models [88], and the need to prevent regu-
lated necrosis in AKI was widely recognized [89]. In recent
years, the importance of synchronized regulated necrosis
mediated by ferroptosis in renal tubular cell death has been
discovered [49]. Given the strong necroinflammatory
potency of the kidney and the dominance of ferroptosis over
other RN pathways [48, 59] in the renal tissue, the
necroinflammatory nature of ferroptosis may be best esti-
mated from these models.

Interference with RN and associated necroinflammation
has been investigated employing inhibitors of necroptosis
[90] and ferroptosis [49, 91]. The third generation ferros-
tatin 16–86 still remains the strongest single compound for
the prevention of AKI induced by ischemia-reperfusion
injury [49]. However, in the case of folic acid induced
nephropathy, the data are less clear. While it was first
believed that necroptosis was of minor importance in this
setting [92], both ferroptosis and necroptosis, depending on
the timing of the interference, may be important [93]. This
may reflect the independent features of regulated necrosis as
a primary damage and a second wave of renal failure
associated with immune cell infiltration (necroinflamma-
tion) [93].

Another example of AKI associated necroinflammation
is ANCA-associated vasculitis. In this disease, endothelial
cells undergo unknown necrotic damage following the
release of neutrophil extracellular traps (NETs), the release

of which depends on MLKL and is sensitive to necrostatins
treatment in mice and humans [94]. Disease progression
classically involves systemic inflammation markers (such as
CRP and others [95]) and severe fatigue, suggesting a
necroinflammatory component in this disorder.

Extracorporal circulation and dialysis Extracorporal cir-
culation such as hemodialysis, hemodiafiltration, plasma
exchange and extracorporal membrane oxygenation ([96])
are known to be associated with increased levels of
inflammatory markers [97, 98]. The origin of this inflam-
mation has been anecdotally associated with contact of
blood cells with the surface of the filters used during
extracorporal circulation, which were therefore referred to
as “biocompatible” and were speculated to have been pro-
moted the postdialysis fatigue [99]. Some features of these
methods, however, may be better explained by necroin-
flammation. If such cells are mechanically damaged to
release DAMPs, however, therapeutic interference with a
defined cell death pathway would become impossible.
Connection to any extracorporal circulation device also

affects the intravasal volume, explaining hypotension as a
frequent clinical problem. On the basis of this low intravasal
volume, additional factors, such as myocardial infarction,
vascular leakage syndromes (such as severe inflammatory
response syndrome (SIRS) or sepsis, could be detrimental.
In the case of low blood pressure on ICUs, continuous
veno-venous hemofiltration may be used instead of classical
hemodialysis to maintain filtration upon low blood pressure,
but such systems require anticoagulation, e.g., with citrate.
Higher citrate concentrations affect the blood pH levels and
thereby indirectly influence the serum potassium concentra-
tion. Obviously, this affects pyroptosis and limits the use of
serum postassium as a damage marker. Potassium, however,
follows a high filtration coefficient which allows to
relatively easily maintain the serum potassium
concentration.

Focus 3: Intensive care medicine—Necrosis on the ICU

Inflammation following trauma and acute respiratory
distress syndrome (ARDS) ARDS is a consequence of
severe trauma, and a classical example of necroinflamma-
tion as the pathophysiological basis of disease [100]. Pyr-
optosis and necroptosis, and the entire caspase-controlled
cell death system may be involved in the pathogenesis.
Along these lines, especially the death of alveolar macro-
phages may drive the disease [101]. However, inflammatory
processes during major trauma and ARDS are by no means
limited to necroinflammation, but also include activation of
NF-kB and other proinflammatory signatures that are likely
to be independent of necrosis [102]. Therefore, given the
lack of specific markers for necroinflammation, it is difficult
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to differentiate the source of inflammation in these complex
patients. Pathophysiologically, ARDS is thought to be
mediated by DAMPs that are released from the default
traumatic region, as long as the draining veins follow the
bood stream into the lung capillaries (referred to as remote
organ injury [103]). Clinically, ARDS is characterized by
pulmonary (alveolar) edema resulting in compromised gas
exchange and systemic hypoxia. High pressure mechanical
ventilation is often required, possibly resulting in even more
cellular damage if dosed unappropriately. Neutrophils are
centrally involved in the pathogenesis [104], potentially
releasing NETs and possibly undergoing NETosis. Some
reports suggested that NET release, as necroptosis, depends
on RIPK3 and pMLKL [94, 105]. Remarkbly, ARDS is
treated with high-dose steroids. Indeed, two studies found
glucocorticoids to reduce time at respiratory devices in
sepsis patients significantly [106, 107]. Interpreted in the
light of necroinflammation, these trials underline the need to
break through the necroinflammatory circuit in acute lung
injury.

Infectious diseases The best explanation for the evolu-
tionary conservation of several distinct signaling pathways
of regulated necrosis and RCD is based on the assumption
that microbes prevent apoptosis signaling and are therefore
cleared by alternative necrotic pathways [6, 18, 108–111].
Therefore, microbes might be less effectively cleared upon
therapeutic RN-blockade. We therefore demand caution
when therapeutic interference with necroptosis and other
RN-pathways is considered. So far, however, this concern
has not translated into a clinical problem in phase I and
phase II trials for necroptosis inhibitors / RIP1 kinase
inhibitors. Some weak necroptosis inhibitors, such as phe-
nytoin [112], have been applied to patients on a daily basis
for decades without a significant increase in the risk of
infectious diseases. Indeed, this may imply that chronic
diseases (e.g., neurodegenerative disorders [113, 114])
should also be treated with RN-Inhibitors. It is not the
intention of this review to refer to all bacteria, viruses,
parasites and fungi that control and/or hijack RN patwhays,
but excellent reviews on these topics exist. With respect to
the adrenal, however, the Waterhouse-Friedrichsen syn-
drome causes acute adrenal insufficiency and severe
bleeding within the adrenal gland upon infection with
meningococci [115] and other bacteria. It is associated with
high mortality and its pathophysiology remains entirely
elusive.

Ischemia-reperfusion injury (IRI) In several clinical set-
tings, necrosis is a consequence of IRI. Whereas ferroptosis
appears to be the dominant cell death pathway in stroke,
kidney and liver [44, 48, 49, 59, 116, 117], necroptosis was
demonstrated to be of importance in the myocardial tissue

[118]. However, the role of ferroptosis has not been looked
at in detail in myocardial tissue upon ischemic challenge.
Oversimplification, however, will not solve tissue specifi-
cities and inter-organ variations that are characteristic of
IRI-induced regulated necrosis. Indeed, it is of outstanding
importance to characterize the relative contribution of
necroptosis, pyroptosis and ferroptosis, and potentially
other cell death pathways [3], in each of the specific
ischemic conditions.
In ST elevation myocardial infarction, recanalization of

coronary arteries is followed by IRI to the cardiomyocytes.
In this scenario, interference with necroptosis by application
of a necrostatin via the cardiac cathether appears easily
possible. Of course, the primary intention of such a
procedure is to preseve the function of the cardiomyocytes.
However, the sterile immune response to the necrotic tissue
named post-myocardial infarction syndrome, or “Dressler´s
syndrome”, may involve severe inflammation and pericar-
ditis [119]. Clearly, this rare pathophysiology involves
necroinflammation, but remains elusive why some patients
develop this condition whereas others with a similar load of
necrotic debris do not.
Other acute diseases and clinical conditions involve IRI,

such as resuscitation (IRI of the entire organism),
therapeutic lysis of thromboembolism, and potentially IRI
occurs upon the growth of solid cancers. In theory, these
conditions exhibit potentially important therapeutic targets
to prevent necroinflammation.

Toxicities Drug overdosage and intoxications are common
on ICUs and often involve necrotic injury, only few of
which can be effectively treated with plasma exchange
[120]. Commonly affected tissues include, but are not
limited to liver, heart, lungs, kidneys and bone marrow. In a
variety of preclinical experiments, the liver has been
demonstrated to undergo necroptotic cell death [121], but
controversial findings exist [122]. In particular models of
toxic AKI (e.g., folic acid induced AKI), at least two waves
of cell death appear to drive the pathophysiology. In this
sense, a role for Fn14 and TWEAK has been noticed for a
long time [123], but was connected to necroptosis-driven
necroinflammation only recently [93]. In addition, some
chemotherapeutic drugs may induce different cell death
modalities in different concentrations. In this sense, sor-
afenib can induce both necroptosis and ferroptosis, and
therefore differentially induce necroinflammation, upon
cancer treatment [124].

Focus 4: Transplantation medicine

Solid organ transplantation During the process of solid
organ transplantation, hypoxia may cause necrosis (in par-
ticular ferroptosis and necroptosis [125–127]). Upon
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contact with the transplant, naïve B cells of the recipient are
thought to be primed by necrotic parenchymal and endo-
thelial cells. Upon tapering of the immunosuppressive
regimen used in each specific setting, and in the context of
bacterial or viral infection, antibody-mediated rejection
(ABMR) of the graft may result years after the transplan-
tation process [128]. Additionally, necroptotic cells have
been demonstrated to exhibit strong T cell cross priming
properties [33]. Consequentely, therapeutic addition of
necrostatins and/or ferrostatins to the cold storage solution
during organ perfusion may represent a promising ther-
apeutic approach for the prevention of ABMR, especially in
the so-called marginal organs [129].

Xenotransplantation In addition to conventional solid
organ transplantation, the broad use of xenotransplantation
may well be limited by necroinflammation. It is beyond the
scope of this review to list all independent features of
rejection of a xenotransplant, but prevention of necroptosis
and ferroptosis appear to represent interesting approaches to
limit xenogenic immune responses. Additionally, following
the focus on the adrenal gland, xenotransplantation for
the treatment of adrenal insufficiency emerges [78]. This
appears to be possible through the transplantation of
bovine adrenal cells, encapsulated in alginate. This parti-
cular material allows diffusion of adrenal hormones
whereas immune cells cannot enter this artificial tissue, and
the xenotransplanted adrenal cells thus cannot be rejected
[130]. Recent data suggest that this approach is not limited
to single cell types [130] but may be employed to generate
a bioartificial adrenal cortex [131]. However, it is
currently unclear to which extent alginate may prevent
the necroinflammatory stimulus to enter the systemic
vasculature.

Conclusions and outlook

The most important unanswered questions with respect to
the novel concept of necroinflammation are summarized in
Box 1. In general, targeting necroinflammation rather than
regulated necrosis (necroptosis, pyroptosis, ferroptosis) may
be more applicable in clinical routine because the ther-
apeutic window to interfere with RN may be too narrow and
the cell death mode too hard to diagnose quickly enough to
apply RN-inhibitors. However, due to the lack of specific
markers of necroinflammation, the unknown systemic ori-
gin of necroinflammation and overlapping and inter-
connected RN and immune cell pathways, successful
therapeutic strategies may be decades away. However,
understanding necroinflammation as a disease-causing
condition is a major step towards translational medicine
and the generation of cell death therapeutics.
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Box 1: Open questions regarding the concept of necroinflammation

Does necroinflammation contribute to the pathogenesis of
autoimmunity?
Autoimmunity may develop as a consequence of necrotic cell
death (based on the concept of necroinflammation), but may be
predisposed by dysfunction of the removal of necrotic debris [73,
162]. This may explain the generation of autoantibodies (e.g., anti
dsDNA antibodies, ANAs) in patients that suffer from SLE. It is,
however, unclear why necrotic debris should accumulate in mice
that have functional apoptotic signaling and do not suffer from
obvious viral or bacterial infections. Clinically, it is tempting to
speculate that a flare in a patient with autoimmunity is triggered by
necrosis (e.g., necroptosis or pyroptosis) because viral and
bacterial infections are known triggers of autoimmunity, classically
preceeding the disease activity by 1–2 weeks.
What determines the intensity of a necroinflammatory response?
It may be to simple to hypothesize that a large number of necrotic
cells drive a more pronounced necroinflammatory response. At least
with respect to myocardial infarction or stroke, it remains unclear
why some patients suffer from inflammation following necrotic
injury (e.g., Dressler´s syndrome, see above) whereas others do not.
Why might necroptosis be less immunogenic than pyroptosis/
gasdermin-mediated necrosis?
During necroptosis, some reports indicated active maturation of
IL-33 [68] and CXCL1 [69]. These factors are widely believed to
limit an immune reponse by “stabilizing” regulatory T cells and
inhibiting infiltrating NK cells, respectively. In contrast, long
lasting cytokines such as IL-1β and IL-18, that are actively
matured and released during gasdermin-mediated necrosis, may
increase the setpoint for body temperature in the hypothalamus to
induce fever, may stimulate acute phase proteins in the liver and
are more likely to contribute to the development of a SIRS.
Inhibition of pyroptosis, therefore, may be a promising therapeutic
approach for SIRS patients.
How to best detect necroinflammation?
In contrast to direct detection of necroptosis in tissues (e.g., by a
pMLKL or a pRIPK3 antibody [25, 112], or by staining for ACSL4
as an indicator for ferroptosis sensitivity [163]), or potentially by a
cleavage specific GSDMD-antibody, no marker for necroinflamma-
tion has been established so far. Whereas high serum levels of IL-
18 and IL-1β detection may point towards pyroptosis-induced
necroinflammation, the detection of IL-33 and CXCL1 may be
more specific for necroptosis as an underlying cause. Non-specific
markers, such as LDH, troponin I or troponin T, NGAL, TIM-1
(also referred to as KIM-1) are useful to determine the source of
necroinflammation, but not the cell death mode. Only the detection
of the precise cell death mode would allow pharmacological
inhibition and successful targeting of necroinflammation.
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