Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting mTOR suppressed colon cancer growth through 4EBP1/eIF4E/PUMA pathway

Abstract

Colorectal cancer is the third most frequently diagnosed malignancies among both men and women, which has an increased mortality but a poor prognosis. Targeting mTOR becomes an effective approach that shows promising antitumor activities in various cancers including colonic carcinoma. However, the potential mechanism against colon cancer remains incompletely understood. Here, we demonstrated that the anti-cancer effect of AZD8055 and OSI-027 is at least in part modulated by the gradual process of apoptosis initiation, progressing from mTOR suppression, 4EBP1 dephosphorylation, or EZH2 suppression, thereby leading to PUMA-dependent apoptosis via the intrinsic mitochondrial pathway. Furthermore, AZD8055 inhibited colorectal cancer tumor growth in mice significantly. PUMA deletion caused resistance of dual mTOR inhibitors, suggesting PUMA mediated carcinogenesis in vitro and in vivo. Collectively, these findings established a vital status of PUMA in driving the antineoplastic efficacy of targeting mTOR by AZD8055 and OSI-027 and offered the rationales for the current clinical assessment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Meester RGS, Barzi A, et al. Colorectal cancer statistics, 2017. CA: a cancer J Clin. 2017;67:177–93.

    Google Scholar 

  2. Kneuertz PJ, Chang GJ, Hu CY, Rodriguez-Bigas MA, Eng C, Vilar E, et al. Overtreatment of young adults with colon cancer: more intense treatments with unmatched survival gains. JAMA Surg. 2015;150:402–9.

    Article  PubMed  CAS  Google Scholar 

  3. Wang H, Zhang L, Yang X, Jin Y, Pei S, Zhang D, et al. PUMA mediates the combinational therapy of 5-FU and NVP-BEZ235 in colon cancer. Oncotarget. 2015;6:14385–98.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Francipane MG, Lagasse E. mTOR pathway in colorectal cancer: an update. Oncotarget. 2014;5:49–66.

    Article  PubMed  Google Scholar 

  5. Bjornsti MA, Houghton PJ. The TOR pathway: a target for cancer therapy. Nat Rev Cancer. 2004;4:335–48.

    Article  CAS  PubMed  Google Scholar 

  6. Altman JK, Sassano A, Kaur S, Glaser H, Kroczynska B, Redig AJ, et al. Dual mTORC2/mTORC1 targeting results in potent suppressive effects on acute myeloid leukemia (AML) progenitors. Clin Cancer Res. 2011;17:4378–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol cell Biol. 2009;10:307–18.

    Article  PubMed  CAS  Google Scholar 

  8. Dancey J. mTOR signaling and drug development in cancer. Nat Rev Clin Oncol. 2010;7:209–19.

    Article  CAS  PubMed  Google Scholar 

  9. Shimobayashi M, Hall MN. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol cell Biol. 2014;15:155–62.

    Article  CAS  PubMed  Google Scholar 

  10. Liu H, Li W, Yu X, Gao F, Duan Z, Ma X, et al. EZH2-mediated PUMA gene repression regulates non-small cell lung cancer cell proliferation and cisplatin-induced apoptosis. Oncotarget. 2016;7:56338–54.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Manning BD. Game of TOR - The Target of Rapamycin Rules Four Kingdoms. New Engl J Med. 2017;377:1297–9.

    Article  PubMed  Google Scholar 

  12. Zhang D, Contu R, Latronico MV, Zhang J, Rizzi R, Catalucci D, et al. MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice. J Clin Investig. 2010;120:2805–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nakano K, Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell. 2001;7:683–94.

    Article  CAS  PubMed  Google Scholar 

  14. Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell. 2001;7:673–82.

    Article  CAS  PubMed  Google Scholar 

  15. Villunger A, Michalak EM, Coultas L, Mullauer F, Bock G, Ausserlechner MJ, et al. p53- and drug-induced apoptotic responses mediated by BH3-only proteins PUMA and Noxa. Science. 2003;302:1036–8.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Y, Xing D, Liu L. PUMA promotes Bax translocation by both directly interacting with Bax and by competitive binding to Bcl-X L during UV-induced apoptosis. Mol Biol cell. 2009;20:3077–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jeffers JR, Parganas E, Lee Y, Yang C, Wang J, Brennan J, et al. PUMA is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer cell. 2003;4:321–8.

    Article  CAS  PubMed  Google Scholar 

  18. Yu J, Wang Z, Kinzler KW, Vogelstein B, Zhang L. PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc Natl Acad Sci USA. 2003;100:1931–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu X, Deng Y. Bax and BH3-domain-only proteins in p53-mediated apoptosis. Front Biosci: J virtual Libr. 2002;7:d151–6.

    Article  CAS  Google Scholar 

  20. Vousden KH. Apoptosis. p53 and PUMA: a deadly duo. Science. 2005;309:1685–6.

    Article  CAS  PubMed  Google Scholar 

  21. Ding WX, Ni HM, Chen X, Yu J, Zhang L, Yin XM. A coordinated action of Bax, PUMA, and p53 promotes MG132-induced mitochondria activation and apoptosis in colon cancer cells. Mol Cancer Ther. 2007;6:1062–9.

    Article  CAS  PubMed  Google Scholar 

  22. Yu J, Zhang L. No PUMA, no death: implications for p53-dependent apoptosis. Cancer cell. 2003;4:248–9.

    Article  CAS  PubMed  Google Scholar 

  23. Dudgeon C, Peng R, Wang P, Sebastiani A, Yu J, Zhang L. Inhibiting oncogenic signaling by sorafenib activates PUMA via GSK3beta and NF-kappaB to suppress tumor cell growth. Oncogene. 2012;31:4848–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang P, Qiu W, Dudgeon C, Liu H, Huang C, Zambetti GP, et al. PUMA is directly activated by NF-kappaB and contributes to TNF-alpha-induced apoptosis. Cell Death Differ. 2009;16:1192–202.

    Article  CAS  PubMed  Google Scholar 

  25. Melino G, Bernassola F, Ranalli M, Yee K, Zong WX, Corazzari M, et al. p73 Induces apoptosis via PUMA transactivation and Bax mitochondrial translocation. J Biol Chem. 2004;279:8076–83.

    Article  CAS  PubMed  Google Scholar 

  26. Ming L, Sakaida T, Yue W, Jha A, Zhang L, Yu J. Sp1 and p73 activate PUMA following serum starvation. Carcinogenesis. 2008;29:1878–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. You H, Pellegrini M, Tsuchihara K, Yamamoto K, Hacker G, Erlacher M, et al. FOXO3a-dependent regulation of PUMA in response to cytokine/growth factor withdrawal. J Exp Med. 2006;203:1657–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dudgeon C, Wang P, Sun X, Peng R, Sun Q, Yu J, et al. PUMA induction by FoxO3a mediates the anticancer activities of the broad-range kinase inhibitor UCN-01. Mol Cancer Ther. 2010;9:2893–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Akhtar RS, Geng Y, Klocke BJ, Latham CB, Villunger A, Michalak EM, et al. BH3-only proapoptotic Bcl-2 family members Noxa and PUMA mediate neural precursor cell death. J Neurosci: Off J Soc Neurosci. 2006;26:7257–64.

    Article  CAS  Google Scholar 

  30. Yu J, Zhang LPUMA. a potent killer with or without p53. Oncogene. 2009;27:S71–83.

    Article  CAS  Google Scholar 

  31. Zhang L, Wang H, Li W, Zhong J, Yu R, Huang X, et al. Pazopanib, a novel multi-kinase inhibitor, shows potent antitumor activity in colon cancer through PUMA-mediated apoptosis. Oncotarget. 2017;8:3289–303.

    Article  PubMed  Google Scholar 

  32. Chresta CM, Davies BR, Hickson I, Harding T, Cosulich S, Critchlow SE, et al. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res. 2010;70:288–98.

    Article  CAS  PubMed  Google Scholar 

  33. Mateo J, Olmos D, Dumez H, Poondru S, Samberg NL, Barr S, et al. A first in man, dose-finding study of the mTORC1/mTORC2 inhibitor OSI-027 in patients with advanced solid malignancies. Br J Cancer. 2016;114:889–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Carayol N, Vakana E, Sassano A, Kaur S, Goussetis DJ, Glaser H, et al. Critical roles for mTORC2- and rapamycin-insensitive mTORC1-complexes in growth and survival of BCR-ABL-expressing leukemic cells. Proc Natl Acad Sci USA. 2010;107:12469–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bhagwat SV, Gokhale PC, Crew AP, Cooke A, Yao Y, Mantis C, et al. Preclinical characterization of OSI-027, a potent and selective inhibitor of mTORC1 and mTORC2: distinct from rapamycin. Mol Cancer Ther. 2011;10:1394–406.

    Article  CAS  PubMed  Google Scholar 

  36. Vandamme T, Beyens M, de Beeck KO, Dogan F, van Koetsveld PM, Pauwels P, et al. Long-term acquired everolimus resistance in pancreatic neuroendocrine tumours can be overcome with novel PI3K-AKT-mTOR inhibitors. Br J Cancer. 2016;114:650–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bahrami A, Khazaei M, Hasanzadeh M, ShahidSales S, Joudi Mashhad M, Farazestanian M, et al. Therapeutic potential of targeting PI3K/AKT pathway in treatment of colorectal cancer: rational and progress. J Cell Biochem. 2018;119:2460–9.

    Article  CAS  PubMed  Google Scholar 

  38. Cha TL, Zhou BP, Xia W, Wu Y, Yang CC, Chen CT, et al. Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. Science. 2005;310:306–10.

    Article  CAS  PubMed  Google Scholar 

  39. Yamaguchi H, Hung MC. Regulation and role of EZH2 in cancer. Cancer Res Treat: Off J Korean Cancer Assoc. 2014;46:209–22.

    Article  CAS  Google Scholar 

  40. Yun S, Vincelette ND, Knorr KL, Almada LL, Schneider PA, Peterson KL, et al. 4EBP1/c-MYC/PUMA and NF-kappaB/EGR1/BIM pathways underlie cytotoxicity of mTOR dual inhibitors in malignant lymphoid cells. Blood. 2016;127:2711–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Braun AH, Achterrath W, Wilke H, Vanhoefer U, Harstrick A, Preusser P. New systemic frontline treatment for metastatic colorectal carcinoma. Cancer. 2004;100:1558–77.

    Article  CAS  PubMed  Google Scholar 

  42. Zimmermann GR, Lehar J, Keith CT. Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov today. 2007;12:34–42.

    Article  CAS  PubMed  Google Scholar 

  43. Johnson SM, Gulhati P, Rampy BA, Han Y, Rychahou PG, Doan HQ, et al. Novel expression patterns of PI3K/Akt/mTOR signaling pathway components in colorectal cancer. J Am Coll Surg. 2010;210:767-76–776-8.

    Google Scholar 

  44. Han YS, Lee JH, Lee SH. Fucoidan inhibits the migration and proliferation of HT-29 human colon cancer cells via the phosphoinositide-3 kinase/Akt/mechanistic target of rapamycin pathways. Mol Med Rep. 2015;12:3446–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang C, Cigliano A, Jiang L, Li X, Fan B, Pilo MG, et al. 4EBP1/eIF4E and p70S6K/RPS6 axes play critical and distinct roles in hepatocarcinogenesis driven by AKT and N-Ras proto-oncogenes in mice. Hepatology. 2015;61:200–13.

    Article  PubMed  CAS  Google Scholar 

  46. Petigny-Lechartier C, Duboc C, Jebahi A, Louis MH, Abeilard E, Denoyelle C, et al. The mTORC1/2 inhibitor AZD8055 strengthens the efficiency of the MEK inhibitor trametinib to reduce the Mcl-1/[Bim and PUMA] ratio and to sensitize ovarian carcinoma cells to ABT-737. Mol Cancer Ther. 2017;16:102–15.

    Article  CAS  PubMed  Google Scholar 

  47. Kuo SH, Hsu CH, Chen LT, Lu YS, Lin CH, Yeh PY, et al. Lack of compensatory pAKT activation and eIF4E phosphorylation of lymphoma cells towards mTOR inhibitor, RAD001. Eur J Cancer. 2011;47:1244–57.

    Article  CAS  PubMed  Google Scholar 

  48. Chen Y-H, Wei M-F, Wang C-W, Lee H-W, Pan S-L, Gao M, et al. Dual Phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor is an effective radiosensitizer for colorectal cancer. Cancer Lett. 2015;357:582–90.

    Article  CAS  PubMed  Google Scholar 

  49. Liang S, Guo R, Zhang Z, Liu D, Xu H, Xu Z, et al. Upregulation of the eIF4E signaling pathway contributes to the progression of gastric cancer, and targeting eIF4E by perifosine inhibits cell growth. Oncol Rep. 2013;29:2422–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the support of the National Natural Science Foundation of China (31801140 and 31701132), the Basic Research Program of Shenzhen Municipal Science and Technology Innovation Committee (JCYJ20160530192802733), the Fundamental Research Funds for the Central South Universities (Nos. 531118040098 and 14700–502044001), and the start funds from College of Biology, Hunan University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiangang Wang or Yingjie Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Liu, Y., Ding, J. et al. Targeting mTOR suppressed colon cancer growth through 4EBP1/eIF4E/PUMA pathway. Cancer Gene Ther 27, 448–460 (2020). https://doi.org/10.1038/s41417-019-0117-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-019-0117-7

This article is cited by

Search

Quick links