Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A qualitative transcriptional signature for determining the grade of colorectal adenocarcinoma

A Correction to this article was published on 05 December 2019

This article has been updated

Abstract

Histological grading (HG) is an important prognostic factor of colorectal adenocarcinoma (CRAC): the high-grade CRAC patients have poorer prognosis after tumor resection. Especially, the high-grade stage II CRAC patients are recommended to receive adjuvant chemotherapy. Due to the subjective nature of HG assessment, it is difficult to achieve consistency among pathologists, which brings patients uncertain grading outcomes and inappropriate treatments. We developed a qualitative transcriptional signature based on the within-sample relative expression orderings (REOs) of gene pairs to discriminate high-grade and low-grade CRAC. Using the stage II–III CRAC samples, we detected gene pairs with stable REOs in the high-grade samples and reversal stable REOs in the low-grade samples, and retained the gene pairs whose specific REO patterns were significantly associated with the disease-free survival of patients by univariate Cox regression model. Then, we used a forward-backward searching procedure to extract gene pairs with the highest concordance index as the final grading signature. Finally, 9 gene pairs (9-GPS) were developed to divide CRAC patients into high-grade and low-grade groups. With the signature, there were more differential expression characteristics between reclassified high-grade and low-grade groups. Significant difference of prognosis between the classified two group patients could be seen in four independent datasets. Additionally, genomic analyses showed that the classified high-grade groups were characterized by hypermutation while classified low-grade groups were characterized by frequent copy number alternations. In conclusion, the 9-GPS can provide an objective and robust grading assessment for CRAC patients, which could assist clinical treatment decision.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 05 December 2019

    In the original version of this Article, the affiliation details for Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China were not assigned to all of the authors. This has now been corrected in both the PDF and HTML versions of the Article.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clinicians. 2018;68:394–424.

    Article  Google Scholar 

  2. Fleming M, Ravula S, Tatishchev SF, Wang HL. Colorectal carcinoma: pathologic aspects. J Gastrointest Oncol. 2012;3:153–73.

    PubMed  PubMed Central  Google Scholar 

  3. Greene FL, Stewart AK, Norton HJ. A new TNM staging strategy for node-positive (stage III) colon cancer: an analysis of 50,042 patients. Ann Surg. 2002;236:416–21. discussion 421

    Article  PubMed  PubMed Central  Google Scholar 

  4. Flejou JF. [WHO Classification of digestive tumors: the fourth edition]. Annales de pathologie. 2011;31(5 Suppl):S27–31.

    Article  PubMed  Google Scholar 

  5. Compton CC, Fielding LP, Burgart LJ, Conley B, Cooper HS, Hamilton SR, et al. Prognostic factors in colorectal cancer. College of American Pathologists Consensus Statement 1999. Arch Pathol Lab Med. 2000;124:979–94.

    Article  CAS  PubMed  Google Scholar 

  6. Bockelman C, Engelmann BE, Kaprio T, Hansen TF, Glimelius B. Risk of recurrence in patients with colon cancer stage II and III: a systematic review and meta-analysis of recent literature. Acta Oncologica. 2015;54:5–16.

    Article  PubMed  Google Scholar 

  7. Benson AB 3rd, Venook AP, Cederquist L, Chan E, Chen YJ, Cooper HS, et al. Colon Cancer, Version 1.2017, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Cancer Netw. 2017;15:370–98.

    Article  CAS  Google Scholar 

  8. Berho M, Bejarano PA. Rectal cancer and the pathologist. Minerva chirurgica. 2018;73:534–47.

    Article  PubMed  Google Scholar 

  9. Chandler I, Houlston RS. Interobserver agreement in grading of colorectal cancers-findings from a nationwide web-based survey of histopathologists. Histopathology. 2008;52:494–9.

    Article  CAS  PubMed  Google Scholar 

  10. Cava C, Bertoli G, Ripamonti M, Mauri G, Zoppis I, Della Rosa PA, et al. Integration of mRNA expression profile, copy number alterations, and microRNA expression levels in breast cancer to improve grade definition. PLoS ONE. 2014;9:e97681.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Ivshina AV, George J, Senko O, Mow B, Putti TC, Smeds J, et al. Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer. Cancer Res. 2006;66:10292–301.

    Article  CAS  PubMed  Google Scholar 

  12. Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet. 2010;11:733–9.

    Article  CAS  PubMed  Google Scholar 

  13. Cheng J, Guo Y, Gao Q, Li H, Yan H, Li M, et al. Circumvent the uncertainty in the applications of transcriptional signatures to tumor tissues sampled from different tumor sites. Oncotarget. 2017;8:30265–75.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Freidin MB, Bhudia N, Lim E, Nicholson AG, Cookson WO, Moffatt MF. Impact of collection and storage of lung tumor tissue on whole genome expression profiling. J Mol diagnostics. 2012;14:140–8.

    Article  CAS  Google Scholar 

  15. Degrelle SA, Hennequet-Antier C, Chiapello H, Piot-Kaminski K, Piumi F, Robin S, et al. Amplification biases: possible differences among deviating gene expressions. BMC Genomics. 2008;9:46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Qi L, Chen L, Li Y, Qin Y, Pan R, Zhao W, et al. Critical limitations of prognostic signatures based on risk scores summarized from gene expression levels: a case study for resected stage I non-small-cell lung cancer. Brief Bioinf. 2016;17:233–42.

    Article  Google Scholar 

  17. Chen R, Guan Q, Cheng J, He J, Liu H, Cai H, et al. Robust transcriptional tumor signatures applicable to both formalin-fixed paraffin-embedded and fresh-frozen samples. Oncotarget. 2017;8:6652–62.

    Article  PubMed  Google Scholar 

  18. Song K, Guo Y, Wang X, Cai H, Zheng W, Li N, et al. Transcriptional signatures for coupled predictions of stage II and III colorectal cancer metastasis and fluorouracil-based adjuvant chemotherapy benefit. FASEB J. 2019;33:151–62.

    Article  CAS  PubMed  Google Scholar 

  19. Guan Q, Yan H, Chen Y, Zheng B, Cai H, He J, et al. Quantitative or qualitative transcriptional diagnostic signatures? A case study for colorectal cancer. BMC Genomics. 2018;19:99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic acids Res. 2013;41(Database issue):D991–5.

    CAS  PubMed  Google Scholar 

  21. International Cancer Genome C, Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, et al. International network of cancer genome projects. Nature. 2010;464:993–8.

    Article  CAS  Google Scholar 

  22. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, Getz G. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 2011;12:R41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Hochberg Y, Benjamini Y. More powerful procedures for multiple significance testing. Stat Med. 1990;9:811–8.

    Article  CAS  PubMed  Google Scholar 

  25. Harrell FE Jr., Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15:361–87.

    Article  PubMed  Google Scholar 

  26. Lusted LB. Signal detectability and medical decision-making. Science. 1971;171:1217–9.

    Article  CAS  PubMed  Google Scholar 

  27. Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD, et al. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell. 2018;173:400–16 e11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bland JM, Altman DG. The logrank test. BMJ. 2004;328:1073.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.

    Article  CAS  PubMed  Google Scholar 

  31. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic acids Res. 2012;40(Database issue):D109–14.

    Article  CAS  PubMed  Google Scholar 

  32. Blenkinsopp WK, Stewart-Brown S, Blesovsky L, Kearney G, Fielding LP. Histopathology reporting in large bowel cancer. J Clin Pathol. 1981;34:509–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kakizaki F, Aoki K, Miyoshi H, Carrasco N, Aoki M, Taketo MM. CDX transcription factors positively regulate expression of solute carrier family 5, member 8 in the colonic epithelium. Gastroenterology. 2010;138:627–35.

    Article  CAS  PubMed  Google Scholar 

  34. Qualtrough D, Hinoi T, Fearon E, Paraskeva C. Expression of CDX2 in normal and neoplastic human colon tissue and during differentiation of an in vitro model system. Gut. 2002;51:184–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Blaker H. Grading of tumors in the tubular digestive tract: Esophagus, stomach, colon and rectum. Der Pathol. 2016;37:293–8.

    CAS  Google Scholar 

  36. Lee M, Rhee I. Cytokine signaling in tumor progression. Immune Netw. 2017;17:214–27.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tzanakakis G, Kavasi RM, Voudouri K, Berdiaki A, Spyridaki I, Tsatsakis A, et al. Role of the extracellular matrix in cancer-associated epithelial to mesenchymal transition phenomenon. Developmental Dyn. 2018;247:368–81.

    Article  Google Scholar 

  38. Rizeq B, Zakaria Z, Ouhtit A. Towards understanding the mechanisms of actions of carcinoembryonic antigen-related cell adhesion molecule 6 in cancer progression. Cancer Sci. 2018;109:33–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. PN S, Darvin P, Yoo YB, Joung YH, Kang DY, Kim DN, et al. The combination of methylsulfonylmethane and tamoxifen inhibits the Jak2/STAT5b pathway and synergistically inhibits tumor growth and metastasis in ER-positive breast cancer xenografts. BMC cancer. 2015;15:474.

    Article  CAS  Google Scholar 

  40. Jasmine F, Rahaman R, Dodsworth C, Roy S, Paul R, Raza M, et al. A genome-wide study of cytogenetic changes in colorectal cancer using SNP microarrays: opportunities for future personalized treatment. PLoS ONE. 2012;7:e31968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xu WQ, Jiang XC, Zheng L, Yu YY, Tang JM. Expression of TGF-beta1, TbetaRII and Smad4 in colorectal carcinoma. Exp Mol Pathol. 2007;82:284–91.

    Article  CAS  PubMed  Google Scholar 

  42. Brozek W, Manhardt T, Kallay E, Peterlik M, Cross HS. Relative expression of vitamin D hydroxylases, CYP27B1 and CYP24A1, and of Cyclooxygenase-2 and heterogeneity of human colorectal cancer in relation to age, gender, tumor location, and malignancy: results from factor and cluster analysis. Cancers. 2012;4:763–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Olender J, Nowakowska-Zajdel E, Kruszniewska-Rajs C, Orchel J, Mazurek U, Wierzgon A, et al. Epigenetic silencing of endothelin-3 in colorectal cancer. Int J Immunopathol Pharmacol. 2016;29:333–40.

    Article  CAS  PubMed  Google Scholar 

  44. Massague J. TGFbeta in. Cancer Cell. 2008;134:215–30.

    CAS  Google Scholar 

  45. Markowitz SD, Bertagnolli MM. Molecular origins of cancer: molecular basis of colorectal cancer. New Engl J Med. 2009;361:2449–60.

    Article  CAS  PubMed  Google Scholar 

  46. Yu Y, Liu D, Liu Z, Li S, Ge Y, Sun W, et al. The inhibitory effects of COL1A2 on colorectal cancer cell proliferation, migration, and invasion. J Cancer. 2018;9:2953–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Sbrissa D, Ikonomov OC, Fenner H, Shisheva A. ArPIKfyve homomeric and heteromeric interactions scaffold PIKfyve and Sac3 in a complex to promote PIKfyve activity and functionality. J Mol Biol. 2008;384:766–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schneider F, Kemmner W, Haensch W, Franke G, Gretschel S, Karsten U, et al. Overexpression of sialyltransferase CMP-sialic acid:Galbeta1,3GalNAc-R alpha6-Sialyltransferase is related to poor patient survival in human colorectal carcinomas. Cancer Res. 2001;61:4605–11.

    CAS  PubMed  Google Scholar 

  49. Bader AG, Byrom M, Johnson CD, Brown D. MIR-143 regulated genes and pathways as targets for therapeutic intervention. U.S. Patent Application. 2008.

  50. Lee YS, Kim SY, Song SJ, Hong HK, Lee Y, Oh BY, et al. Crosstalk between CCL7 and CCR3 promotes metastasis of colon cancer cells via ERK-JNK signaling pathways. Oncotarget. 2016;7:36842–53.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [grant numbers: 61601151, 61701143, 61673143, 81872396 and 81572935], the Natural Science Foundation of Heilongjiang Province [grant number: C2016037] and the Joint Scientific and Technology Innovation Fund of Fujian Province [grant number: 2016Y9044].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenyuan Zhao or Zheng Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Song, K., Fu, Y. et al. A qualitative transcriptional signature for determining the grade of colorectal adenocarcinoma. Cancer Gene Ther 27, 680–690 (2020). https://doi.org/10.1038/s41417-019-0139-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-019-0139-1

This article is cited by

Search

Quick links