Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Serum exosomes contain ECRG4 mRNA that suppresses tumor growth via inhibition of genes involved in inflammation, cell proliferation, and angiogenesis

Subjects

Abstract

Esophageal cancer related gene-4 (Ecrg4) has been shown to be a tumor suppressor in many organs. Exosomes are naturally secreted nanosized particles that carry signal molecules including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and messenger RNAs (mRNAs) among others. Upon internalization, exosomes unload their cargos that in turn modulate the biology of the recipient cells. Mounting evidence has shown that exosomal miRNAs are functional. However, reports that exosomes carry functional mRNAs remain scarce. We found that serum exosomes contain ECRG4 open reading frame. To simulate serum exosomal ECRG4, stable cell line expressing ECRG4 was created, from which exosomes were isolated and characterized, and the internalization and the resulting biological effects of exosomal ECRG4 were evaluated. Results showed that serum exosomes contain higher levels of ECRG4 mRNA in healthy individuals than their cancer counterparts. Exosomal ECRG4 can be internalized and unload the encapsulated ECRG4 into recipient cells, which subsequently suppressed cell proliferation in vitro, and inhibited tumor growth in a xenograft mouse model. Mechanistically, ECRG4-containing exosomes, when internalized, suppressed the expression of genes commonly implicated in inflammation, cell proliferation, and angiogenesis. Given that exosome is an ideal vehicle for therapeutics delivery and that ECRG4 is a tumor suppressor gene, the exosomal ECRG4 can be exploited as a formulation for cancer gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Su T, Liu H, Lu S. Cloning and identification of cDNA fragments related to human esophageal cancer. Zhonghua zhong liu za zhi [Chin J Oncol]. 1998;20:254–7.

    CAS  Google Scholar 

  2. Xu T, Xiao D, Zhang X. ECRG4 inhibits growth and invasiveness of squamous cell carcinoma of the head and neck in vitro and in vivo. Oncol Lett. 2013;5:1921–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cai Z, Liang P, Xuan J, Wan J, Guo H. ECRG4 as a novel tumor suppressor gene inhibits colorectal cancer cell growth in vitro and in vivo. Tumour Biol. 2016;37:9111–20.

    Article  CAS  PubMed  Google Scholar 

  4. Gotze S, Feldhaus V, Traska T, Wolter M, Reifenberger G, Tannapfel A, et al. ECRG4 is a candidate tumor suppressor gene frequently hypermethylated in colorectal carcinoma and glioma. BMC Cancer. 2009;9:447.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Yue CM, Deng DJ, Bi MX, Guo LP, Lu SH. Expression of ECRG4, a novel esophageal cancer-related gene, down-regulated by CpG island hypermethylation in human esophageal squamous cell carcinoma. World J Gastroenterol. 2003;9:1174–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li LW, Yu XY, Yang Y, Zhang CP, Guo LP, Lu SH. Expression of esophageal cancer related gene 4 (ECRG4), a novel tumor suppressor gene, in esophageal cancer and its inhibitory effect on the tumor growth in vitro and in vivo. Int J Cancer. 2009;125:1505–13.

    Article  CAS  PubMed  Google Scholar 

  7. Li W, Liu X, Zhang B, Qi D, Zhang L, Jin Y, et al. Overexpression of candidate tumor suppressor ECRG4 inhibits glioma proliferation and invasion. J Exp Clin Cancer Res. 2010;29:89.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Li L, Li X, Wang W, Gao T, Zhou Y, Lu S. Soluble purified recombinant C2ORF40 protein inhibits tumor cell growth in vivo by decreasing telomerase activity in esophageal squamous cell carcinoma. Oncol Lett. 2016;12:2820–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vanaja DK, Ehrich M, Van den Boom D, Cheville JC, Karnes RJ, Tindall DJ, et al. Hypermethylation of genes for diagnosis and risk stratification of prostate cancer. Cancer Invest. 2009;27:549–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee J, Dang X, Borboa A, Coimbra R, Baird A, Eliceiri BP. Thrombin-processed Ecrg4 recruits myeloid cells and induces antitumorigenic inflammation. Neuro Oncol. 2015;17:685–96.

    Article  CAS  PubMed  Google Scholar 

  11. Moriguchi T, Kaneumi S, Takeda S, Enomoto K, Mishra SK, Miki T, et al. Ecrg4 contributes to the anti-glioma immunosurveillance through type-I interferon signaling. Oncoimmunology. 2016;5:e1242547.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Ventimiglia LN, Alonso MA, Biogenesis and function of T cell-derived exosomes. Front Cell Dev Biol. 2016;4:84

    Article  PubMed  PubMed Central  Google Scholar 

  13. Johnstone RM, Mathew A, Mason AB, Teng K. Exosome formation during maturation of mammalian and avian reticulocytes: evidence that exosome release is a major route for externalization of obsolete membrane proteins. J Cell Physiol. 1991;147:27–36.

    Article  CAS  PubMed  Google Scholar 

  14. Xitong D, Xiaorong Z. Targeted therapeutic delivery using engineered exosomes and its applications in cardiovascular diseases. Gene. 2016;575(Part 2):377–84.

    Article  CAS  PubMed  Google Scholar 

  15. Botti G, Marra L, Malzone MG, Anniciello A, Botti C, Franco R et al. LncRNA HOTAIR as prognostic circulating marker and potential therapeutic target in patients with tumor diseases. Curr Drug Targets 2015. 2017;18(1):27-34

    Article  CAS  Google Scholar 

  16. Jalabert A, Vial G, Guay C, Wiklander OP, Nordin JZ, Aswad H, et al. Exosome-like vesicles released from lipid-induced insulin-resistant muscles modulate gene expression and proliferation of beta recipient cells in mice. Diabetologia. 2016;59:1049–58.

    Article  CAS  PubMed  Google Scholar 

  17. Xiao D, Barry S, Kmetz D, Egger M, Pan J, Rai SN, et al. Melanoma cell-derived exosomes promote epithelial–mesenchymal transition in primary melanocytes through paracrine/autocrine signaling in the tumor microenvironment. Cancer Lett. 2016;376:318–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Silva A, Bullock M, Calin G. The clinical relevance of long non-coding RNAs in cancer. Cancers. 2015;7:2169–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.

    Article  CAS  PubMed  Google Scholar 

  20. Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10:1470–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lasser C, Alikhani VS, Ekstrom K, Eldh M, Paredes PT, Bossios A, et al. Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J Transl Med. 2011;9:9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Batagov AO, Kurochkin IV. Exosomes secreted by human cells transport largely mRNA fragments that are enriched in the 3′-untranslated regions. Biol Direct. 2013;8:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Aqil F, Munagala R, Jeyabalan J, Agrawal AK, Gupta R. Exosomes for the enhanced tissue bioavailability and efficacy of curcumin. AAPS J. 2017;19:1691–702.

    Article  CAS  PubMed  Google Scholar 

  24. Srivastava A, Amreddy N, Babu A, Panneerselvam J, Mehta M, Muralidharan R, et al. Nanosomes carrying doxorubicin exhibit potent anticancer activity against human lung cancer cells. Sci Rep. 2016;6:38541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Rel. 2015;207:18–30.

    Article  CAS  Google Scholar 

  26. Regazzi R. MicroRNAs as therapeutic targets for the treatment of diabetes mellitus and its complications. Expert Opin Ther Targets. 2018;22:153–60.

    Article  CAS  PubMed  Google Scholar 

  27. Gilligan KE, Dwyer RM. Engineering exosomes for cancer therapy. Int J Mol Sci. 2017;18:1122.

    Article  PubMed Central  Google Scholar 

  28. Tian Y, Li S, Song J, Ji T, Zhu M, Anderson GJ, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials. 2014;35:2383–90.

    Article  CAS  PubMed  Google Scholar 

  29. Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M. A comprehensive overview of exosomes as drug delivery vehicles—endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta. 2014;1846:75–87.

    CAS  PubMed  Google Scholar 

  30. Wang X, Zhang H, Yang H, Bai M, Ning T, Li S, et al. Cell-derived exosomes as promising carriers for drug delivery and targeted therapy. Curr Cancer Drug Targets. 2017;18:347–54.

    Article  CAS  Google Scholar 

  31. Lamichhane TN, Raiker RS, Jay SM. Exogenous DNA loading into extracellular vesicles via electroporation is size-dependent and enables limited gene delivery. Mol Pharm. 2015;12:3650–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kooijmans SA, Stremersch S, Braeckmans K, de Smedt SC, Hendrix A, Wood MJ, et al. Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. J Control Rel. 2013;172:229–38.

    Article  CAS  Google Scholar 

  33. Gresch O, Engel FB, Nesic D, Tran TT, England HM, Hickman ES, et al. New non-viral method for gene transfer into primary cells. Methods. 2004;33:151–63.

    Article  CAS  PubMed  Google Scholar 

  34. Munoz JL, Bliss SA, Greco SJ, Ramkissoon SH, Ligon KL, Rameshwar P. Delivery of functional anti-miR-9 by mesenchymal stem cell-derived exosomes to glioblastoma multiforme cells conferred chemosensitivity. Mol Ther Nucleic Acids. 2013;2:e126.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. O’Brien K, Lowry MC, Corcoran C, Martinez VG, Daly M, Rani S, et al. miR-134 in extracellular vesicles reduces triple-negative breast cancer aggression and increases drug sensitivity. Oncotarget. 2015;6:32774–89.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Baird A, Lee J, Podvin S, Kurabi A, Dang X, Coimbra R, et al. Esophageal cancer-related gene 4 at the interface of injury, inflammation, infection, and malignancy. Gastrointest Cancer. 2014;2014:131–42.

    PubMed Central  PubMed  Google Scholar 

  37. Dang X, Podvin S, Coimbra R, Eliceiri B, Baird A. Cell-specific processing and release of the hormone-like precursor and candidate tumor suppressor gene product, Ecrg4. Cell Tissue Res. 2012;348:505–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ozawa A, Lick AN, Lindberg I. Processing of proaugurin is required to suppress proliferation of tumor cell lines. Mol Endocrinol. 2011;25:776–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li LW, Li YY, Li XY, Zhang CP, Zhou Y, Lu SH. A novel tumor suppressor gene ECRG4 interacts directly with TMPRSS11A (ECRG1) to inhibit cancer cell growth in esophageal carcinoma. BMC Cancer. 2011;11:52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li L, Wang W, Li X, Gao T. Association of ECRG4 with PLK1, CDK4, PLOD1 and PLOD2 in esophageal squamous cell carcinoma. Am J Transl Res. 2017;9:3741–8.

    PubMed Central  PubMed  Google Scholar 

  41. Moriguchi T, Takeda S, Iwashita S, Enomoto K, Sawamura T, Koshimizu U, et al. Ecrg4 peptide is the ligand of multiple scavenger receptors. Sci Rep. 2018;8:4048.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol. 2002;29 Suppl 16:15–8.

    Article  CAS  PubMed  Google Scholar 

  43. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mirabeau O, Perlas E, Severini C, Audero E, Gascuel O, Possenti R, et al. Identification of novel peptide hormones in the human proteome by hidden Markov model screening. Genome Res. 2007;17:320–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hadla M, Palazzolo S, Corona G, Caligiuri I, Canzonieri V, Toffoli G, et al. Exosomes increase the therapeutic index of doxorubicin in breast and ovarian cancer mouse models. Nanomed (Lond). 2016;11:2431–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by Luzhou-Sichuan Medical University joint scientific funding (2015LZCYD-S03(4/7)), funding from National Natural Science Foundation of China (#81770336 to XD), and Promotion/Application Project of the Committee of Health and Family Planning of Sichuan (16PJ535 to LM), and Key Project of Educational Department of Sichuan (17ZA0443 to LM). The funding agencies have no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript

Author contributions:

Conceived the research and wrote the manuscript: XD; performed the experiments, collected and analyzed data: LM, XL, SG, HY, YJ, WH, XS. All authors have read and approved the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xitong Dang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, L., Li, X., Gong, S. et al. Serum exosomes contain ECRG4 mRNA that suppresses tumor growth via inhibition of genes involved in inflammation, cell proliferation, and angiogenesis. Cancer Gene Ther 25, 248–259 (2018). https://doi.org/10.1038/s41417-018-0032-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-018-0032-3

This article is cited by

Search

Quick links