Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

miR-182 regulates trastuzumab resistance by targeting MET in breast cancer cells

Abstract

It has been found that microRNAs (miRNAs) play a key role in drug resistance. The purpose of the current study was to investigate the function of miR-182 in trastuzumab resistance in breast cancer cells. The results showed that both breast cancer SKBR3 trastuzumab-resistant cells (SKBR3/TR) and BT474 trastuzumab-resistant cells (BT474/TR) were associated with miR-182 downregulation compared with their parental cells. Ectopic expression of the miR-182 mimic inhibited trastuzumab resistance, decreasing the invasion and migration of these trastuzumab-resistant cells. However, the miR-182 inhibitor increased trastuzumab resistance, cell invasion, and migration in the parental cells. In addition, MET is a directly targeted gene of miR-182 in breast cancer cells. MET knockdown showed an inhibitory effect of trastuzumab resistance on trastuzumab-resistant cells. In contrast, MET overexpression in SKBR3 cells produced an effect that promotes resistance to trastuzumab. Moreover, we revealed that overexpression of miR-182 reduced trastuzumab resistance in trastuzumab-resistant cells due in part to MET/PI3K/AKT/mTOR signaling pathway inactivation. Furthermore, miR-182 could also sensitize SKBR3/TR cells to trastuzumab in vivo. In conclusion, our results suggest that the activation of miR-182 or inactivation of its target gene pathway could be used as a new method to reverse trastuzumab resistance in breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol. 2016;13:674–90.

    Article  CAS  Google Scholar 

  2. Dai X, Li T, Bai Z, Yang Y, Liu X, Zhan J, Shi B. Breast cancer intrinsic subtype classification, clinical use and future trends. Am J Cancer Res. 2015;5:2929–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Zeichner SB, Terawaki H, Gogineni K. A review of systemic treatment in metastatic triple-negative breast cancer. Breast Cancer Basic Clin Res. 2016;10:25–36.

    Article  CAS  Google Scholar 

  4. Collignon J, Lousberg L, Schroeder H, Jerusalem G. Triple-negative breast cancer: treatment challenges and solutions. Breast Cancer. 2016;8:93–107.

    CAS  PubMed  Google Scholar 

  5. Ieni A, Barresi V, Ricciardi GR, Adamo B, Adamo V, Tuccari G. Prognostic value of androgen receptor expression in triple negative breast carcinomas: personal experience and comments on a review about “Triple-negative breast cancer: treatment challenges and solutions” by Collignon et al. Breast Cancer. 2016;8:157–9.

    PubMed  Google Scholar 

  6. Dent S, Oyan B, Honig A, Mano M, Howell S. HER2-targeted therapy in breast cancer: a systematic review of neoadjuvant trials. Cancer Treat Rev. 2013;39:622–31.

    Article  CAS  Google Scholar 

  7. Arteaga CL, Sliwkowski MX, Osborne CK, Perez EA, Puglisi F, Gianni L. Treatment of HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin Oncol. 2011;9:16–32.

    Article  Google Scholar 

  8. Maximiano S, Magalhaes P, Guerreiro MP, Morgado M. Trastuzumab in the treatment of breast cancer. BioDrugs Clin Immunother Biopharm Gene Ther. 2016;30:75–86.

    CAS  Google Scholar 

  9. Laakmann E, Muller V, Schmidt M, Witzel I. Systemic treatment options for HER2-positive breast cancer patients with brain metastases beyond trastuzumab: a literature review. Breast Care. 2017;12:168–71.

    Article  Google Scholar 

  10. Luque-Cabal M, Garcia-Teijido P, Fernandez-Perez Y, Sanchez-Lorenzo L, Palacio-Vazquez I. Mechanisms behind the resistance to trastuzumab in HER2-amplified breast cancer and strategies to overcome it. Clin Med Insights Oncol. 2016;10:21–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hayes J, Peruzzi PP, Lawler S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med. 2014;20:460–9.

    Article  CAS  Google Scholar 

  12. Cai Y, Yu X, Hu S, Yu J. A brief review on the mechanisms of miRNA regulation. Genom Proteom Bioinforma. 2009;7:147–54.

    Article  CAS  Google Scholar 

  13. Majumder S, Jacob ST. Emerging role of microRNAs in drug-resistant breast cancer. Gene Expr. 2011;15:141–51.

    Article  Google Scholar 

  14. Ma J, Dong C, Ji C. MicroRNA and drug resistance. Cancer Gene Ther. 2010;17:523–31.

    Article  CAS  Google Scholar 

  15. Arya D, Sachithanandan SP, Ross C, Palakodeti D, Li S, Krishna S. MiRNA182 regulates percentage of myeloid and erythroid cells in chronic myeloid leukemia. Cell Death Dis. 2017;8:e2547.

    Article  Google Scholar 

  16. Bian DL, Wang XM, Huang K, Zhai QX, Yu GB, Wu CH. Expression and regulatory effects of microRNA-182 in osteosarcoma cells: a pilot study. Oncol Lett. 2016;11:3040–8.

    Article  CAS  Google Scholar 

  17. Liu R, Li J, Teng Z, Zhang Z, Xu Y. Overexpressed microRNA-182 promotes proliferation and invasion in prostate cancer PC-3 cells by down-regulating N-myc downstream regulated gene 1 (NDRG1). PLoS ONE. 2013;8:e68982.

    Article  CAS  Google Scholar 

  18. Nahta R, Takahashi T, Ueno NT, Hung MC, Esteva FJ. P27(kip1) down-regulation is associated with trastuzumab resistance in breast cancer cells. Cancer Res. 2004;64:3981–6.

    Article  CAS  Google Scholar 

  19. Gijsen M, King P, Perera T, Parker PJ, Harris AL, Larijani B, Kong A. HER2 phosphorylation is maintained by a PKB negative feedback loop in response to anti-HER2 herceptin in breast cancer. PLoS Biol. 2010;8:e1000563.

    Article  CAS  Google Scholar 

  20. Hu J, Lv G, Zhou S, Zhou Y, Nie B, Duan H, Zhang Y, Yuan X. The downregulation of miR-182 is associated with the growth and invasion of osteosarcoma cells through the regulation of TIAM1 expression. PLoS ONE. 2015;10:e0121175.

    Article  Google Scholar 

  21. Wee P, Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers. 2017;9:E52.

    Article  Google Scholar 

  22. Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, Sarkar S. Drug resistance in cancer: an overview. Cancers. 2014;6:1769–92.

    Article  CAS  Google Scholar 

  23. Rueff J, Rodrigues AS. Cancer drug resistance: a brief overview from a genetic viewpoint. Methods Mol Biol. 2016;1395:1–18.

    Article  CAS  Google Scholar 

  24. Kerbel RS. Molecular and physiologic mechanisms of drug resistance in cancer: an overview. Cancer Metastas Rev. 2001;20:1–2.

    Article  CAS  Google Scholar 

  25. O’Brien NA, Browne BC, Chow L, Wang Y, Ginther C, Arboleda J, Duffy MJ, Crown J, O’Donovan N, Slamon DJ. Activated phosphoinositide 3-kinase/AKT signaling confers resistance to trastuzumab but not lapatinib. Mol Cancer Ther. 2010;9:1489–502.

    Article  Google Scholar 

  26. Gajria D, Chandarlapaty S. HER2-amplified breast cancer: mechanisms of trastuzumab resistance and novel targeted therapies. Expert Rev Anticancer Ther. 2011;11:263–75.

    Article  CAS  Google Scholar 

  27. Wei Q, Lei R, Hu G. Roles of miR-182 in sensory organ development and cancer. Thorac Cancer. 2015;6:2–9.

    Article  CAS  Google Scholar 

  28. Kouri FM, Hurley LA, Daniel WL, Day ES, Hua Y, Hao L, Peng CY, Merkel TJ, Queisser MA, Ritner C, Zhang H, James CD, Sznajder JI, Chin L, Giljohann DA, Kessler JA, Peter ME, Mirkin CA, Stegh AH. miR-182 integrates apoptosis, growth, and differentiation programs in glioblastoma. Genes Dev. 2015;29:732–45.

    Article  CAS  Google Scholar 

  29. Chiang CH, Chu PY, Hou MF, Hung WC. miR-182 promotes proliferation and invasion and elevates the HIF-1alpha-VEGF-A axis in breast cancer cells by targeting FBXW7. Am J Cancer Res. 2016;6:1785–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chiang CH, Hou MF, Hung WC. Up-regulation of miR-182 by beta-catenin in breast cancer increases tumorigenicity and invasiveness by targeting the matrix metalloproteinase inhibitor RECK. Biochim Biophys Acta. 2013;1830:3067–76.

    Article  CAS  Google Scholar 

  31. McCleese JK, Bear MD, Kulp SK, Mazcko C, Khanna C, London CA. Met interacts with EGFR and Ron in canine osteosarcoma. Vet Comp Oncol. 2013;11:124–39.

    Article  CAS  Google Scholar 

  32. Minuti G, Cappuzzo F, Duchnowska R, Jassem J, Fabi A, O’Brien T, Mendoza AD, Landi L, Biernat W, Czartoryska-Arlukowicz B, Jankowski T, Zuziak D, Zok J, Szostakiewicz B, Foszczynska-Kloda M, Tempinska-Szalach A, Rossi E, Varella-Garcia M. Increased MET and HGF gene copy numbers are associated with trastuzumab failure in HER2-positive metastatic breast cancer. Br J Cancer. 2012;107:793–9.

    Article  CAS  Google Scholar 

  33. Suzuki Y, Saito Y, Terao M, Terada M, Morioka T, Tsuda B, Okamura T, Niikura N, Tokuda Y. Trastuzumab and chemotherapy after the treatment failure of lapatinib for HER2-positive metastatic breast cancer. Tokai J Exp Clin Med. 2010;35:148–51.

    CAS  PubMed  Google Scholar 

  34. Organ SL, Tsao MS. An overview of the c-MET signaling pathway. Ther Adv Med Oncol. 2011;3:S7–19.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaosong Qin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, D., Qin, X. miR-182 regulates trastuzumab resistance by targeting MET in breast cancer cells. Cancer Gene Ther 26, 1–10 (2019). https://doi.org/10.1038/s41417-018-0031-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-018-0031-4

This article is cited by

Search

Quick links