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Abstract
The loss of lipid homeostasis can lead to lipid overload and is associated with a variety of disease states. However, little is
known as to how the disruption of lipid regulation or lipid overload affects cell survival. In this study we investigated how
excess diacylglycerol (DG), a cardinal metabolite suspected to mediate lipotoxicity, compromises the survival of yeast cells.
We reveal that increased DG achieved by either genetic manipulation or pharmacological administration of 1,2-dioctanoyl-
sn-glycerol (DOG) triggers necrotic cell death. The toxic effects of DG are linked to glucose metabolism and require a
functional Rim101 signaling cascade involving the Rim21-dependent sensing complex and the activation of a calpain-like
protease. The Rim101 cascade is an established pathway that triggers a transcriptional response to alkaline or lipid stress. We
propose that the Rim101 pathway senses DG-induced lipid perturbation and conducts a signaling response that either
facilitates cellular adaptation or triggers lipotoxic cell death. Using established models of lipotoxicity, i.e., high-fat diet in
Drosophila and palmitic acid administration in cultured human endothelial cells, we present evidence that the core
mechanism underlying this calpain-dependent lipotoxic cell death pathway is phylogenetically conserved.

Introduction

The maintenance of precise lipid compositions is crucial
to guarantee membrane integrity, proper signaling, and
trafficking. Most eukaryotic organelle membranes
consist of phosphatidylcholine (PC), phosphatidylethano-
lamine, phosphatidylserine, phosphatidylinositol, phos-
phatidic acid (PA), diacylglycerol (DG), sterols, and
sphingolipids. These lipids differ in their characteristics
regarding bilayer formation, curvature determination,

regulation of fission, and fusion processes, and membrane
protein embedding [1]. How cells regulate and maintain
the lipid composition of membranes is not yet fully
understood but is a crucial requirement to facilitate their
diverse functions.

Lipid overload can lead to cellular lipotoxicity,
which in higher eukaryotes can trigger tissue degeneration,
precipitating a number of diseases, including metabolic
syndrome, type II diabetes mellitus, cardiovascular dis-
orders, hepatosteatosis, and cancer [2, 3]. The lipid species
which are most relevant for lipotoxicity are under dis-
cussion, but most probably include free fatty acids (FFA),
ceramide, cholesterol, and DG [3–6]. Although evidence
for the lipotoxic nature of these lipids exists, the
exact mechanisms underlying lipotoxic cell death remain
unclear [7].

DG is a central intermediate in the synthesis of mem-
brane phospholipids and the storage lipid, triacylglycerol
(TG), and its cellular steady state levels are typically very
low. De-regulated DG levels, on the other hand, are sus-
pected to be involved in the development of insulin
resistance and diabetes [8], and its abundance correlates
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with the occurrence of non-alcoholic fatty liver disease,
including steatosis, steatohepatitis and cirrhosis [6]. An
inherent problem of these studies, however, is that the
regulation of DG takes place at multiple anabolic and
catabolic levels and in various subcellular compartments.
Given that, experimental manipulation of DG concentra-
tions is an extremely difficult task. The different DG pools
within subcellular compartments such as the endoplasmic
reticulum (ER), lipid droplets or plasma membrane, their
metabolic origins (TG synthesis, TG lipolysis, and phos-
pholipid turnover) and regio isomerism (sn-1,2-, sn-1,3-,
or sn-2,3-) of DG need to be considered for its biological
activity and metabolic fate [9]. Given the experimental
restrictions in higher eukaryotes, we decided to study DG
toxicity in the budding yeast Saccharomyces cerevisiae,
since its genetics offer the unique possibility to cut off all
DG-catabolizing pathways. Using two different strategies
to accumulate DG in yeast, we found that increased levels
of DG are sufficient to induce cell death and identified
glucose repression and Rim101 signaling as crucial med-
iators of DG lipotoxicity. Additional experimental evi-
dence obtained using established lipotoxicity models in
Drosophila and a human endothelial cell line suggest that
the core of this lipotoxicity pathway is evolutionary con-
served in metazoans.

Results

A genetically engineered yeast strain accumulates
DG

To increase cellular DG levels, we generated an S. cerevi-
siae triple knockout strain (TKO), which accumulates
endogenous DG. This was achieved by deleting genes of
three DG-metabolizing enzymes: (i) DGA1, (ii) LRO1—
both encoding DG-acyl transferases catalyzing the last step
of TG formation—and (iii) DGK1, responsible for the
phosphorylation of DG to PA (Fig. 1a). A third major DG-
consuming reaction via the Kennedy pathway was modu-
lated by the addition (or omission) of choline [10], which
drains DG into the synthesis of PC (Fig. 1a).

Mass spectrometric lipid analysis revealed that, as
expected, the TKO (dga1Δ lro1Δ dgk1Δ) contained
increased intracellular DG levels (Fig. 1b, c), while levels of
TG (Fig. 1d) were decreased. Interestingly, a double-
knockout (DKO) mutant deleted for DGA1 and LRO1 genes
also displayed a moderate but significant increase in DG
(Fig. 1b, c) allowing us to comparatively analyze different
DG levels by using either the DKO or the TKO strains. Thin
layer chromatography revealed that the accumulating DG
species had sn-1,2 configuration, consistent with their origin
from de novo synthesis (Fig. 1e).

DG accumulation leads to increased necrotic cell
death and ROS production

The toxic effects of DG accumulation could be observed by a
significant decrease in growth in the TKO strain that was
partly restored by administration of 1mM choline chloride
(Fig. 2a). A time course monitoring clonogenic survival upon
DG accumulation showed that the severity of inflicted lipo-
toxicity was proportional to DG levels (Fig. 2b). This reduc-
tion in survival was accompanied by the overproduction of
reactive oxygen species (ROS), as determined by the ROS/
superoxide-dependent conversion of non-fluorescent dihy-
droethidium (DHE) to fluorescent ethidium (Fig. 2c, d). As
ROS production often precedes programmed cell death we
made use of an AnnexinV/PI assay to differentiate between
apoptotic and necrotic cell death [11]. In this assay, apoptosis
is represented by the AnnexinV-positive fraction, whereas
secondary necrosis and primary necrosis are represented by
the AnnexinV/PI-double-positive or PI-only-positive fractions,
respectively [11, 12]. The PI-only-positive fraction was pre-
dominant in DKO and TKO cells suggesting a necrotic type of
cell death (Fig. 2e, f).

We next compared the survival of DKO, TKO and wild-
type strains using different carbon sources. Interestingly,
cell death was only triggered upon growth on glucose-
containing media (Fig. 3a) while ROS accumulation and
necrotic cell death were significantly reduced when
glucose was replaced with galactose (Fig. 3b–e). In sum-
mary, our data suggest that an increase in cellular DG
induces glucose-dependent and ROS-associated necrotic cell
death in yeast.

Administration of a small, cell permeable DG analog
triggers glucose-dependent necrosis in yeast

We made use of the small, cell permeable DG analog 1,2-
dioctanoyl-sn-glycerol (DOG) as a complementary
approach to increase cellular DG in yeast. DOG adminis-
tration has been previously used to mimic endogenous DG
in the fission yeast Schizosaccharomyces pombe [13] and in
mammalian cells [14] for investigating both protein kinase
C-dependent and independent roles of DG. Importantly,
external DOG administration to wild-type yeast cultures led
to the induction of cell death (Fig. 4a), which was accom-
panied by the accumulation of ROS (Fig. 4b). In order to
test whether the production of ROS was causally linked to
cell death induction, we made use of the ROS scavenger N-
acetyl cysteine [15], which we administered to the yeast
cultures. Our results reveal that ROS scavenging only
shows limited potential in preventing cell death in both our
model systems of DAG-induced cell death (Supplementary
Fig. 1a, b). Interestingly, the effects of DOG treatment were
limited to cells cultured in glucose medium as growth on

766 P. Rockenfeller et al.

Official journal of the Cell Death Differentiation Association



Fig. 1 Lipidomic characterization of a dga1Δ lro1Δ dgk1Δ triple
knockout strain (TKO) reveals a huge increase in diacylglycerol (DG)
levels a Schematic illustration of the pathways that lead to DG accu-
mulation in the dga1Δ lro1Δ DKO and dga1Δ lro1Δ dgk1Δ TKO
strains: DG is either transformed into triacylglycerol (TG) by acylation
with activated fatty acids (acyl-CoA) or acyl-residues derived from
phospholipids through Dga1 or Lro1, respectively, or may be phos-
phorylated to phosphatidic acid (PA) by the action of Dgk1. The DKO
(dga1Δ lro1Δ) mutant is defective for TG formation and therefore
accumulates DG. The additional knock out of DGK1 encoding DG
kinase, in the TKO strain further increases DG accumulation.
Administration of choline directly drains DG into phosphatidylcholine
(PC) through the Kennedy pathway and thus facilitates growth of the

TKO mutant. b–d Mass spectrometry-assisted quantification of lipids
from total yeast cell extracts harvested 12 h after inoculation: total DG
(b), DG species (c), and total TG (d). The numbers on the x axis of c
indicate the cumulative number of carbon atoms (first number) and the
number of double bonds in both acyl-chains (second number after the
colon) e Thin layer chromatography performed with the same lipid
extracts as were used for MS analysis. Comparison to the standard
allows to differentiate between sn-1,3 and sn-1,2 DG species. SE steryl
esters, S sterols, PL phospholipids. Statistical significance was asses-
sed using one-way ANOVA for b and d and T-Test for c. Error bars
indicate SEM and asterisks in the figures indicate significant differ-
ences, *p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001
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galactose (Fig. 4a, b) and raffinose (data not shown) entirely
prevented DOG-induced cell death and ROS accumulation.
ROS accumulation and cell death were detectable after 14 h
of DOG treatment when cells usually begin to exhaust
glucose and enter the diauxic shift phase of growth. We
hypothesized that the metabolic changes that occur due to
glucose depletion would be responsible for cell death

induction by DOG. We therefore conducted a series of
experiments, in which we shifted DOG-exposed cells onto
spent media. Indeed, exposure to spent media led to a rapid
decrease in survival (Supplementary Fig. 1c) that was
attributable to necrotic cell death (Supplementary Fig. 1d).
This cell death could be prevented by glucose supple-
mentation (Supplementary Fig. 1e, f).

Fig. 2 Endogenous DG accumulation triggers ROS production and
necrosis a Growth curve of the TKO in comparison to wild type (Wt).
Administration of 1 mM choline chloride increases the growth rate of
the TKO. b Time course survival assay based on clonogenicity of
yeast cells. c Flow cytometry-assisted analysis of DHE to ethidium
conversion for ROS quantification measured 20 h after inoculation. d
Microscopy pictures of the same samples used in c. Scale bar= 10 µm.
e Flow cytometry-assisted analysis of AnnexinV (green)/ PI (red) co-
staining for differentiation between apoptosis and necrosis measured

20 h after inoculation. p-values were calculated for the PI positive
fractions. f Representative microscopy images of the same samples as
used in e. Scale bar= 5 µm. For panels a and b statistical significance
was assessed using two-way ANOVA with time and strain as inde-
pendent factors. Panel c and d were analyzed using one-way ANOVA.
ANOVA analysis in d refers to the PI-only-positive fraction shown in
gray. Error bars indicate SEM and asterisks in the figures indicate
significant differences, *p< 0.05, **p< 0.01, ***p< 0.001, ****p<
0.0001
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DOG-induced lipotoxicity depends on glucose
repression and de-repression

Glucose repression has been extensively studied in yeast
and is known to regulate a number of genes [16]. We
conducted a screen to investigate whether glucose repres-
sion is actively involved in DOG-mediated cell death
(Supplementary Fig. 1g). Intriguingly, we found that the
master regulator of glucose repression, hexokinase 2
(Hxk2), is a crucial factor for DOG-mediated cell death,

whereas hexokinase 1, which is not involved in glucose
repression, is dispensable for this effect (Fig. 4e). Of note,
HXK2 deletion in the TKO background resulted in a similar
outcome in that survival was significantly increased
whereas ROS accumulation was substantially decreased
(Fig. 4f, g).

The regulatory function of Hxk2 with respect to glucose
repression can be separated from its enzymatic activity as
hexokinase [17]. Phosphorylation of Hxk2 at serine 14
regulates its localization to either the cytoplasm or nucleus,

Fig. 3 ROS accumulation and cell death depend on glucose as carbon
source Clonogenic survival assay a and ROS assessment b comparing
DKO and TKO cells to wild type (Wt) using glucose or galactose as
carbon source. Flow cytometry-assisted analysis of AnnexinV/PI co-
staining c of the same samples used in panels a and b for differ-
entiation between apoptosis and necrosis. p-values are calculated for
the PI positive fractions. Representative microscopy images of ROS
assessment d shown in panel b. Scale bar= 15 µm. Representative

images of AnnexinV/PI-based cell death assay e as shown in panel c.
Scale bar= 7.5 µm. All measurements were made at 20 h after
inoculation. Panels a-c were analyzed using one-way ANOVA.
ANOVA analysis in d refers to the PI-only-positive fraction shown in
black. Error bars indicate standard error of the mean (SEM) and
asterisks in the figures indicate significant differences, *p< 0.05, **p
< 0.01, ***p< 0.001, ****p< 0.0001
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and determines its role in glucose repression [18]. To assess
whether abrogation of the regulatory function of Hxk2 was
sufficient to prevent cell death, we made use of two Hxk2

mutants, one in which serine 14 residue was replaced by
alanine (S14A) and another in which serine 14 was changed
to aspartate (S14D). The non-phosphorylatable Hxk2S14A

Fig. 4 DG-mediated cell death
depends on glucose and
hexokinase 2 mediated glucose
repression The time course of
clonogenic survival a and ROS
production b of wild-type yeast
grown on glucose or galactose
as carbon sources was
determined with and without
DOG administration. c
Clonogenic survival assay of
hexokinase deletion mutants
(hxk1Δ and hxk2Δ) with and
without DOG treatment.
Clonogenic survival assay d and
ROS assessment e comparing
TKO hxk2Δ to TKO and wild-
type (Wt) cells. f Clonogenic
survival plating and g PI-
measurement of hxk2 mutants.
S14D represents the phospho-
mimetic mutant, whereas mutant
S14A is not subject to
phosphorylation at position 14
anymore. Statistical significance
in panels a and b was assessed
using three-way ANOVA with
carbon source, treatment and
time as independent factors. c, f
and g were analyzed using two-
way ANOVA with strain and
treatment as independent factors.
Error bars indicate SEM and
asterisks in the figures indicate
significant differences, *p<
0.05, **p< 0.01, ***p< 0.001,
****p< 0.0001
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mutant is found in the cytoplasm and nucleus and con-
stitutively activates glucose repression, while the phospho-
mimetic Hxk2S14D is localized to the cytosol and fails to
activate glucose repression. In line with our hypothesis,
expression of Hxk2S14D suppressed DOG-induced cell death
(Fig. 4f, g). However, the rescue of cell death was unex-
pected for the S14A mutation, as our initial hypothesis
pictured glucose repression as being crucial and committing
for cell death induction. The results from the S14A
experiment rather suggested that constant glucose repres-
sion was not sufficient to trigger cell death. This led us to
conclude that sequential de-repression after glucose
repression is required for DOG-induced cell death.

DOG-induced cell death depends on the calpain-like
cysteine protease Rim13

In order to further understand the mechanistic details of how
yeast cells die in response to DG, we applied DOG treat-
ment to all deletion mutants of known and putative yeast
programmed cell death (PCD) regulators [19–23]. This
screen revealed that the yeast calpain-like protease Rim13
(alternatively called Cpl1) is essential for DOG-mediated
lipotoxicity (Fig. 5a). Cells lacking Rim13 were completely
resistant to DOG-mediated toxicity, as determined by PI
staining (Fig. 5a). Importantly, the deletion of known reg-
ulators of yeast apoptosis such as YCA1 [20] and AIF1 [22]
did not influence the DOG-induced cellular demise. Mass
spectrometric analysis confirmed that administered DOG
readily entered the yeast cells, intracellular DG levels were
not affected by RIM13 deletion and DOG treatment sub-
stantially increased total cellular DG levels (Fig. 5b, c,
Supplementary Fig. 2a).

Deletion of RIM13 also significantly reduced ROS
accumulation and cell death rates upon DOG treatment
(Fig. 5d–f, Supplementary Fig. 2b, c). Deletion of RIM13 in
the TKO background led to increased survival (Fig. 5g) and
reduced ROS accumulation (Fig. 5h), further suggesting
that RIM13 is crucial for triggering DG-induced cell death.
Importantly, RIM13 deletion did not affect lipid levels in the
TKO strain (Supplementary Fig. 3). To discriminate
between apoptosis and necrosis in the DOG treatment set-
ting, we performed an AnnexinV/PI assay. The increase in
necrotic cells that is usually observed when DOG was
added to wild-type yeast cells was lost upon deletion of
RIM13 (Fig. 5i, Supplementary Fig. 4).

DOG-triggered PCD requires Rim13 cysteine
protease activity, its carboxy-terminal domain and
depends on Rim101 processing

Next we attempted to complement the lack of RIM13 in the
knock out strain by expression of RIM13 on a plasmid that

is under control of its endogenous promoter. To verify
whether cell death depends on the proteolytic activity of
Rim13, a point mutation in which cysteine128 of the active
site was exchanged for alanine was also generated. As
expected, the DOG-resistance of the rim13Δ strain was
reverted when RIM13 was reintroduced (Fig. 6a). ROS
production was also restored to wild-type levels in the
rim13Δ strain upon re-expressing RIM13 (Fig. 6b). This
rescue was not observed upon replacement of endogenous
RIM13 by the rim13C128A mutant allele, indicating that the
cysteine protease function of Rim13 is crucial for cell death
(Fig. 6a, b). A similar complementation assay in the rim13Δ
strain revealed that its carboxy-terminal domain is also
required for cell death (Fig. 6c, d). This domain has pre-
viously been linked to the regulation of Rim13 localization
and Rim13 mediated cleavage of the transcriptional
repressor Rim101 [24]. RIM101 deletion itself was also
protective against DOG-mediated cell death induction
(Fig. 6e) and ROS accumulation (Fig. 6f). Importantly,
expression of a carboxy-terminally truncated Rim101 ver-
sion (Rim1011-531), which is constitutively active [25], re-
established DOG-mediated cell death in the rim13Δ strain
(Fig. 6g). Rim101 activation through manipulation of
plasma membrane lipids has been reported to depend on the
Rim21 sensor complex which includes RIM21, RIM9,
DFG16, and RIM8 [26, 27]. This raised the question whe-
ther DG-induced cell death would also depend on this
sensor complex. We addressed this question in such a way
that we subjected all the single knock outs of the sensor
complex (rim21Δ, rim9Δ, dfg16Δ, and rim8Δ) to DOG
treatment and assessed the survival by clonogenic survival
assay and PI staining. Our results reveal that the sensor
complex is indeed crucial to fully conduct the lipotoxic
response (Fig. 6h, i). To further investigate this in our
genetic model of DG increase, we knocked out RIM21 in
the TKO background and measured the impact on survival.
The obtained data (Fig. 6j and Supplementary Fig. 5a)
confirm that Rim21 also has a functional role in this setting
of DG-induced cell death suggesting that DG-mediated
activation of the Rim101 pathway actively involves the
Rim21 sensor complex.

In summary, our yeast data provide evidence for the
existence of a lipotoxic cell death pathway that can be
triggered by excess DG (Supplementary Fig. 5). This
pathway is dependent on functional glucose repression and
de-repression and requires Rim13-mediated activation of
the transcriptional repressor Rim101.

The calpain-dependent lipotoxic cell death pathway
is evolutionary conserved

To investigate whether the lipotoxic cell death pathway that
we identified in yeast is evolutionarily conserved across
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metazoa, we decided to test two well-established models of
lipotoxicity in higher organisms: palmitic acid stress applied
to mammalian cell culture and coconut oil rich high-fat diet
(HFD) fed Drosophila melanogaster. Importantly the cen-
tral regulator of lipotoxic cell death that we have identified
in yeast, Rim13, is phylogenetically conserved (Fig. 7a).
Palmitic acid increases cytosolic Ca2+ levels and
induces programmed necrosis in endothelial cells [28].
Small interfering RNA (siRNA)-mediated knockdown of

m-calpain-1 (CAPN1), the human orthologue of RIM13
(Fig. S6a) rendered cells resistant to palmitic acid stress
(Fig. 7b, c), as evidenced by increased viability (Fig. 7b)
and reduction of cell death markers (Fig. 7c). Impor-
tantly the levels of basal cytosolic Ca2+ were not affected
upon CAPN1 knockdown (Fig. 7d). Palmitic acid stress
has been described to increase DG levels in H9C2 car-
diomyoblasts [29] which we could confirm in a lipidomic
approach using our endothelial cell line (Fig. 7e,

Fig. 5 DG induces Rim13-dependent necrosis a Screen for knockout
mutants rescuing DOG-induced cell death based on PI staining. b, c
Mass spectrometry-assisted quantification of DOG b and total DG c
levels. d Clonogenic survival plating and e DHE to ethidium con-
version for ROS quantification after DOG treatment comparing wild
type to rim13Δ. f Representative microscopy pictures of ROS
assessment for DOG-treated samples. Scale bar= 5 µm. Clonogenic
survival assay g and ROS assessment h comparing TKO rim13Δ to
DKO, TKO and wild-type cells. i FACS-assisted analysis of

AnnexinV/PI co-staining. Statistical significance in panels a-d was
analyzed using two-way ANOVA with strain and treatment as inde-
pendent factors. Panels b and c were additionally analyzed by one-way
ANOVA to assess significant change after DOG treatment. Statistical
significance of g, h, and i was determined using one-way ANOVA.
Significance in i refers to the PI fraction. Error bars indicate standard
error of the mean (SEM) and asterisks in the figures indicate significant
differences, *p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001
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Supplementary Fig. 6b). Further analysis of the DG
species revealed that the total DG increase is mostly due
to palmitate incorporation into DG as documented by the

32:0 species, which harbors two palmitate residues
(Fig. 7f). Interestingly, DG accumulation was not
dependent on calpain 1 as no reversion of this

Fig. 6 The Rim101 cascade is involved in DOG-induced cell death a
Clonogenic survival and b DHE to ethidium conversion of rim13Δ
upon DOG treatment expressing either the wild-type RIM13 gene or
rim13 bearing the C128A point mutation. DHE to ethidium conversion
was detected 24 h and survival was determined 25 h after DOG stress.
c Clonogenic survival and d DHE to ethidium conversion upon DOG
treatment was detected in rim13Δ with expression of carboxy-
terminally truncated or full RIM13 on a plasmid. e Clonogenic sur-
vival and f DHE to ethidium conversion of rim101Δ upon DOG
treatment. g Clonogenic survival of rim13Δ with and without

expression of constitutively active Rim1011-531 upon DOG treatment.
‘EV’ indicates empty vector control. h Clonogenic survival assay and i
PI staining were detected in Rim21 sensor complex single deletion
mutants rim21Δ, rim9Δ, dfg16Δ, and rim8Δ upon DOG stress j Clo-
nogenic survival assay and the impact of RIM21 deletion in TKO
background. PI staining of the same experiment is shown in Supple-
mentary Fig. 5a. Statistical significance was assessed using two-way
ANOVA with strain and treatment as independent factors. Error bars
indicate SEM and asterisks in the figures indicate significant differ-
ences, *p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001
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phenomenon was observed with CAPN1 knockdown
cells (Fig. 7e, f). We thus suggest that palmitic acid-
induced cell death is mediated through DG accumulation
and that calpain acts downstream of this event.

Feeding a coconut-based HFD to Drosophila leads to
adverse effects such as body fat increase, reduced activity,
cardiomyopathy and a reduced lifespan [30, 31]. Drosophila
has four Calp genes, two of which (CalpA and CalpB) encode
proteolytically active calpains [32]. We thus generated a
ubiquitous CalpA+B double gene knockdown (CalpA+B
DKD) and compared the lifespans on HFD with the RNAi
turned on or off. Importantly, reduction of CalpA and CalpB
expression to 25% of the normal level (Fig. 7g) increased the
median lifespan on HFD by 21% and the maximum lifespan
by 33% (Fig. 7h). The bodyweight of DKD flies was not
reduced with respect to controls, excluding a potential dietary
restriction-like effect (Supplementary Fig. 6c). In a nutshell,
these findings suggest that calpains act as key regulators for
organismal lipotoxicity.

Discussion

In fungi the Rim101 pathway constitutes a well conserved
signal transduction route that is primarily known for sensing
and reacting to pH alteration [33, 34]. Importantly, it is
required for the pathogenicity of Candida albicans, Cryp-
tococcus species and other noxious fungi [35]. However,
the Rim101 pathway not only senses alkaline conditions,
but also recognizes lipid alterations in the plasma membrane
such as changes in the asymmetrical lipid distribution
among the two leaflets of the bilayer [26, 36, 37]. The
Rim101 pathway includes a sophisticated sensor complex
consisting of Rim8 and the three transmembrane proteins
Dfg16, Rim9 and Rim21. The carboxy-terminal cytosolic
domain of Rim21 localizes to the plasma membrane under
normal conditions, whereas lipid perturbation of the plasma
membrane triggers its dissociation [38]. The sensor com-
plex then induces a downstream proteolytical complex,
which consists of Rim13, Rim20, Ygr122w, and Rim101
[33]. The cysteine protease Rim13 is the sole yeast ortho-
logue of mammalian calpains, explaining its alternative
denomination as Cpl1 (Calpain-like protease) [39]. Rim13
proteolytically cleaves and thereby activates the transcrip-
tional repressor Rim101 [39]. Most processes of the
Rim101 cascade have been studied as a response to pH
stress. Induction of the Rim101 pathway as a result of lipid
stress at the plasma membrane has been investigated by
means of genetic deletion of flippases and floppases or their
upstream regulators [26, 38, 40], by addition of palmitoleic
acid [41] and by expressing phospholipase A2 [42]. In most
of these studies, it appears that Rim21 senses changes in the
plasma membrane´s lipid asymmetry in a similar way as

under alkaline conditions, since both conditions interfere
with the charge gradient present at the plasma membrane.
Hence, disturbance of specific physicochemical properties
of the plasma membrane could be perceived by the sensing
complex involving Rim21 under both conditions of stress.
Carboxy-terminal cleavage of Rim101 by Rim13 uncovers
its gene repressing activity. A number of Rim101-repressed
genes have been identified by the Mitchell lab so far and
include NRG1, PRB1, RIM8, SMP1, YJR061W, YOR389W,
and YPL277C, the promoters of which directly interact with
Rim101 [43]. Nrg1 and Smp1 themselves represent tran-
scription factors on a second level and contribute to the
large complexity of Rim101 controlled gene regulation.

Activation of the Rim101 pathway is the natural response
to alkaline or lipid stress in yeast that is presumably acti-
vated with the scope of rearranging the lipid composition of
the plasma membrane and hence to facilitate adaptation to
environmental changes. Here we have shown that, in the
case of non-physiological elevation of DG, this particular
stress response is triggering a necrotic type of lipotoxic cell
death rather than an adaptive response (Figs. 2, 5). Our
results reveal that two transcriptional regulatory pathways
(i) glucose repression and (ii) the Rim101 pathway
including its Rim21-dependent sensing complex are
involved in DG-mediated lipotoxicity. This raised the
question whether these two pathways interfere with cell death
regulation on the same level, culminating in a similar outcome
or whether they represent distinct routes. Interestingly, the
transcriptional repressor Nrg1 lies at the crossroads of glucose
repression and the Rim101 pathway and could thus represent
such a downstream regulator integrating signals from these
different routes. Nrg1 controls repression of the SUC2 and
GAL genes, which are needed for growth on alternative car-
bon sources, as well as for haploid invasive growth and
diploid pseudohyphal differentiation [44]. Nrg1 further
represses the expression of the sphingoid long-chain base
efflux transporter Rsb1 [45, 46]. Rsb1 in turn upregulates
Lem3 which controls the flippases Dnf1 and Dnf2 and
negatively regulates the floppase Yor1, possibly explaining
the lipid stress-induced changes of the plasma membrane
[41]. Smp1, the other transcriptional repressor which is
regulated by Rim101, controls rough colony morphology,
sporulation, and haploid invasive growth [43]. Altogether, this
suggests that excess DG activates the Rim101 pathway that
integrates its signal with the glucose repression pathway on
the level of transcriptional repressors and thereby regulates
cell fate decisions. We hypothesize that these decisions can
include adaptation to the initial stress or the initiation of
regulated cell death [47].

The production of ROS could potentially be regulated by
glucose repression and Rim101 signaling, both pathways of
which merge at the level of NRG1. Nrg1 further regulates
the repression of genes involved in alternative carbon
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Fig. 7 Calpain-dependent lipotoxic cell death is evolutionary conserved a
Alignment of calpain protein sequences from different organisms: Dro-
sophila CalpA and B (dr_CALPA/B), human calpain 1 and 2 (huCALP1/
2), and the yeast calpain-like protease (yeCpl1/Rim13). b The viability of
palmitate-treated endothelial cells was determined using the MTT assay. c
Quantification of AnnexinV/ PI positive cells from microscopy images. d
Quantification of basal cytosolic Ca2+ in response to palmitate treatment
in endothelial cells e, f Shotgun mass spectrometry-assisted quantification
of total DG e and DG species f from endothelial cells. The full lipidomics
data set is shown in Supplementary Fig. 6b. g Quantitative real time PCR
was performed to assess mRNA levels of CalpA and CalpB in whole
Drosophila. Relative mRNA levels were calculated in comparison to
control flies and normalized to the ribosomal protein RpL32. h Ubiquitous
CalpA+B double gene knockdown (DKD) confers lifespan extension of

Drosophila melanogaster on high-fat diet. Representative lifespan
experiment showing median and maximum lifespan extensions of Act5C-
Gal4 CalpA+B DKD flies (57/84 days) compared to control (47/63 days)
male flies by 21% (median) and 33% (maximum), respectively. Lines
represent mean age-specific survivorship data of n= 120 males per
genotype. Survivorship data of the two genotypes are significantly
different (log-rank test p< 0.001). Statistical significance in panels b–e
was assessed using two-way ANOVA with siRNA-mediated knockdown
and palmitate treatment as independent factors. Data in panels d and
e were additionally processed by one-way ANOVA to assess significance
of palmitate treatment. Statistical significance in panel g was determined
using one-way ANOVA. Error bars indicate SEM and asterisks
in the figures indicate significant differences, *p< 0.05, **p< 0.01,
***p< 0.001, ****p< 0.0001
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source usage as mentioned above [16]. This might actually
affect respiration and electron transport efficiency within
respiratory complexes and thus impact ROS production.
However, since the effects of ROS scavenging cannot fully
account for an essential role in DG-induced necrosis
(Supplementary Fig. 1a, b) we rather think that ROS
accumulate as a matter of altered lipid metabolism or as part
of a failed cellular attempt to prevent cell death. The fact
that DG-induced cell death depends on glucose repression
and de-repression highlights that the metabolic state of cells
is important to make them susceptible to cell death induc-
tion. After the diauxic shift, when toxic effects are starting
to become visible, the cells have an increased demand for
lipid mobilization for example to feed into mitochondrial
membrane expansion to allow for efficient respiration. This
could explain for the sudden toxicity of DG arising after the
metabolic shift. Further research will need to be conducted
to fully answer these interesting questions.

Intriguingly, calpains have been identified as crucial
regulators of necrotic cell death in diverse models of neu-
rodegeneration [48, 49]. The lipotoxic models we used in
Fig. 7 suggest that calpain-mediated lipotoxic cell death
might have developed rather early during evolution and that
its core function as a regulator of lipotoxic cell death is
conserved across species. Calpain-mediated lipotoxicity
could further be important for lipid-associated disease or
during aging and neurodegeneration, where metabolic
changes are also prevalent. Calpain might have evolved as a
regulator of lipid metabolism to sense and react to changes
in the lipid environment. Our lipotoxic models are suitable
to further investigate the underlying mechanism which will
be addressed in further studies.

Methods

Yeast strains and growth conditions

All experiments were carried out in the BY4741 (MATa
his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) strain background. Single
deletion strains were obtained from the EUROSCARF
knock out collection except for the self-generated rim13Δ
strains in Supplementary Fig. 1. The dga1Δ lro1Δ DKO
was generated in a previous study [50]. The dga1Δ lro1Δ
dgk1Δ TKO was generated in the DKO background by
using the URA3 gene disruption cassette, which was
subsequently excised by Cre-recombinase expression to
regain the ura3 marker [51]. The same technique was used
to generate four independent cpl1Δ strains, which all
yielded the same phenotypes as the EUROSCARF
rim13Δ strain. Strains were grown in SC medium contain-
ing 0.17% yeast nitrogen base (Difco), 0.5% (NH4)2SO4

and 30 mg/l of all amino acids (except 80 mg/l histidine and

200 mg/l leucine), 30 mg/l adenine, and 320 mg/l uracil
with 2% glucose as carbon source for SCD medium or 2%
galactose for SCG medium, respectively. All yeast cultures
were inoculated from a stationary overnight culture to an
OD600= 0.1 and then grown at 28 °C and 145 rpm shaking
for indicated time periods. For DOG stress experiments,
cultures were stressed with 1.45 mM DOG (1,2-dioctanoyl-
sn-glycerol, Cayman) at an OD600= 0.35. For ROS
scavenging experiments N-acetylcysteine (NAC) was added
to a final concentration of 10, 30 and 100 mM at 14 h after
DOG stress or 14 h after inoculation for TKO experiments.

Cloning and molecular biology

RIM13/CPL1 was cloned into plasmid pRS313 under its
endogenous promoter using the NotI and EcoRI restriction
sites. The C128A mutation was introduced using two-step
PCR assisted site-directed mutagenesis [52]. The oligonu-
cleotides used for cloning are listed in Supplementary
Table 1.

Survival plating and test for apoptotic/necrotic
markers

For survival plating, the cell concentrations of culture
dilutions were determined with a CASY cell counter
(Schaerfe Systems) and aliquots containing 500 cells were
plated on YPD plates. The number of colonies formed was
determined after 2 days at 28 °C. AnnexinV/PI co-staining
was performed as previously described [11]. 30,000 cells
were evaluated using flow cytometry and analyzed using
BD FACSDiva software. For dihydroethidium staining,
5× 106 cells were harvested by centrifugation, resuspended
in 250 μl of 2.5 μg/ml DHE in PBS, and incubated in the
dark for 5 min. Relative fluorescence units (RFU) were
determined using a fluorescence reader (Tecan, Geniu-
sPRO) and then normalized to an OD600 of 0.2. For ROS
analysis based on individual cells flow cytometry was used
to count positive cells. The same samples were analyzed by
fluorescence microscopy on a Zeiss Axioskop microscope
equipped with a rhodamine filter set.

Lipid analysis and mass spectrometry in yeast

After addition of 50 µl of an internal standard mix (Sup-
plementary Table 2) to each sample, total lipids were
extracted from exponentially growing yeast cultures (har-
vested 12 h after inoculation) with chloroform/methanol 2:1
(v/v) according to Folch et al. [53]. The organic phase was
dried under a stream of nitrogen, and dissolved in 500 μl of
chloroform/methanol (2:1, v/v).

Analysis of lipid extracts was carried out by an
ACQUITY-UPLC system (Waters, Manchester, UK)
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equipped with a BEH C18 column (2.1× 150 mm, 1.7 µm,
Waters) coupled to a SYNAPT G1 qTOF HD mass spec-
trometer (Waters) [54]. Separation of lipids was achieved
with a binary gradient consisting of solvent A water/
methanol (1:1, v/v) and solvent B isopropanol. Each solvent
contained 8 µM phosphoric acid, 10 mM ammonium acetate
and 0.1 Vol% formic acid. The gradient started at 45%
solvent B and was increased to 90% B within 30 min.
Thereafter, the eluent was raised to 100% B within 2 min
and kept for another 10 min. The system was changed back
to starting conditions within 1 min, and the column was
equilibrated for 7 min prior to the next analysis. The column
was kept at 50 °C in a column oven. Ionization was
achieved by an ESI source using the following parameters:
capillary temperature: 100 °C, desolvatization temperature:
400 °C, N2 as nebulizer gas. The capillary voltage was set to
2.1 kV in negative mode and 2.6 kV in positive mode.
Injection of the sample ranged from 5–10 µl depending on
the used ionization mode (pos/neg). For positive mode the
samples were diluted 1:5 with isopropanol whereas for
negative mode samples were dissolved in a mixture of
isopropanol and chloroform/methanol 2:1 (9:1, v/v) and
injected without prior dilution. Leucine enkephaline
(Sigma-Aldrich) at a concentration of 100 pg/µl in water/
acetonitrile (1:1, v/v)+0.1 Vol% formic acid as a lock mass
reference was supplied by an external pump (L-6200
intelligent pump, Hitachi) at a flow rate of 0.2 ml/min
splitted in a 1:13 ratio. For data acquisition MSE scan mode
was applied to generate full- and MS/MS scans. Data were
analyzed by the MassLynx 4.1 (Waters) and by “Lipid Data
Analyzer” software [55].

Neutral lipid separation and analysis was performed by
thin layer chromatography (TLC) on silica gel plates
(Merck), essentially as described before [56], using
chloroform/acetone/acetic acid (90:8:1, per vol) as solvent.
TLC plates were dipped into 3.2% H2SO4 and 0.5% MnCl2
followed by carbonization at 120 °C for 30 min and pho-
tometric scanning in a CAMAG TLC scanner.

Cell culture, annexinV/PI staining and siRNA-
mediated gene silencing

Endothelial cells from the human umbilical vein endothelial
cell-derived cell line EA.hy926 were used in this study.
Cells were grown in DMEM containing 10% FCS, 1% HAT
(5 mM hypoxanthin, 20 μM aminopterin and 0.8 mM thy-
midine), 50 units/ml penicillin, 50 μg/ml streptomycin at 37
°C in 5% CO2 atmosphere.

For microscopic analysis endothelial cells grown on
glass coverslips were transfected with calpain 1 (CAPN1;
siRNA from Qiagen (SI02757314)) or scrambled control
siRNA at 60 percent confluence and were treated with 0.5
mM palmitic acid complexed to bovine serum albumin

(BSA) in a ratio of 6:1 for 16 h or BSA (control) after 48 h
of transfection. Cells were stained with AnnexinV-Fluos
staining kit from Roche Biodiagnostics (Roche Diagnostics
GmbH). According to the manufacturers protocol 20 μl of
AnnexinV-Fluos were diluted in 1 ml of incubation buffer
and 20 μl of propidium iodide (PI) was added. 100 μl of this
mixture were added directly to the culture and cells were
analyzed after 20 min of incubation.

High-resolution imaging of AnnexinV/ PI was per-
formed using an array confocal laser scanning microscope
(ACLSM) as described previously [28] using a 40× oil
objective. Cells were selected randomly on wide field and
then excited with 488 and 515 nm simultaneously for
AnnexinV and PI fluorescence, respectively. Images were
captured by a charged-coupled device (CCD) camera
(CoolSNAP-HQ, Photometrics, Tucson, USA). All devi-
ces were controlled by VisiView Premier acquisition
software (Visitron Systems, Puchheim, Germany). Cyto-
solic Ca2+ measurement: For cytosolic Ca2+ measure-
ments the Fura-2 technique was used as described
previously [28].

Lipid extraction from endothelial cells and
quantification by shotgun mass spectrometry

Cell pellets were homogenized with 1 mm zirconia beads in
a cooled tissuelyzer for 2× 5 min at 30 Hz in 300 µl IPA.
An aliquot of the homogenate was used for protein deter-
mination by BCA assay and 50 µg of total protein were used
for lipid extraction [57, 58]. In brief, 700 µl internal stan-
dard mix in 10:3 methyl tert-butyl ether/methanol was
added to each sample and vortexed for 1 h at 4 °C. After
addition of 140 µl H2O samples were vortexed for another
15 min. Phase separation was induced by centrifugation at
13,400 r.p.m. for 15 min. The organic phase was transferred
to a glass vial and evaporated. Samples were reconstituted
in 300 µl methanol/chloroform (1/2 per vol). For lipidome
and PS measurements 5 µl of sample were diluted with 95 µl
isopropoanol/ methanol/chloroform (4/2/1 per vol)+7.5
mM ammonium formate and ethanol/chloroform (4/1 per
vol)+0.1% trimethylamine, respectively.

Mass spectrometric analysis was performed on a Q
Exactive instrument (Thermo Fisher Scientific, Bremen, DE)
equipped with a robotic nanoflow ion source TriVersa
NanoMate (Advion BioSciences, Ithaca, USA) using nanoe-
lectrospray chips with a diameter of 4.1 μm. The ion source
was controlled by the Chipsoft 8.3.1 software (Advion
BioSciences). Ionization voltage was +0.96 kV in positive
and −0.96 kV in negative mode; back pressure was set at
1.25 psi in both modes. Samples were analyzed by polarity
switching [58]. The temperature of the ion transfer capillary
was 200 °C; S-lens RF level was set to 50%. Each sample was
analyzed for 5.7 min. FT-MS spectra were acquired within the
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range of m/z 400–1000 from 0min to 1.5 min in positive and
within the range of m/z 350–1000 from 4.2min to 5.7min in
negative mode at a mass resolution of R m/z 200= 140,000,
automated gain control (AGC) of 3× 106 and with an max-
imal injection time of 3000ms. PS was additionally measured
for 1.5 min in neg FT-MS mode with the same parameters as
mentioned above. All acquired spectra were filtered by
PeakStrainer (https://git.mpi-cbg.de/labShevchenko/PeakStra
iner/wikis/home) [59]. Lipids were identified by LipidX-
plorer software [60]. Molecular Fragmentation Query Lan-
guage (MFQL) queries were compiled for PC, PCO, LPC,
PE, PEO, LPE, PI, LPI, Cer, PA, LPA, PG, PS, TG, DG lipid
classes. The identification relied on accurately determined
intact lipid masses (mass accuracy better than 5 p.p.m.) and
signal to noise threshold higher than 3. Lipids were quantified
by comparing the isotopically corrected abundances of their
molecular ions with the abundances of internal standards of
the same lipid class.

Standards for lipid quantification

Synthetic lipid standards were purchased from Avanti Polar
Lipids, Inc. (Alabaster, USA). All used solvents were of at
least HPLC grade. Stocks of internal standards were stored
in glass ampoules at −20 °C until used for the preparation
of internal standard mix in MTBE/methanol (10/3 per vol).
700 µl internal standard mix contained: 1040 pmol choles-
teryl ester 16:0 D7, 521 pmol 50:0 TG D5, 145 pmol 34:0
DG D5, 550 pmol 25:0 PC, 435 pmol LPC, 107 pmol 25:0
PS, 295 pmol 25:0 PE, 85 pmol 13:0 LPE, 192 pmol 25:0
PI, 109 pmol 25:0 PG, 73 pmol 30:1 Cer, 123 pmol 25:0
PA, 91 pmol 13:0 LPA, 32 pmol 13:0 LPI.

Fly techniques

The y[1] w*; P{w[+mC]= Act5C-GAL4}25FO1/CyO, y
+(short name: Act5C-Gal4) fly stock (BDSC #4414) is
available from the Bloomington Drosophila Stock Center.
The transgenic RNAi fly lines, which allow conditional
gene knockdown of the CalpA (P{KK104532}VIE-260B;
short name CalpA KD; VDRC #101294) and CalpB (w
[1118]; P{GD16349}v46241/TM3; short name CalpB KD;
VDRC #46241) genes, respectively as well as the w[1118]
mutant control line (VDRC #60000) were acquired from the
Vienna Drosophila RNAi Center. RNAi effector transgene
flies, which allow CalpA and CalpB double-knockdown are
represented by the fly stock w*; P{KK104532}VIE-260B; P
{GD16349}v46241 / TM3 Sb*, P{w[+] Ubx-lacZ} (short
name CalpA+B DKD). All flies were propagated at 25 °C
with a 12 h:12 h light/dark cycle on a complex malt-soy
flour-corn flour-molasses standard food (SD) as described
before [41].

RNA extraction and assessment of RNAi-mediated
Calp gene knockdown

Ten flies per sample were disintegrated and homogenized
followed by Trizol extraction. The homogenate was
extracted once with chloroform and the RNA was pre-
cipitated form the supernatant with isopropanol and washed
with 70% ethanol. 500 ng RNA were treated with DNaseI
followed by reverse transcription using Superscript III
Reverse Transcriptase (Invitrogen Inc.). For quantitative
real time PCR Invitrogen´s SYBR Select Master Mix was
used. CalpA and CalpB gene expression levels of male flies
subject to ubiquitous CalpA+B DKD double knockdown
(y1 w*; P{w[+mC]= Act5C-GAL4}25FO1/P{KK104532}
VIE-260B; P{GD16349}v46241 /+) were compared to
controls (y1 w*; P{w[+mC]= Act5C-GAL4}25FO1/+).
qRT-PCR was performed using the primers listed in
Table S1 and CalpA and CalpB expression was normalized
to RpL32 gene expression levels to assess the efficiency of
the knock downs.

Lifespan assay

Lifespan assays were performed as described before [41]. In
brief, n= 120 age-matched male flies (12 replicates of cohorts
of 10 flies) for each genotype were raised on SD until
hatching to adult flies. Animals were kept at 23 °C with a 12
h:12 h light/dark cycle on high-fat diet (HFD) food, which
was prepared by adding 30ml coconut oil (Sigma) to 100ml
of SD. The HFD food was changed every 3–4 days and the
dead flies were scored and removed from the experiment at
indicated time points. Data plotted in Fig. 7f show a repre-
sentative of two experiments, which displays age-specific
average survivorship rate means calculated from the repli-
cates. Maximal lifespan values correspond to 10% survivor-
ship. A log-rank test was performed to assess statistical
significance of the observed differences between the CalpA
+B DKD flies and the control flies survivorship data. Average
fly wet-weight was determined by weighing cohorts of 10
flies each.

Statistical analysis

Statistical analyses were calculated in Prism7. For
assessment of significance one-way, two-way or three-
way ANOVA were performed as indicated. Error bars
indicate SEM and asterisks in the figures indicate sig-
nificant differences, *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001.
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