Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Therapeutic activity of retroviral replicating vector-mediated prodrug activator gene therapy for pancreatic cancer

Abstract

Toca 511, a retroviral replicating vector (RRV) encoding the yeast cytosine deaminase (yCD) prodrug activator gene, which mediates conversion of the prodrug 5-fluorocytosine (5-FC) to the anticancer drug 5-fluorouracil (5-FU), is currently being evaluated in Phase II/III clinical trials for glioma, and showing highly promising evidence of therapeutic activity. Here we evaluated RRV-mediated prodrug activator gene therapy as a new therapeutic approach for pancreatic ductal adenocarcinoma (PDAC). RRV spread rapidly and conferred significant cytotoxicity with prodrug in a panel of PDAC cells. Efficient intratumoral replication and complete inhibition of tumor growth upon 5-FC administration were observed in both immunodeficient and immunocompetent subcutaneous PDAC models. Biodistribution of RRV was highly restricted in normal tissues, especially in immunocompetent hosts. Tumor growth inhibition by Toca 511 followed by 5-FC was also confirmed in the orthotopic PDAC model. This study provides the first proof-of-concept for application of Toca 511 and Toca FC (extended release 5-FC) to the treatment of human PDAC, and provided support for inclusion of PDAC in a Phase I study evaluating Toca 511 in various systemic malignancies, (NCT02576665), which has recently been initiated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.

    Article  PubMed  Google Scholar 

  2. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74:2913–21.

    Article  PubMed  CAS  Google Scholar 

  3. Ryan DP, Hong TS, Bardeesy N. Pancreatic adenocarcinoma. N Engl J Med. 2014;371:1039–49.

    Article  PubMed  CAS  Google Scholar 

  4. Werner J, Combs SE, Springfeld C, Hartwig W, Hackert T, Buchler MW. Advanced-stage pancreatic cancer: therapy options. Nat Rev Clin Oncol. 2013;10:323–33.

    Article  PubMed  CAS  Google Scholar 

  5. Conroy T, Desseigne F, Ychou M, Bouche O, Guimbaud R, Becouarn Y, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364:1817–25.

    Article  PubMed  CAS  Google Scholar 

  6. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369:1691–703.

    Article  CAS  Google Scholar 

  7. Chen Y, Sun XJ, Jiang TH, Mao AW. Combined radiochemotherapy in patients with locally advanced pancreatic cancer: a meta-analysis. World J Gastroenterol. 2013;19:7461–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Ginn SL, Alexander IE, Edelstein ML, Abedi MR, Wixon J. Gene therapy clinical trials worldwide to 2012—an update. J Gene Med. 2013;15:65–77.

    Article  PubMed  CAS  Google Scholar 

  9. Brenner MK, Gottschalk S, Leen AM, Vera JF. Is cancer gene therapy an empty suit? Lancet Oncol. 2013;14:e447–56.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Singh HM, Ungerechts G, Tsimberidou AM. Gene and cell therapy for pancreatic cancer. Expert Opin Biol Ther. 2015; https://doi.org/10.1517/14712598.2015.1001734

  11. Russell SJ, Peng KW, Bell JC. Oncolytic virotherapy. Nat Biotechnol. 2012;30:658–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Hecht JR, Bedford R, Abbruzzese JL, Lahoti S, Reid TR, Soetikno RM, et al. A phase I/II trial of intratumoral endoscopic ultrasound injection of ONYX-015 with intravenous gemcitabine in unresectable pancreatic carcinoma. Clin Cancer Res. 2003;9:555–61.

    PubMed  CAS  Google Scholar 

  13. Hecht JR, Farrell JJ, Senzer N, Nemunaitis J, Rosemurgy A, Chung T, et al. EUS or percutaneously guided intratumoral TNFerade biologic with 5-fluorouracil and radiotherapy for first-line treatment of locally advanced pancreatic cancer: a phase I/II study. Gastrointest Endosc. 2012;75:332–8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Herman JM, Wild AT, Wang H, Tran PT, Chang KJ, Taylor GE, et al. Randomized phase III multi-institutional study of TNFerade biologic with fluorouracil and radiotherapy for locally advanced pancreatic cancer: final results. J Clin Oncol. 2013;31:886–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Nakao A, Kasuya H, Sahin TT, Nomura N, Kanzaki A, Misawa M, et al. A phase I dose-escalation clinical trial of intraoperative direct intratumoral injection of HF10 oncolytic virus in non-resectable patients with advanced pancreatic cancer. Cancer Gene Ther. 2011;18:167–75.

    Article  PubMed  CAS  Google Scholar 

  16. Noonan AM, Farren MR, Geyer SM, Huang Y, Tahiri S, Ahn D, et al. Randomized phase 2 trial of the oncolytic virus pelareorep (reolysin) in upfront treatment of metastatic pancreatic adenocarcinoma. Mol Ther. 2016;https://doi.org/10.1038/mt.2016.66

  17. Wang WJ, Tai CK, Kasahara N, Chen TC. Highly efficient and tumor-restricted gene transfer to malignant gliomas by replication-competent retroviral vectors. Hum Gene Ther. 2003;14:117–27.

    Article  PubMed  CAS  Google Scholar 

  18. Tai CK, Wang WJ, Chen TC, Kasahara N. Single-shot, multicycle suicide gene therapy by replication-competent retrovirus vectors achieves long-term survival benefit in experimental glioma. Mol Ther. 2005;12:842–51.

    Article  PubMed  CAS  Google Scholar 

  19. Wang W, Tai CK, Kershaw AD, Solly SK, Klatzmann D, Kasahara N, et al. Use of replication-competent retroviral vectors in an immunocompetent intracranial glioma model. Neurosurg Focus. 2006;20:E25.

    Article  PubMed  Google Scholar 

  20. Tai CK, Wang W, Lai YH, Logg CR, Parker WB, Li YF, et al. Enhanced efficiency of prodrug activation therapy by tumor-selective replicating retrovirus vectors armed with the Escherichia coli purine nucleoside phosphorylase gene. Cancer Gene Ther. 2010;17:614–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Perez OD, Logg CR, Hiraoka K, Diago O, Burnett R, Inagaki A, et al. Design and selection of Toca 511 for clinical use: modified retroviral replicating vector with improved stability and gene expression. Mol Ther. 2012;20:1689–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Cloughesy TF, Landolfi J, Hogan DJ, Bloomfield S, Carter B, Chen CC, et al. Phase 1 trial of vocimagene amiretrorepvec and 5-fluorocytosine for recurrent high-grade glioma. Sci Transl Med. 2016;8:341ra75.

    Article  PubMed  CAS  Google Scholar 

  23. Ostertag D, Amundson KK, Lopez Espinoza F, Martin B, Buckley T, Galvao da Silva AP, et al. Brain tumor eradication and prolonged survival from intratumoral conversion of 5-fluorocytosine to 5-fluorouracil using a nonlytic retroviral replicating vector. Neuro Oncol. 2012;14:145–59.

    Article  PubMed  CAS  Google Scholar 

  24. Hiraoka K, Inagaki A, Kato Y, Huang TT, Mitchell LA, Kamijima S, et al. Retroviral replicating vector-mediated gene therapy achieves long-term control of tumor recurrence and leads to durable anticancer immunity. Neuro Oncol. 2017;https://doi.org/10.1093/neuonc/nox038

  25. Mitchell LA, Lopez Espinoza F, Mendoza D, Kato Y, Inagaki A, Hiraoka K, et al. Toca 511 gene transfer and treatment with the prodrug, 5-fluorocytosine, promotes durable antitumor immunity in a mouse glioma model. Neuro Oncol. 2017;https://doi.org/10.1093/neuonc/nox037

  26. Hiraoka K, Kimura T, Logg CR, Kasahara N. Tumor-selective gene expression in a hepatic metastasis model after locoregional delivery of a replication-competent retrovirus vector. Clin Cancer Res. 2006;12:7108–16.

    Article  PubMed  CAS  Google Scholar 

  27. Hiraoka K, Kimura T, Logg CR, Tai CK, Haga K, Lawson GW, et al. Therapeutic efficacy of replication-competent retrovirus vector-mediated suicide gene therapy in a multifocal colorectal cancer metastasis model. Cancer Res. 2007;67:5345–53.

    Article  PubMed  CAS  Google Scholar 

  28. Hickey MJ, Malone CC, Erickson KL, Lin A, Soto H, Ha ET, et al. Combined alloreactive CTL cellular therapy with prodrug activator gene therapy in a model of breast cancer metastatic to the brain. Clin Cancer Res. 2013;19:4137–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Neoptolemos JP, Stocken DD, Bassi C, Ghaneh P, Cunningham D, Goldstein D, et al. Adjuvant chemotherapy with fluorouracil plus folinic acid vs gemcitabine following pancreatic cancer resection: a randomized controlled trial. JAMA. 2010;304:1073–81.

    Article  PubMed  CAS  Google Scholar 

  30. Regine WF, Winter KA, Abrams R, Safran H, Hoffman JP, Konski A, et al. Fluorouracil-based chemoradiation with either gemcitabine or fluorouracil chemotherapy after resection of pancreatic adenocarcinoma: 5-year analysis of the U.S. Intergroup/RTOG 9704 phase III trial. Ann Surg Oncol. 2011;18:1319–26.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ueno H, Ioka T, Ikeda M, Ohkawa S, Yanagimoto H, Boku N, et al. Randomized phase III study of gemcitabine plus S-1, S-1 alone, or gemcitabine alone in patients with locally advanced and metastatic pancreatic cancer in Japan and Taiwan: GEST study. J Clin Oncol. 2013;31:1640–8.

    Article  PubMed  CAS  Google Scholar 

  32. Uesaka K, Boku N, Fukutomi A, Okamura Y, Konishi M, Matsumoto I, et al. Adjuvant chemotherapy of S-1 versus gemcitabine for resected pancreatic cancer: a phase 3, open-label, randomised, non-inferiority trial (JASPAC 01). Lancet. 2016;https://doi.org/10.1016/s0140-6736(16)30583-9

  33. Vermes A, Guchelaar HJ, Dankert J. Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J Antimicrob Chemother. 2000;46:171–9.

    Article  PubMed  CAS  Google Scholar 

  34. Pergamo M, Miller G. Myeloid-derived suppressor cells and their role in pancreatic cancer. Cancer Gene Ther. 2017;24:100–5.

    Article  PubMed  CAS  Google Scholar 

  35. Karakhanova S, Link J, Heinrich M, Shevchenko I, Yang Y, Hassenpflug M, et al. Characterization of myeloid leukocytes and soluble mediators in pancreatic cancer: importance of myeloid-derived suppressor cells. Oncoimmunology. 2015;4:e998519.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Twitty CG, Diago OR, Hogan DJ, Burrascano C, Ibanez CE, Jolly DJ, et al. Retroviral replicating vectors deliver cytosine deaminase leading to targeted 5-fluorouracil-mediated cytotoxicity in multiple human cancer types. Hum Gene Ther Methods. 2016;27:17–31.

    Article  PubMed  CAS  Google Scholar 

  37. Kelly E, Russell SJ. History of oncolytic viruses: genesis to genetic engineering. Mol Ther. 2007;15:651–9.

    Article  PubMed  CAS  Google Scholar 

  38. Huber BE, Austin EA, Richards CA, Davis ST, Good SS. Metabolism of 5-fluorocytosine to 5-fluorouracil in human colorectal tumor cells transduced with the cytosine deaminase gene: significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase. Proc Natl Acad Sci USA. 1994;91:8302–6.

    Article  PubMed  CAS  Google Scholar 

  39. Chen JK, Hu LJ, Wang D, Lamborn KR, Deen DF. Cytosine deaminase/5-fluorocytosine exposure induces bystander and radiosensitization effects in hypoxic glioblastoma cells in vitro. Int J Radiat Oncol Biol Phys. 2007;67:1538–47.

    Article  PubMed  CAS  Google Scholar 

  40. Huang T, Parab S, Burnett R, Diago O, Ostertag D, Hofman FM, et al. Intravenous administration of a retroviral replicating vector, Toca 511, demonstrates therapeutic efficacy in an orthotopic immune-competent mouse glioma model. Hum Gene Ther. 2014;https://doi.org/10.1089/hum.2014.100

  41. Macdonald C, Walker S, Watts M, Ings S, Linch DC, Devereux S. Effect of changes in expression of the amphotropic retroviral receptor PiT-2 on transduction efficiency and viral titer: implications for gene therapy. Hum Gene Ther. 2000;11:587–95.

    Article  PubMed  CAS  Google Scholar 

  42. Takeuchi H, Matano T. Host factors involved in resistance to retroviral infection. Microbiol Immunol. 2008;52:318–25.

    Article  PubMed  CAS  Google Scholar 

  43. Takeuchi Y, Cosset FL, Lachmann PJ, Okada H, Weiss RA, Collins MK. Type C retrovirus inactivation by human complement is determined by both the viral genome and the producer cell. J Virol. 1994;68:8001–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Green WR. Cytotoxic T lymphocytes to endogenous mouse retroviruses and mechanisms of retroviral escape. Immunol Rev. 1999;168:271–86.

    Article  PubMed  CAS  Google Scholar 

  45. Williams KC, Burdo TH. HIV and SIV infection: the role of cellular restriction and immune responses in viral replication and pathogenesis. APMIS. 2009;117:400–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Cornetta K, Moen RC, Culver K, Morgan RA, McLachlin JR, Sturm S, et al. Amphotropic murine leukemia retrovirus is not an acute pathogen for primates. Hum Gene Ther. 1990;1:15–30.

    Article  PubMed  CAS  Google Scholar 

  47. Cornetta K, Morgan RA, Anderson WF. Safety issues related to retroviral-mediated gene transfer in humans. Hum Gene Ther. 1991;2:5–14.

    Article  PubMed  CAS  Google Scholar 

  48. Lin AH, Timberlake N, Logg CR, Liu Y, Kamijima S, Diago O, et al. MicroRNA 142-3p attenuates spread of replicating retroviral vector in hematopoietic lineage-derived cells while maintaining an antiviral immune response. Hum Gene Ther. 2014;25:759–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Takeda E, Tsuji-Kawahara S, Sakamoto M, Langlois MA, Neuberger MS, Rada C, et al. Mouse APOBEC3 restricts friend leukemia virus infection and pathogenesis in vivo. J Virol. 2008;82:10998–1008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Browne EP, Littman DR. Species-specific restriction of apobec3-mediated hypermutation. J Virol. 2008;82:1305–13.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Drs. Woong-Ryeon Park (Department of Gastroenterological Surgery II, Hokkaido University), Sara Collins and Katrin Hacke (Department of Cell Biology, University of Miami) for technical and logistical assistance. We also thank Drs. Asha Das and Nicholas A. Boyle (Tocagen) for regulatory support.

Funding: This research was supported by the JSPS KAKENHI grant number 26461936.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kei Hiraoka.

Ethics declarations

Conflict of interest

D.J.J., and H.E.G. are employees of Tocagen. N.K. is a consultant. All three have an ownership interest in Tocagen. All other authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoko, K., Hiraoka, K., Inagaki, A. et al. Therapeutic activity of retroviral replicating vector-mediated prodrug activator gene therapy for pancreatic cancer. Cancer Gene Ther 25, 184–195 (2018). https://doi.org/10.1038/s41417-018-0020-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-018-0020-7

Search

Quick links