Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Silencing SATB1 overcomes temozolomide resistance by downregulating MGMT expression and upregulating SLC22A18 expression in human glioblastoma cells

Subjects

Abstract

Glioblastoma multiforme (GBM) is the most common malignant tumor of the central nervous system and has a very poor prognosis. Currently, patients were treated by resection followed by radiotherapy plus concurrent temozolomide (TMZ) chemotherapy. However, many patients are resistant to TMZ-induced DNA damage because of upregulated expression of the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT). In this study, upregulation of SATB1 and MGMT, and downregulation of SLC22A18 resulted in acquisition of TMZ resistance in GBM U87 cells. Inactivation of special AT-rich sequence-binding protein 1 (SATB1) using short hairpin RNA (shRNA) downregulated MGMT expression and upregulated solute carrier family 22 member 18 (SLC22A18) expression in GBM cells. This suggested SATB1-mediated posttranscriptional regulation of the MGMT and SLC22A18 protein levels. Immunohistochemical analysis of malignant glioma specimens demonstrated a significant positive correlation between the levels of MGMT and SATB1, and a negative correlation between the levels of SLC22A18 and SATB1. Importantly, in recurrent, compared with the primary, lesions in 15 paired identical tumors, the SATB1 and MGMT protein levels were increased and the SLC22A18 levels were decreased. Finally, in TMZ-resistant GBM, SATB1 knockdown enhanced TMZ efficacy. Consequently, SATB1 inhibition might be a promising strategy combined with TMZ chemotherapy to treat TMZ-resistant GBM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chu SH, Ma YB, Feng DF, Li ZQ, Jiang PC. Predictive value of the SLC22A18 protein expression in glioblastoma patients receiving temozolomide therapy. J Transl Med. 2013;11:69.

    Article  CAS  Google Scholar 

  2. Chu SH, Ma YB, Feng DF, Li ZQ, Jiang PC. Correlation between SATB1 and Bcl-2 expression in human glioblastoma multiforme. Mol Med Rep. 2013;7:139–43.

    Article  CAS  Google Scholar 

  3. Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature. 2012;488:522–6.

    Article  CAS  Google Scholar 

  4. Herrlinger U, Schäfer N, Steinbach JP, Weyerbrock A, Hau P, Goldbrunner R, et al. Bevacizumab plus irinotecan versus temozolomide in newly diagnosed O6-methylguanine-DNA methyltransferase nonmethylated glioblastoma: the randomized GLARIUS trial. J Clin Oncol. 2016;34:1611–9.

    Article  CAS  Google Scholar 

  5. Xipell E, Aragón T, Martínez-Velez N, Vera B, Idoate MA, Martínez-Irujo JJ, et al. Endoplasmic reticulum stress-inducing drugs sensitize glioma cells to temozolomide through downregulation of MGMT, MPG, and Rad51. Neuro Oncol. 2016;18:1109–19.

    Article  CAS  Google Scholar 

  6. Hegi ME1, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352:997–1003.

    Article  CAS  Google Scholar 

  7. Khan O, Middleton MR. The therapeutic potential of O6-alkylguanine DNA alkyltransferase inhibitors. Expert Opin Investig Drugs. 2007;16:1573–84.

    Article  CAS  Google Scholar 

  8. Quinn JA, Jiang SX, Reardon DA, Desjardins A, Vredenburgh JJ, Rich JN, et al. Phase II trial of temozolomide plus o6-benzylguanine in adults with recurrent, temozolomide-resistant malignant glioma. J Clin Oncol. 2009;27:1262–7.

    Article  CAS  Google Scholar 

  9. D Lee MP, Reeves C, Schmitt A, Su K, Connors TD, Hu RJ, et al. Somatic mutation of TSSC5, a novel imprinted gene from human chromosome 11p15.5. Cancer Res. 1998;58:4155–9.

    Google Scholar 

  10. Schwienbacher C, Sabbioni S, Campi M, Veronese A, Bernardi G, Menegatti A, et al. Transcriptional map of 170-kb region at chromosome 11p15.5: identification and mutational analysis of the BWR1A gene reveals the presence of mutations in tumor samples. Proc Natl Acad Sci USA. 1998;95:3873–8.

    Article  CAS  Google Scholar 

  11. Yamada HY, Gorbsky GJ. Tumor suppressor candidate TSSC5 is regulated by UbcH6 and a novel ubiquitin ligase RING105. Oncogene. 2006;25:1330–9.

    Article  CAS  Google Scholar 

  12. Albrecht S, Hartmann W, Houshdaran F, Koch A, Gärtner B, Prawitt D, et al. Allelic loss but absence of mutations in the polyspecific transporter gene BWR1A on 11p15.5 in hepatoblastoma. Int J Cancer. 2004;111:627–32.

    Article  CAS  Google Scholar 

  13. Chu SH, Ma YB, Feng DF, Zhang H, Zhu ZA, Li ZQ, et al. Correlation of low SLC22A18 expression with poor prognosis in patients with glioma. J Clin Neurosci. 2012;19:95–98.

    Article  CAS  Google Scholar 

  14. Chu SH, Ma YB, Feng DF, Zhang H, Qiu JH, Zhu ZA. Elevated expression of solute carrier family 22 member 18 increases the sensitivity of U251 glioma cells to BCNU. Oncol Lett. 2011;2:1139–42.

    Article  CAS  Google Scholar 

  15. Chu SH, Zhou ZM, Karri S, Li ZQ, Zhao JM. In vitro and in vivo radiosensitization of human glioma U251 cells induced by upregulated expression of SLC22A18. Cancer Gene Ther. 2014;21:103–9.

    Article  CAS  Google Scholar 

  16. Kouzarides T. Histone acetylases and deacetylases in cell proliferation. Curr Opin Genet Dev. 1999;9:40–8.

    Article  CAS  Google Scholar 

  17. Dickinson LA, Joh T, Kohwi Y, Kohwi-Shigematsu T. A tissue-specific MAR⁄SAR DNA-binding protein with unusual binding site recognition. Cell. 1992;70:631–45.

    Article  CAS  Google Scholar 

  18. Hanker LC, Karn T, Mavrova-Risteska L, Ruckhäberle E, Gaetje R, Holtrich U, et al. SATB1 gene expression and breast cancer prognosis. Breast. 2011;20:309–13.

    Article  Google Scholar 

  19. Cheng C, Lu X, Wang G, Zheng L, Shu X, Zhu S, et al. Expression of SATB1 and heparanase in gastric cancer and its relationship to clinicopathologic features. APMIS. 2010;118:855–63.

    Article  CAS  Google Scholar 

  20. Chu SH, Ma YB, Feng DF, Zhang H, Zhu ZA, Li ZQ, et al. Upregulation of SATB1 is associated with the development and progression of glioma. J Transl Med. 2012;10:149.

    Article  CAS  Google Scholar 

  21. Sun F, Lu X, Li H, Peng Z, Wu K, Wang G, et al. Special AT-rich sequence binding protein 1 regulates the multidrug resistance and invasion of human gastric cancer cells. Oncol Lett. 2012;4:156–62.

    Article  CAS  Google Scholar 

  22. Zhang H, Su X, Guo L, Zhong L, Li W, Yue Z, et al. Silencing SATB1 inhibits the malignant phenotype and increases sensitivity of human osteosarcoma U2OS cells to arsenic trioxide. Int J Med Sci. 2014;11:1262–9.

    Article  Google Scholar 

  23. Chu SH, Zhou ZM, Feng DF, Ma YB. Inhibition of human glioma U251 cells growth in vitro and in vivo by hydroxyapatite nanoparticle-assisted delivery of short hairpin RNAs against SATB1. Mol Biol Rep. 2014;41:977–86.

    Article  CAS  Google Scholar 

  24. Chu SH, Feng DF, Zhang H, Chen ET, Duan ZX, Li XY, et al. c-Met-targeted RNA interference inhibits growth and metastasis of glioma U251 cells in vitro. J Neurooncol. 2009;93:183–9.

    Article  CAS  Google Scholar 

  25. Chu SH, Feng DF, Ma YB, Li ZQ. Hydroxyapatite nanoparticles inhibit the growth of human glioma cells in vitro and in vivo. Int J Nanomed. 2012;7:3659–66.

    Article  CAS  Google Scholar 

  26. Chu SH, Karri S, Ma YB, Feng DF, Li ZQ. In vitro and in vivo radiosensitization induced by hydroxyapatite nanoparticles. Neuro Oncol. 2013;15:880–90.

    Article  CAS  Google Scholar 

  27. Chu SH, Ma YB, Feng DF, Zhang H, Qiu JH, Zhu ZA. c-Met antisense oligodeoxynucleotides increase sensitivity of human glioma cells to paclitaxel. Oncol Rep. 2010;24:189–94.

    Article  CAS  Google Scholar 

  28. Li K, Cai R, Dai BB, Zhang XQ, Wang HJ, Ge SF, et al. SATB1 regulates SPARC expression in K562 cell line through binding to a specific sequence in the third intron. Biochem Biophys Res Commun. 2007;356:6–12.

    Article  CAS  Google Scholar 

  29. Chu SH, Feng DF, Ma YB, Zhang H, Zhu ZA, Li ZQ, et al. Promoter methylation and downregulation of SLC22A18 are associated with the development and progression of human glioma. J Transl Med. 2011;9:156.

    Article  CAS  Google Scholar 

  30. Kohsaka S, Wang L, Yachi K, Mahabir R, Narita T, Itoh T, et al. STAT3 inhibition overcomes temozolomide resistance in glioblastoma by downregulating MGMT expression. Mol Cancer Ther. 2012;11:1289–99.

    Article  CAS  Google Scholar 

  31. Patyka M, Sharifi Z, Petrecca K, Mansure J, Jean-Claude B, Sabri S. Sensitivity to PRIMA-1MET is associated with decreased MGMT in human glioblastoma cells and glioblastoma stem cells irrespective of p53 status. Oncotarget. 2016;7:60245–69.

    Article  Google Scholar 

  32. Albulescu R, Codrici E, Popescu ID, Mihai S, Necula LG, Petrescu D, et al. Cytokine patterns in brain tumour progression. Mediat Inflamm. 2013;2013:979748.

    Article  Google Scholar 

  33. Lu KV, Chang JP, Parachoniak CA, Pandika MM, Aghi MK, Meyronet D, et al. VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell. 2012;22:21–35.

    Article  CAS  Google Scholar 

  34. Carro MS, Lim WK, Alvarez MJ, Bollo RJ, Zhao X, Snyder EY, et al. The transcriptional network for mesenchymal transformation of brain tumours. Nature. 2010;463:318–25.

    Article  CAS  Google Scholar 

  35. Li QQ, Chen ZQ, Xu JD, Cao XX, Chen Q, Liu XP, et al. Overexpression and involvement of special AT-rich sequence binding protein 1 in multidrug resistance in human breast carcinoma cells. Cancer Sci. 2010;101:80–86.

    Article  CAS  Google Scholar 

  36. Lv C, Bai Z, Liu Z, Luo P, Zhang J. MicroRNA-495 suppresses human renal cell carcinoma malignancy by targeting SATB1. Am J Transl Res. 2015;7:1992–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang G, Li B, Fu Y, He M, Wang J, Shen P, et al. miR-23a suppresses proliferation of osteosarcoma cells by targeting SATB1. Tumour Biol. 2015;36:4715–21.

    Article  CAS  Google Scholar 

  38. Shi L, Chen J, Yang J, Pan T, Zhang S, Wang Z. MiR-21 protected human glioblastoma U87MG cells from chemotherapeutic drug temozolomide induced apoptosis by decreasing Bax/Bcl-2 ratio and caspase-3 activity. Brain Res. 2010;1352:255–64.

    Article  CAS  Google Scholar 

  39. Ujifuku K, Mitsutake N, Takakura S, Matsuse M, Saenko V, Suzuki K, et al. miR-195, miR-455-3p and miR-10a(*) are implicated in acquired temozolomide resistance in glioblastoma multiforme cells. Cancer Lett. 2010;296:241–8.

    Article  CAS  Google Scholar 

  40. Beale P, Judson I, Moore S, Statkevich P, Marco A, Cutler DL, et al. Effect of gastric pH on the relative oral bioavailability and pharmacokinetics of temozolomide. Cancer Chemother Pharmacol. 1999;44:389–94.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Scientific Research Foundation for the Returned Overseas Chinese Scholars (082003), the Research Foundation of Shanghai Municipal Health and Family Planning Commission (201540266), the Shanghai Jiao Tong University Medicine-Engineering Cross Research Foundation (YG2015MS25) and the Research Foundation of Shanghai No. 3 People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (syz2015-015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Hua Chu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Ma, YB. & Chu, SH. Silencing SATB1 overcomes temozolomide resistance by downregulating MGMT expression and upregulating SLC22A18 expression in human glioblastoma cells. Cancer Gene Ther 25, 309–316 (2018). https://doi.org/10.1038/s41417-018-0040-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-018-0040-3

This article is cited by

Search

Quick links