Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adenoviral delivery of VHL suppresses bone sarcoma cell growth through inhibition of Wnt/β-catenin signaling

Abstract

The VHL tumor suppressor gene is frequently inactivated in several human tumors, including bone sarcomas. We previously identified that reduced expression of VHL protein is implicated in sarcomagenesis. However, the underlying biological functions of restored VHL protein expression have not been clearly elucidated in bone sarcomas. Here we initially constructed a recombinant adenovirus 5-VHL vector (Ad5-VHL) and evaluated its expression in bone sarcomas, and antitumor activity in vitro and in vivo. We found that the adenovirus-mediated increase of VHL significantly suppresses bone sarcoma cell growth, attributed to induction of apoptosis mediated by increased caspase-3 activity and modulated Bcl-2 protein family. This suppression effect involves inhibition of Wnt/β-catenin signaling and upregulation of GSK-3β. Moreover, Ad5-VHL showed a dramatic antitumor effect on a chondrosarcoma xenograft model. These findings establish that Ad5-VHL suppresses bone sarcoma cell growth by inhibiting Wnt/β-catenin signaling, and may be a novel target for gene-based therapy of bone sarcomas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Skubitz KM, D’Adamo DR. Sarcoma. Mayo Clin Proc. 2007;82:1409–32.

    Article  CAS  Google Scholar 

  2. Yarber JL, Agulnik M. Targeted therapies in bone sarcomas: current approach and future directions. Expert Opin Investig Drugs. 2011;20:973–9.

    Article  CAS  Google Scholar 

  3. Heymann D, Rédini F. Bone sarcomas: pathogenesis and new therapeutic approaches. IBMS Bone. 2011;8:402–14.

    Article  Google Scholar 

  4. Papachristou DJ, Papavassiliou AG. Osteosarcoma and chondrosarcoma: new signaling pathways as targets for novel therapeutic interventions. Int J Biochem Cell Biol. 2007;39:857–62.

    Article  CAS  Google Scholar 

  5. Marinozzi A, Papapietro N, Barnaba SA, Di Martino A, Tonini G, Denaro V. Chondrosarcoma of the iliac wing in Von Hippel-Lindau disease. J Exp Clin Cancer Res. 2007;26:599–601.

    CAS  PubMed  Google Scholar 

  6. Chen C, Zhou H, Liu X, Liu Z, Ma Q. Reduced expression of von hippel-lindau protein correlates with decreased apoptosis and high chondrosarcoma grade. J Bone Joint Surg Am. 2011;93:1833–40.

    Article  Google Scholar 

  7. Stebbins CE, Kaelin WG Jr., Pavletich NP. Structure of the VHL–ElonginC–ElonginB complex: implications for VHL tumor suppressor function. Science. 1999;284:455–61.

    Article  CAS  Google Scholar 

  8. Kamura T, Koepp DM, Conrad MN, Skowyra D, Moreland RJ, Iliopoulos O, et al. Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science. 1999;284:657–61.

    Article  CAS  Google Scholar 

  9. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M. Jr: HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O sensing. Science. 2001;292:464–8.

    Article  CAS  Google Scholar 

  10. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292:468–72.

    Article  CAS  Google Scholar 

  11. Harris AL. Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2:38–47.

    Article  CAS  Google Scholar 

  12. Gossage L, Eisen T, Maher ER. VHL, the story of a tumour suppressor gene. Nat Rev Cancer. 2015;15:55–64.

    Article  CAS  Google Scholar 

  13. Devarajan P, De Leon M, Talasazan F, Schoenfeld AR, Davidowitz EJ, Burk RD. The von Hippel-Lindau gene product inhibits renal cell apoptosis via Bcl-2-dependent pathways. J Biol Chem. 2001;276:40599–605.

    Article  CAS  Google Scholar 

  14. Kim M, Yan Y, Lee K, Sgagias M, Cowan KH. Ectopic expression of von Hippel- Lindau tumor suppressor induces apoptosis in 786-O renal cell carcinoma cells and regresses tumor growth of 786-O cells in nude mouse. Biochem Biophys Res Commun. 2004;320:945–50.

    Article  CAS  Google Scholar 

  15. Qi H, Ohh M. The von Hippel-Lindau tumor suppressor protein sensitizes renal cell carcinoma cells to tumor necrosis factor-induced cytotoxicity by suppressing the nuclear factor-kappaB-dependent antiapoptotic pathway. Cancer Res. 2003;63:7076–80.

    CAS  PubMed  Google Scholar 

  16. Guo Y, Schoell MC, Freeman RS. The von Hippel-Lindau protein sensitizes renal carcinoma cells to apoptotic stimuli through stabilization of BIM(EL). Oncogene. 2009;28:1864–74.

    Article  CAS  Google Scholar 

  17. Roe JS, Kim H, Lee SM, Kim ST, Cho EJ, Youn HD. p53 stabilization and transactivation by a von Hippel-Lindau protein. Mol Cell. 2006;22:395–405.

    Article  CAS  Google Scholar 

  18. Sun X, Kanwar JR, Leung E, Vale M, Krissansen GW. Regression of solid tumors by engineered overexpression of von Hippel-Lindau tumor suppressor protein and antisense hypoxia-inducible factor-1alpha. Gene Ther. 2003;10:2081–9.

    Article  CAS  Google Scholar 

  19. Wang J, Ma Y, Jiang H, Zhu H, Liu L, Sun B, et al. Overexpression of von Hippel-Lindau protein synergizes with doxorubicin to suppress hepatocellular carcinoma in mice. J Hepatol. 2011;55:359–68.

    Article  CAS  Google Scholar 

  20. Staal FJ, Luis TC, Tiemessen MM. WNT signalling in the immune system: WNT is spreading its wings. Nat Rev Immunol. 2008;8:581–93.

    Article  CAS  Google Scholar 

  21. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17:9–26.

    Article  CAS  Google Scholar 

  22. Chen C, Zhou H, Zhang X, Ma X, Liu Z, Liu X. Elevated levels of Dickkopf-1 are associated with beta-catenin accumulation and poor prognosis in patients with chondrosarcoma. PLoS ONE. 2014;9:e105414.

    Article  Google Scholar 

  23. Chen C, Zhao M, Tian A, Zhang X, Yao Z, Ma X. Aberrant activation of Wnt/beta-catenin signaling drives proliferation of bone sarcoma cells. Oncotarget. 2015;6:17570–83.

    PubMed  PubMed Central  Google Scholar 

  24. Moon RT, Kohn AD, De Ferrari GV, Kaykas A. WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet. 2004;5:691–701.

    Article  CAS  Google Scholar 

  25. Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med. 2004;10:55–63.

    Article  CAS  Google Scholar 

  26. Peruzzi B, Athauda G, Bottaro DP. The von Hippel-Lindau tumor suppressor gene product represses oncogenic β-catenin signaling in renal carcinoma cells. Proc Natl Acad Sci USA. 2006;103:14531–6.

    Article  CAS  Google Scholar 

  27. Chitalia VC, Foy RL, Bachschmid MM, Zeng L, Panchenko MV, Zhou MI, et al. Jade-1 inhibits Wnt signalling by ubiquitylating beta-catenin and mediates Wnt pathway inhibition by pVHL. Nat Cell Biol. 2008;10:1208–16.

    Article  CAS  Google Scholar 

  28. Giles RH, Lolkema MP, Snijckers CM, Belderbos M, van der Groep P, Mans DA, et al. Interplay between VHL/HIF1alpha and Wnt/beta-catenin pathways during colorectal tumorigenesis. Oncogene. 2006;25:3065–70.

    Article  CAS  Google Scholar 

  29. Chen C, Zhou H, Xu L, Xu D, Wang Y, Zhang Y, et al. Recombinant human PDCD5 sensitizes chondrosarcomas to cisplatin chemotherapy in vitro and in vivo. Apoptosis. 2010;15:805–13.

    Article  CAS  Google Scholar 

  30. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  Google Scholar 

  31. Linehan WM, Rubin JS, Bottaro DP. VHL loss of function and its impact on oncogenic signaling networks in clear cell renal cell carcinoma. Int J Biochem Cell Biol. 2009;41:753–6.

    Article  CAS  Google Scholar 

  32. Berndt JD, Moon RT, Major MB. Beta-catenin gets jaded and von Hippel-Lindau is to blame. Trends Biochem Sci. 2009;34:101–4.

    Article  CAS  Google Scholar 

  33. Kaidi A, Williams AC, Paraskeva C. Interaction between beta-catenin and HIF-1 promotes cellular adaptation to hypoxia. Nat Cell Biol. 2007;9:210–7.

    Article  CAS  Google Scholar 

  34. Grimes CA, Jope RS. The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol. 2001;65:391–426.

    Article  CAS  Google Scholar 

  35. Hergovich A, Lisztwan J, Barry R, Ballschmieter P, Krek W. Regulation of microtubule stability by the von Hippel-Lindau tumour suppressor protein pVHL. Nat Cell Biol. 2003;5:64–70.

    Article  CAS  Google Scholar 

  36. Hergovich A, Lisztwan J, Thoma CR, Wirbelauer C, Barry RE, Krek W. Priming-dependent phosphorylation and regulation of the tumor suppressor pVHL by glycogen synthase kinase 3. Mol Cell Biol. 2006;26:5784–96.

    Article  CAS  Google Scholar 

  37. Cheng DD, Zhao HG, Yang YS, Hu T, Yang QC. GSK3beta negatively regulates HIF1alpha mRNA stability via nucleolin in the MG63 osteosarcoma cell line. Biochem Biophys Res Commun. 2014;443:598–603.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Sciences Foundation of China (81102037), and was also supported by grants from TianJin Youth Medicine Talents Plan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinlong Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Tian, A., Zhao, M. et al. Adenoviral delivery of VHL suppresses bone sarcoma cell growth through inhibition of Wnt/β-catenin signaling. Cancer Gene Ther 26, 83–93 (2019). https://doi.org/10.1038/s41417-018-0041-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-018-0041-2

Search

Quick links