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BACKGROUND: Invasive Lobular Carcinoma (ILC) is a morphologically distinct breast cancer subtype that represents up to 15% of
all breast cancers. Compared to Invasive Breast Carcinoma of No Special Type (IBC-NST), ILCs exhibit poorer long-term outcome and
a unique pattern of metastasis. Despite these differences, the systematic discovery of robust prognostic biomarkers and
therapeutically actionable molecular pathways in ILC remains limited.
METHODS: Pathway-centric multivariable models using statistical machine learning were developed and tested in seven
retrospective clinico-genomic cohorts (n= 996). Further external validation was performed using a new RNA-Seq clinical cohort of
aggressive ILCs (n= 48).
RESULTS AND CONCLUSIONS:mRNA dysregulation scores of 25 pathways were strongly prognostic in ILC (FDR-adjusted P < 0.05).
Of these, three pathways including Cell-cell communication, Innate immune system and Smooth muscle contraction were also
independent predictors of chemotherapy response. To aggregate these findings, a multivariable machine learning predictor called
PSILC was developed and successfully validated for predicting overall and metastasis-free survival in ILC. Integration of PSILC with
CRISPR-Cas9 screening data from breast cancer cell lines revealed 16 candidate therapeutic targets that were synthetic lethal with
high-risk ILCs. This study provides interpretable prognostic and predictive biomarkers of ILC which could serve as the starting points
for targeted drug discovery for this disease.

British Journal of Cancer; https://doi.org/10.1038/s41416-024-02679-7

INTRODUCTION
Invasive Lobular Carcinoma (ILC) is the second most frequently
occurring histological subtype of breast cancer after Invasive Breast
Carcinoma of No Special Type (IBC-NST, formerly referred to as
invasive ductal carcinoma or IDC), representing up to 15% of all
breast cancer cases (reviewed in [1–3]). ILC is commonly
distinguished by small discohesive cancer cells permeating the
stroma in an individually dispersed or single-file pattern [1, 2, 4]. The
loss of the calcium-dependent cell-cell adhesion protein, E-cadherin
(encoded by CDH1) is thought to cause the lack of cellular cohesion
in ILCs and is seen in over 85% of ILCs [1, 5]. In addition to
E-cadherin deficiency, ILCs exhibit a low proliferation index (Ki67),
oestrogen receptor (ER) and progesterone receptor (PgR) positivity,
and low tumour purity [2, 5]. Compared to ER positive (ER+) IBC-
NST, ER+ ILCs present distinctive morphological and pathologic
features with worse disease free and overall survival at 10 years, and
unusual metastatic patterns [2, 6–8].
Large-scale genomic studies have revealed a higher alteration

rate in driver genes PIK3CA, TBX3, FOXA1, RUNX1 and PTEN, and a
lower alteration rate in TP53, MYC, ERBB2/3 and GATA3 [5, 9, 10] in

ILCs when compared to IBC-NST. Mutations in PIK3CA and AKT1
along with PTEN inactivating events in ILCs lead to increased
activity of the PI3K/Akt signalling pathway [5]. Pathways including
MAPK and metabotropic glutamate receptor signalling [5],
WNT4 signalling [11] and ERRγ/AP1 signalling [12] have also been
linked to therapy resistance, suggesting ILCs are likely to be driven
by a complex interplay between multiple molecular pathways.
Despite clear histological, molecular and clinical differences

between ILCs and IBC-NST, the treatment options for the majority
of ILCs (i.e. ER+) and IBC-NST remain the same, involving a
combination of surgery, radiotherapy, chemotherapy and hor-
mone therapy [13]. These treatment options are typically guided
by immunohistochemical quantification of ER, PR, and HER2, and
additional tests such as PREDICT [14] and Oncotype DX [15],
neither of which takes morphology into account. Whilst current
therapeutic options offer good short-term prognosis, longer-term
outcome (beyond 5 years) of ILCs remains inferior, with ILCs
displaying preferential metastatic propensity to bone and gastro-
intestinal tract compared to patients with the more commonly
diagnosed IBC-NST [6, 7, 16]. There is, therefore, an unmet need to
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design molecular tests specifically for ILCs, that not only predict
patient outcome and response to current therapies, but also
reveal key underlying biology for the development of next-
generation targeted therapies.
A number of existing molecular biomarkers originally designed

for ER+ breast cancer subtypes have been tested in ILC cohorts
with the aim of providing prognostic information beyond classic
clinico-pathologic characteristics (reviewed in [2, 10, 17]).
Although these biomarkers have shown prognostic value in ILC
[18–22], they were neither developed to capture ILC-specific
biology nor to predict late recurrences, which remains a key
clinical challenge. Recent genome profiling efforts have led to the
discovery of molecular subtypes of ILC [5, 23] as well as the first
ILC risk predictor, LobSig [9]. Whilst these subtypes advance our
understanding of the molecular underpinnings of ILCs, they lack
independent validation across multiple datasets. Furthermore, the
predictive potential of these ILC signatures, including their
response to chemotherapy and derivation of novel ILC-specific
drug targets, remains to be elucidated.
Here we developed prognostic biomarkers of lobular breast

cancer using a robust pathway-centric approach [24–26] that
enabled integration of ILC-specific biology. We tested these
biomarkers retrospectively in a large series of six independent ILC
cohorts and evaluated their potential in predicting response to
chemotherapy in a contemporary clinical cohort (SCAN-B) [27].
Further, we developed and successfully validated a multivariable
prognostic classifier that also revealed context-specific candidate
synthetic lethal targets of aggressive ILCs.

METHODS
Pre-processing of mRNA abundance profiles and metadata
Metabric: the Metabric breast cancer dataset was pre-processed, sum-
marised and quantile-normalised from raw expression files generated by
Illumina Bead-Studio using R packages beadarray v2.4.2 and illuminaHu-
man v3.db_1.12.2. Raw Metabric files were downloaded from the European
genome-phenome archive (EGA) (Study ID: EGAS00000000083). log2
transformed probe level data was mapped to genes. Only the most
variable probe was kept where multiple probes per gene were available.
TCGA (BRCA): TCGA clinical and RNA-Seq RSEM normalised data were

downloaded from http://gdac.broadinstitute.org/ (Illumina HiSeq rnaseqv2
level 3 RSEM; release 2016-01-28). mRNA data was log2 transformed after
adding a prior of 1. Genes where >75% of samples had zero counts were
removed from the dataset.
RATHER: the dataset was downloaded from the GEO website using

accession id GSE68057 along with its custom CDF (GPL20078). log2
normalised data for each probe was extracted and stored as an expression
dataset. Probes were mapped to HGNC gene symbols using the provided
custom CDF and were further mapped to EntrezIDs using the R package
org.Hs.eg.db (v3.7.0). Where genes with multiple probes were present, we
kept the most variable probe. Twenty-two lobular samples overlapping
with our Metabric discovery cohort were removed from the RATHER
validation dataset. We excluded lobular mixed non-classical and unspeci-
fied histology type samples from our analysis.
Metzger-Filho: the dataset and its metadata were downloaded from GEO

using accession id GSE88770. ProbeSet annotation to Entrez IDs was done
using the R package hgu133plus2hsentrezgcdf (v18.0.0). Data were
normalised and log2 transformed using the R package affy (v1.60.0) with
justRMA().
Guedj: the dataset and its metadata were downloaded using the

ArrayExpress (v1.42.0) R package using accession id E-MTAB-365. ProbeSet
annotation to Entrez IDs was done using the R package hgu133plus2hsen-
trezgcdf (v18.0.0). Data were normalised and log2 transformed using the R
package affy (v1.60.0) with justRMA().
Sabatier: the dataset and its metadata were downloaded from GEO

using accession id GSE21653. Pre-processing was performed as previously
described here [26].
SCAN-B: normalised RNA-Seq data was downloaded from GEO using

accession id GSE96058. We further removed repeat samples, exponentiated
the data, removed the prior of 0.1, added a prior of 1 and subsequently log2
transformed the data. HGNC gene symbols were mapped to EntrezIDs using
the R package org.Hs.eg.db (v3.7.0). Histology information was obtained

from http://oncogenomics.bmc.lu.se/MutationExplorer ([28]). Genes where
>75% of samples had zero counts were removed from the dataset.
CCLE: normalised RNA-Seq data was downloaded from the Cancer Cell

Line Encyclopedia (CCLE) cell line portal https://sites.broadinstitute.org/
ccle/, further limiting to breast cancer cell lines (n= 57). mRNA data were
log2 transformed after adding a prior of 1. Cell lines were designated as
“ILC-like” using previously published breast cancer cell line annotations by
Michaut et al. [23] (of these, eight were present in CCLE), combined with an
additional 15 breast cancer cell lines which had CDH1 expression less than
the median CDH1 expression of the eight bona-fide “ILC-like” cell lines.
Overall survival (OS) was used as the survival end point, except for Guedj

(metastasis-free survival) and Sabatier (disease free survival) where OS was
not available. The analysis was limited to ILC histology only, excluding IBC-
NST as well as mixed ILC/IBC-NST cases. Median follow-up time was
estimated using the reverse Kaplan–Meier method [29].

RNA-seq profiling and quantification of KCL cohort
RNA extraction for primary untreated ILC tumours (n= 50) was performed at
the Innovation Hub, Guys Cancer Centre, King’s College London. RNA
sequencing was performed at The Genomics Facility, The Institute of Cancer
Research, Sutton. Tissue macro needle dissection was used to enrich for
tumour content (minimum 50% cellularity) and 10 × 10 μm FFPE tissue
sections were used per case. RNA was extracted using the Qiagen AllPrep
DNA/RNA FFPE Tissue Kit (Qiagen, Manchester, UK). The quantity of extracted
RNA was analysed using the Qubit Fluorometer (Fisher Scientific, Loughbor-
ough, UK). RNA extraction and next-generation sequencing (NGS) were
completed at Good Clinical Laboratory Practice (GCLP)-accredited labora-
tories. Two hundred and fifty to 1000 ng of total RNA, from FFPEmaterial, was
treated with TurboDNase (Invitrogen, #AM2239) to remove genomic DNA
contamination. Ribosomal RNA was then removed from the sample using the
NEBNext rRNA Depletion Kit (NEB, #E6310X) following the manufacturer’s
directions. From the resulting RNA, strand-specific libraries were created using
the NEBNext Ultra II Directional RNA Library Prep Kit for Illumina (NEB, #E7760)
on the Agilent Bravo (option B). Final libraries were quantified using
TapeStation (Agilent) and qPCR (Roche, #KK4835), then clustered at a Molarity
of 300 pM. Sequencingwas performed on an Illumina NovaSeq 6000 using PE
x100 cycles v1.5 chemistry, to achieve coverage of 100 million reads per
sample. RNA-Seq profiling generated 25.6 to 143.8 million paired-end reads
per sample. Library quality was assessed using FastQC, FastQ Screen (PMID:
30254741) and MultiQC (v1.9) (PMID: 27312411). Reads were trimmed using
Trim Galore (v0.6.6). Paired-end reads were aligned to the human reference
genome GRCh38, using STAR 2.7.6a (PMID: 23104886) with –quantMode
GeneCounts and –twopassMode Basic alignment settings. GENCODE (v22)
was used for feature annotations. Genes with low expression were filtered out
using edgeR’s function filterByExpr(). For survival modelling, raw counts were
normalised using edgeR’s TMM (trimmedmean of M-values)method and log2
CPM (counts per million) transformed. ENSEMBL gene identifiers were
annotated with Entrez gene identifiers using the R package org.Hs.eg.db
(v3.10.0). Raw counts of two de novometastatic samples (time= 0, event= 1)
were excluded from survival analysis.

Identification of differentially expressed and differentially
variable genes
Genes whose mean expression in ILC samples were below the median of
mean expression of Y-chromosome genes (log2 expression= 5.61) in both
Metabric ILC and normal samples were assigned as unexpressed and
filtered from the analysis. To identify differentially expressed genes
between ILC (n= 148) and normal breast tissue samples (n= 144) in our
discovery Metabric dataset, the R package limma (v 3.40.6) [30] was used.
Significant genes were defined as those satisfying |log2 fold change| > 1
and FDR-adjusted P < 0.001.
To identify differentially variable genes between ILC samples and normal

breast samples, we used the R package iDOS (v1.0.0) [31] and performed a
test of variance between the two groups. Significantly variable genes were
defined as genes with σILC > σNormal and σILC > 0.5 and FDR-adjusted P
value < 1 × 10−15 (where σ represents standard deviation).

Genes to pathways mapping
Over-representation analysis was performed on the differentially expressed
and variable genes (1398) using MSigDB’s REACTOME dataset [32] to
identify enriched pathways (Fisher’s exact test, R function: phyper).
Pathways containing a minimum of three query genes and FDR-adjusted
P < 0.1 were considered as statistically significant (n= 135 pathways).
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Genes (out of 1398) that did not map to the significantly enriched
pathways were pooled together into a module of their own. To collapse
overlapping pathways, we estimated a similarity measure using the
overlap coefficient [33] between each pair of pathways and performed
hierarchical clustering on the overlap coefficient matrix. Using the cutree
function for k= 2 to 135, we calculated the average silhouette value [34]
for each k with the R package cluster(v2.1.0) [35]. By maximising both
silhouette value and the number of clusters (k), k was set to 30, resulting in
30 “cluster of pathways” (CP). Of note, some redundancy in these CPs
existed to allow for functionally related pathways to be modelled together.
These 30 CPs were subsequently used to create a database of modules for
SIMMS [26] (R package: v1.3.1) which were tested for univariable
prognostic value. Briefly, SIMMS shrinks a functionally related geneset
(e.g. a CP) to those genes that are univariably associated with patient
outcome (P < 0.05, Wald test). It then models these genes into a single per-
patient risk score for each CP. For the creation of the multivariable
Pathway-based Signature for ILC (PSILC) that aggregated all CPs, this
database of 30 CPs was further refined to a non-redundant database of CPs
by removing genes contributing to more than one CP. For each gene
contributing to multiple CPs, we estimated its Spearman correlation
coefficient (rho) against all other genes in a given CP and counted the
number of instances of |rho| > 0.3. The per-CP correlated gene count was
normalised by CP size, resulting in a measure of relevance (R) for a gene in
a given CP. Each gene was assigned to the CP where it showed highest R.
The resulting CPs were transformed into a SIMMS compatible non-
redundant database of CPs used for multivariable modelling.

Univariable (per CP) prognostic markers
The R package SIMMS (v1.3.1) was used to create univariable prognostic
markers using the Metabric discovery cohort with feature selection threshold
set to Wald test P value < 0.05 for the Cox proportional hazards model.
Survival data was truncated at 10 years. mRNA abundance data was
transformed to per gene z-scores (mean= 0, standard deviation= 1).
Univariable models for CPs were applied to each of the six validation
datasets to independently predict risk scores. These risk scores were
dichotomised/trichotomised into risk groups using discovery set derived cut-
offs; median for the two risk group classification and 33/66 percentiles for the
three risk group classification. Risk groups from all six validation cohorts were
combined and tested for association with patient outcome using the Cox
proportional hazards model. For testing association with chemotherapy, risk
groups from the SCAN-B cohort were assessed for prognostic and predictive
association independently. For SCAN-B predictive evaluation (risk group ×
chemotherapy interaction), the model was adjusted for clinical covariates
and tumour purity by modelling age as a dichotomous variable (>55 years:
old, ≤55: young), T-stage as factors (0–2 cm tumour size: T1, 2–5 cm: T2,
>5 cm: T3), nodal status as a dichotomous variable (0: negative, ≥1: positive)
and tumour purity as a continuous variable. Significance of difference in
survival curves was estimated using the Wald test (two risk group
classification) and trend test (three risk group classification).

Multivariable prognostic marker (PSILC)
Based on the non-redundant database of CPs (see “Methods: Genes to
pathways mapping”), a multivariable model (PSILC) was created using the
Random Forest algorithm with R packages SIMMS (v1.3.1) and randomFor-
estSRC (v2.11.0). The Metabric discovery cohort (n= 148) was split into
66% training and 33% internal cross-validation. Survival time was
truncated at 10 years. In addition we performed a parameter sweep for
a number of hyperparameters including ntrees: 501 to 1001 (step size of
100), nodesize: 10 to 15 (step size of 1), mtry: sqrt(30) to 30/3 i.e. 5 to 10
(step size of 1). We picked the top model with lowest out-of-bag (OOB)
error and highest β estimated from the Cox proportional hazards model.
The resulting model (PSILC) was based on ntrees= 601, nodesize= 10 and
mtry= 10. PSILC was applied to each of the six validation datasets
independently to predict risk scores. These risk scores were dichotomised/
trichotomised into risk groups using discovery cohort derived cut-offs;
median for the two risk group classification and 33/66 percentiles for the
three risk group classification. Risk groups from all six validation cohorts
were tested for association with patient outcome using the Cox
proportional hazards model, both independently in each dataset as well
as in a combined validation cohort. Proportional hazards assumption was
evaluated using the Schoenfeld test (R function survival::cox.zph()). We
failed to reject the null hypothesis that hazards are proportional where
P > 0.05 for the assessed coefficient. Significance of difference in survival
curves was estimated using the Wald test (two risk group classification)

and trend test (three risk group classification). For the Guedj dataset (two
risk group classification), we used the log-rank test, owing to no events in
its predicted low-risk group. Adjustment for clinical covariates and tumour
purity was performed by modelling age as a dichotomous variable (>55
years: old, ≤55: young), T-stage as factors (0–2 cm tumour size: T1, 2–5 cm:
T2, >5 cm: T3), nodal status as a dichotomous variable (0: negative, ≥1:
positive) and tumour purity as a continuous variable.

Purity estimation
Purity for each dataset was estimated using the R package estimate
(v1.0.13).

Signature comparison
Mammaprint, Oncotype DX and PAM50 ROR risk scores were estimated
using the implementation in the genefu (v2.16.0) R package [36]. The ILC-
specific LobSig [9] signature was applied using the published code from
GitHub repository https://samirlal2.github.io/LobSig/. For the LobSig two
risk group classification, the Metabric-derived median score was used to
dichotomise risk scores into high- and low-risk groups in the six validation
datasets. For the LobSig three risk group classification, the Metabric-
derived 33% and 66% percentiles of risk scores were used to split
validation datasets into three risk groups. Concordance between the risk
groups derived from different biomarkers was evaluated using the Cohen’s
kappa statistics with R package fmsb (v0.7.0). To compare predictive power
of different biomarkers on the combined validation cohort, −log10 P values
(Wald test or trend test) were estimated from the Cox proportional hazards
model fitted to risk groups predicted by each biomarker. To account for
unbalanced size of validation cohorts, we also compared Stouffer’s
weighted P values of biomarkers using the R package metap (v1.3).

CRISPR perturbation screens analysis
For the 17 ILC or ILC-like cell lines, matched RNA-Seq data and CRISPR-Cas9
gene essentiality profiles were downloaded from the DepMap portal
(https://depmap.org/portal/depmap/, version: 21Q4). Cell line mutation
data and amplification status of ERBB2 was curated from the DepMap
portal. Copy-number deletions for PTEN were curated from cBioPortal
(CCLE Broad, 2019). Statistical analysis assessing CRISPR gene effect scores
between the PSILC high vs. low-risk scores was performed using a two
sample one-sided Welch’s t-test where a minimum of 3 observations per
group were available. Statistical testing was restricted to genes satisfying
the following gene effect (GE) scores criteria:

mean GE score in PSILC high groupð Þ<� 0:5

mean GE score in PSILC lowgroupð Þ>� 0:75

mean GE score in PSILC high groupð Þ<mean GE score in PSILC lowgroupð Þ

8
>>><

>>>:

Genes with a median gene effect score of <−1 considering all breast
cancer cell lines were regarded as essential genes and subsequently
annotated/excluded from the analysis, post-hoc.

Data processing, statistical analyses and visualisations
All data processing, statistical analyses, and plotting were performed in the
R statistical environment (v3.6.0).

RESULTS
Dysregulated genes in ILCs comprise prognostic candidates
and encompass hallmarks of cancer
To identify prognostic biomarkers of lobular breast cancer, we
designed a data analysis workflow that exploited transcriptomic
profiles of the disease (Fig. 1a). We curated seven independent
retrospective breast cancer cohorts comprising 996 ILCs with mRNA
abundance and outcome data (Supplementary Table 1). Of these,
the Metabric cohort (n= 148) was designated as the discovery
cohort, given its availability of normal breast samples (n= 144) and
long-term outcome data with median follow-up time of 12.26 years.
Using the Metabric cohort, dysregulated genes in ILCs were
identified using two complementary approaches. First, differentially
expressed genes in ILC patients were identified by comparing the
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difference in mean mRNA abundance between tumour and normal
samples (873 genes, |log2FC| > 1, FDR-adjusted P < 0.001; Supple-
mentary Table 2). Second, genes that showed increased mRNA
abundance heterogeneity in ILC patients were identified by
comparing the difference in standard deviation between ILC and
normal samples (577 genes, σILC > σNormal, σILC > 0.5, FDR-adjusted
P < 10−15; Supplementary Table 3). Next, we combined these two
lists to create a resource of 1398 candidate ILC-dysregulated genes
(Fig. 1b, c). Of these, 52 genes were predictive of overall survival in
the discovery cohort, with 10 and 42 genes associated with poor

and good outcome, respectively (FDR-adjusted P < 0.05; Supple-
mentary Table 4). To evaluate ILC-specificity of these 52 genes, we
tested the prognostic power of ILC-dysregulated genes in the ER
+/HER2− IBC-NST samples of the Metabric cohort (n= 1046).
Although there were higher numbers of prognostic genes in
ER+/HER2− IBC-NST (187 genes, FDR-adjusted P < 0.05), likely due
to increased statistical power, only 12 were in common with the 52
prognostic genes identified in ILC samples (Supplementary Fig. 1).
In order to functionally interpret the ILC-dysregulated gene list we
performed a pathway over-representation analysis, resulting in
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Fig. 1 Identification of dysregulated and prognostic genes/pathways in ILCs. a Schematic of the methodology, divided into 3 steps. Step 1
constitutes feature selection using the Metabric discovery cohort with mRNA abundance profiles of ILC (n= 148) and normal breast tissue
samples (n= 144). ILC and normal mRNA abundance profiles were compared by performing differential gene expression and differential
variance analysis. The resulting genes were subject to pathway over-representation analysis to identify dysregulated pathways in ILCs. To
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the Metabric dataset. c t-SNE clustering of tumour and normal samples using 1398 ILC-dysregulated genes.
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135 significantly enriched pathways (FDR-adjusted P < 0.1; Supple-
mentary Table 5). These pathways encompassed a variety of
canonical and non-canonical cancer pathways as well as key
hallmarks of cancer such as cell cycle, metabolism, immune system
and signal transduction; suggesting a wide-spread transcriptomic
dysregulation in ILC patients.

Dysregulated pathways in ILC predict patient outcome and
reveal association with chemotherapy response
To rationalise clinical heterogeneity in ILC outcome at a molecular
level, pathways enriched for ILC-dysregulated genes were tested
for prognostic potential. Prior to prognostic assessment, highly
redundant enriched pathways were collapsed into cluster of
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pathways (CP) (Supplementary Fig. 2a, b, Supplementary Table 6;
“Methods: Genes to pathways mapping”). While some overlap
between CPs remained in order to allow complete coverage of
functionally related genes in a CP, the resulting dataset
represented a reduced set of 29 functionally distinct CPs. Genes
that did not map to any pathway during the enrichment analysis
were designated to their own cluster (CP30). To evaluate the
prognostic potential of each CP, we used a previously published
algorithm (SIMMS) [26] for quantifying pathway dysregulation.
Using the discovery cohort (Metabric cohort [37]), a univariable
Cox proportional hazards model for each CP was created (time to
event: overall survival) and subsequently tested in a combined
validation cohort from six independent studies (Supplementary
Table 1). The prognostic evaluation in the combined validation
cohort revealed 25 CPs significantly associated with patient
outcome (FDR-adjusted P < 0.05, Wald test; Fig. 2a and Supple-
mentary Table 7). The top three prognostic CPs included Cell cycle
(HR= 2.81, 95% CI= 1.97–4.02, FDR-adjusted P= 4.09 × 10−7),
Developmental biology/regulation of beta cells (HR= 2.34, 95%
CI= 1.67–3.36, FDR-adjusted P= 1.95 × 10−5) and Haemostasis
(HR= 2.3, 95% CI= 1.62–3.26, FDR-adjusted P= 2.33 × 10−5).
These top three prognostic CPs showed minimal overlap of
prognostic genes, confirming the presence of independent
prognostic metagenes between them (Fig. 2b).
Some ILCs are less responsive to chemotherapy and molecular

mechanisms associated with chemoresistance remain unclear [38].
Hence, we asked whether prognostic CPs could reveal molecular
pathways associated with chemotherapy response. Using a
contemporary clinical cohort (SCAN-B) [27], which represents the
latest clinical chemotherapeutic modalities, we tested prognostic
CPs in chemotherapy naïve and chemotherapy treated subgroups.
Of the significantly prognostic CPs, 17 out of 25 CPs remained
prognostic in the chemotherapy naïve subgroup (FDR-adjusted
P < 0.05, Supplementary Table 8), while none of the CPs were
prognostic in the chemotherapy treated subgroup (Supplemen-
tary Table 9). This suggests that CP-predicted high-risk patients in
the chemotherapy naïve group could benefit from chemotherapy.
To formally test this observation, we stratified patient risk groups
by chemotherapy status and evaluated the interaction term (risk
group × treatment) of the model, limiting to the 17 CPs that were
prognostic in the chemotherapy naïve subgroup. Of these, four
CPs (CP14: Cell-cell communication, CP20: Innate immune system,
CP25: Smooth muscle contraction and CP10: Extracellular matrix
organisation) were predictive of potential benefit from che-
motherapy in the high-risk group (Interaction P < 0.05, Fig. 2c–h
and Supplementary Table 10). Three of these (CP14, CP20 and
CP25) remained independent predictors when adjusted for clinical
covariates in a multivariable model (Interaction P < 0.05, covari-
ates: age, T-stage, nodal status, tumour purity; “Methods:
Univariable (per CP) prognostic markers”).

Aggregating multiple pathways reveals a robust biomarker of
patient outcome
Building on the prognostic capabilities of CPs, we created a
multivariable signature by aggregating [26] multiple CPs (30
variables) into a machine learning model using the Random Forest

algorithm (Fig. 3a). This multivariable Pathway-based Signature for
ILC (PSILC) was trained and cross-validated using the Metabric
discovery cohort (time to event: overall survival), and subse-
quently applied to six independent validation cohorts (Supple-
mentary Fig. 3; “Methods: Multivariable prognostic marker”). Using
the discovery cohort derived median risk score cut-off, PSILC was
able to successfully classify patients into appropriate risk groups in
the combined validation cohort (HR= 2.94, 95% CI= 2.01–4.3,
P= 2.9 × 10−8; Fig. 3b and Supplementary Table 11). The 10-year
survival for the predicted high-risk group was 60.41% compared
to 78.8% in the low-risk group. The predicted risk groups were
distinctively correlated with pathway scores and confirmed the
presence of at least two predominant clusters of patients,
independent of dataset and clinical covariates (Supplementary
Fig. 4). To allow for the presence of additional distinct sub-groups,
in the absence of clinically relevant risk score cut-offs to define
patient groups, we further assessed prognostic relevance of PSILC
predicted risk scores by creating three risk groups based on
discovery cohort’s tertiles. This classification demonstrated an
increased separation between the low- and high-risk groups
(HR= 5.21, 95% CI= 2.82–9.62, P= 1.3 × 10−7; Fig. 3c and
Supplementary Table 11) while the outcome of the
intermediate-risk group was also significantly poor compared to
the low-risk group (HR= 3.06, 95% CI= 1.64–5.72, P= 4.4 × 10−4;
Fig. 3c). The 10-year survival in the predicted high- and low-risk
groups was 58.3% and 80.28%, respectively. PSILC remained an
independent prognostic biomarker when adjusted for age, T-
stage, nodal status and tumour purity (two group classification:
P= 4.8 × 10−6, three group classification: PTrend= 3.1 × 10−6;
Supplementary Table 12). Next, we separately evaluated PSILC in
a contemporary clinical cohort (SCAN-B, n= 386) where the time
to event data (overall survival) was influenced by the most up-to-
date treatment strategies. In the SCAN-B cohort, PSILC showed
robust prognostic ability in classifying patients into appropriate
outcome groups (two group classification: HR= 3.02, 95%
CI= 1.68–5.43, P= 2.1 × 10−4, three group classification: HRHigh
vs. Low= 7.53, 95% CI= 2.65–21.38, P= 1.5 × 10−4; Fig. 3d, e). We
further assessed whether the predicted high-risk group was simply
a proxy for the aggressive subtypes of breast cancer triple
negative breast cancer (TNBC) or HER2-positive cancer. In the
SCAN-B cohort, 18 ILCs (4.66%) were either TNBC (n= 6) or HER2-
positive (n= 12) which is not unexpected since classic ILCs are
predominantly ER+/Luminal-A and HER2-negative breast cancers
[2]. Of these 18 TNBC/HER2-positive patients, five were classified
as low-risk and 13 as high-risk by PSILC. When PSILC multivariable
model was adjusted for TNBC/HER2 status, it remained an
independent predictor of overall survival (two group classification:
HR= 2.92, 95% CI= 1.62–5.25, P= 3.6 × 10−4). PSILC also demon-
strated potential in predicting benefit from chemotherapy in the
high-risk group (HR= 0.52, 95% CI= 0.24–1.13, P= 0.099) while this
was lost in the low-risk group (Supplementary Fig. 5a). Having
previously demonstrated ILC-specificity of prognostic genes in a
univariable context (Supplementary Fig. 1), here we asked whether
the multivariable PSILC was specific to ILCs by testing it in 1795
patients from the SCAN-B cohort that were IBC-NST and ER+/HER2-
negative. PSILC-predicted risk groups in this subset showed

Fig. 2 Univariable prognostic models. a Forest plot showing prognostic assessment of CPs in the combined validation cohort (HR, 95% CI are
shown). Predicted risk scores for CPs in the combined validation cohort were dichotomised into low- and high-risk groups using the discovery
cohort’s median risk score for the corresponding CP. CPs with significant prognostic association are left of the vertical reference line in blue
section (FDR-adjusted P < 0.05). b Venn diagram of prognostic genes from the top 3 CPs. c Heatmap showing mRNA abundance profiles of
prognostic genes from CP14 in combined validation cohorts. Row covariate indicates whether a gene was associated with poor or good
outcome in univariable analysis in the discovery cohort. Column covariate indicate predicted risk group in the combined validation cohort.
Hierarchical clustering was performed on both rows and columns using “euclidean” as the distance measure and “ward” as the agglomeration
method. d Kaplan–Meier survival curves (overall survival (OS)) indicating prognostic assessment of CP14 stratified by chemotherapy response
using a contemporary clinical cohort (SCAN-B). e–h Same as (c, d), showing mRNA abundance profiles of prognostic genes from CP20 and
CP25 and their prognostic assessment stratified by chemotherapy.
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moderate separation (HR= 1.93, 95% CI= 1.46–2.57, P= 5.4 × 10−6;
Supplementary Fig. 5b) and markedly inferior performance
compared to the ILC subset of SCAN-B (Concordance index: IBC-
NST/ER+/HER2−= 0.58 (95% CI= 0.54–0.62), ILC= 0.65 (95%
CI= 0.59–0.72)), highlighting ILC-specificity of PSILC.

While treatment strategies for ILCs are similar to IBC-NST, ILCs
have distinct metastatic patterns compared to IBC-NST [1, 39].
Hence, we tested PSILC in Guedj et al.’s cohort [40] (n= 43)
where time to event data was based on metastasis-free survival
(MFS). In this cohort alone, PSILC accurately predicted the
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likelihood of metastasis (two group classification: P= 6.6 × 10−4,
Fig. 3f). To further validate PSILC’s ability in predicting MFS, we
performed RNA sequencing on a series of 48 archival lobular
breast cancers (treated at the Guys Hospital, London; KCL
cohort) with a median follow-up of 17.75 years. This series was
predominantly composed of pleomorphic lobular cancers (PLCs)
that are considered a highly aggressive form of ILCs [41, 42].
All the patients in the KCL cohort were grade 3 lobular cancers
and 37.5% had a metastatic event within 10 years of diagnosis
(Table 1). When PSILC was tested in this cohort, the resulting
classification showed strong association with MFS independent
of age, T-stage and nodal status (HR= 9.42, 95% CI= 1.16–76.23,
P= 0.036, Fig. 3g and Supplementary Table 13). Given the
metastatic tendency of PLCs, we examined the breakdown of
PSILC risk groups by known aggressive subtypes of breast cancer
(TNBC and HER2-positive) to understand the added value of
PSILC in predicting MFS. Of the 12 TNBC or HER2-positive
patients in the KCL cohort, 11 were classified as high-risk,
confirming accurate risk assignment of these patients by PSILC
(HR= 7.52, 95% CI= 0.99–57.35, P= 0.052; when adjusted for
TNBC/HER2 status). Additionally, there were 24 patients in the
high-risk group that had poor outcome but were neither TNBC
nor HER2-positive, further emphasising PSILC’s ability to capture
molecular changes that are conserved across aggressive ILCs but
independent of TNBC/HER2 status.
To benchmark prognostic potential of PSILC, a panel of four

independent prognostic biomarkers were tested in the same six
validation cohorts that were used for testing PSILC. These
biomarkers included three clinically approved breast cancer risk
predictors (MammaPrint [43], Oncotype DX [15] and PAM50 risk
of recurrence score (PAM50-ROR) [22]), and one lobular breast
cancer biomarker (LobSig [9]). A comparison of genes involved
in these signatures revealed only a partial overlap, with most of
the genes exclusive to one signature (PSILC overlap coefficient
with other signatures: 0–0.26, Fig. 4a, b). This is consistent with
previous studies that have shown the presence of large numbers
of valid signatures in breast cancer [44], as well as pancreatic
[45] and lung cancer [46]. Next, using two independent
measures to quantify prognostic significance (Wald or Trend P,
Stouffer’s weighted P; “Methods: Signature comparison”), we
compared the prognostic ability of PSILC’s two group and three
group classifiers with the corresponding two group (LobSig and
MammaPrint) and three group classifiers (LobSig, PAM50-ROR,
Oncotype DX) of other biomarkers. Although all biomarkers were
able to classify patients into significantly different outcome
groups (P < 0.001), PSILC showed superior performance in both
the two group and the three group classification systems, with
PAM50-ROR’s performance remaining competitive to PSILC in
the three group classification (Fig. 4c). Further inspection of the
predicted risk groups revealed substantial misclassification
heterogeneity between the biomarkers in both the two group
and the three group classification systems (Fig. 4d). The ILC-
specific predictors (PSILC and LobSig) showed the highest, albeit
modest, concordance in predicted risk groups (two group
classification: Cohen’s kappa= 0.49, three group classification:
Cohen’s kappa= 0.34; Fig. 4e, f).

Multivariable pathway model (PSILC) reveals context-specific
genetic dependencies in aggressive ILCs
Despite differences in the underlying biology and response to
endocrine therapy between ILC and IBC-NST [16, 47, 48], there are
no clinically approved targeted therapies for ILCs that exploit
these differences. One approach towards developing targeted
therapies is to identify genes that are essential for cancer cell
fitness and survival using CRISPR/Cas9 genetic perturbation
screens [49]. We therefore used publicly available transcriptomic
profiles from 17 ILC or ILC-like [3] breast cancer cell lines using the
CCLE [50] dataset, classified each cell line into PSILC high and low
groups based on the threshold derived from the previously used
PSILC discovery dataset (Metabric) and then used genome-wide
CRISPR/Cas9 screen data from these same cell lines (derived from
DepMap.org) to identify genes that when CRISPR-Cas9 targeted,
selectively reduced viability in the PSILC high group (Fig. 5a). Most
(13 out of 17) cell lines were classified as PSILC high, which was
not surprising since cell lines are, in general, derived from
aggressive disease. We further assessed the potentially confound-
ing impact of key breast cancer driver genes on PSILC classifica-
tions. While TP53 mutations were present in 13 out of 17 cell lines,
AKT1 and PIK3CA mutations were rare. However, cell lines with
high PSILC score were frequently PTEN inactivated and/or
harboured an ERBB2 amplification (PPTEN= 0.007, PERBB2= 0.002,
Fig. 5b, c; Welch’s t-test), both of which are known features of
aggressive breast cancers [51, 52] and ERBB2-targeted therapies
are already in clinical use [53]. To derive candidate synthetic lethal
genes in PSILC high scoring cell lines while accounting for the
known vulnerabilities of ERBB2 amplified cancers, we compared
DepMap’s aggregated CRISPR-Cas9 gene effect profiles [54]
between (1) PSILC high vs. low group, and (2) PSILC highERBB2-WT

vs. low group (Supplementary Tables 14 and 15, “Methods: CRISPR
perturbation screens analysis”). Briefly, lower gene effect score
(<0) indicates the likelihood of a gene’s essentiality with zero
being not essential and -1 being the median of essential genes
[54]. The resulting list of candidate synthetic lethal genes in PSILC
high scoring lines from the two analyses (with and without ERBB2
altered cell lines) revealed 66 and 27 genes, respectively, that
when targeted by CRISPR-Cas9, selectively decreased viability in
the PSILC high group (P < 0.05, one-sided Welch’s t-test). Sixteen
genes were found in both analyses and were therefore considered
independent of ERBB2 status (a statistically significant overlap:
P= 3.27 × 10−33, Fisher’s exact test; Fig. 5d). As expected, these 16
genes demonstrated strong correlation (Spearman’s ρ= 0.947,
P= 2.7 × 10−8) in the difference of their mean gene effect scores
(Δ) for both analyses (PSILC high vs. low and PSILC highERBB2-WT vs.
low group) (Fig. 5e, f). Pathway over-representation analysis of
these 16 candidate synthetic lethal genes revealed significant
enrichment in metabolic pathways (SDHD, ATP5F1D, ATP5MG and
COX7B), Rho GTPases (CIT, H3C8, KIF14 and ACTB) and Haemostasis
(H3C8, ACTB and AAMP) (Supplementary Table 16, FDR-adjusted
P < 0.05; Fisher’s exact test). With the exception of H3C8, 15 out of
16 genes were also expressed (mRNA abundance: mean log2
(transcripts per million+ 1) > 3 in PSILC high group) at moderate
to high-levels and therefore further supports their targeting
potential. Together, these findings highlight therapeutic potential

Fig. 3 Multivariable prognostic model (PSILC). a Schematic of the methodology for discovery and validation of the multivariable survival
model PSILC. Allocation of discovery and validation cohorts was maintained as defined in Fig. 1 and Supplementary Table 1. b, c Kaplan–Meier
survival curves indicating prognostic assessment of PSILC in the combined validation cohort using two and three risk group classifications.
d, e Kaplan–Meier survival curves indicating prognostic assessment of PSILC in the contemporary SCAN-B dataset assessing overall survival
using the two and three risk group classifications. f Kaplan–Meier survival curves indicating prognostic assessment of PSILC in the Guedj
dataset assessing metastasis-free survival (MFS) using the two risk group classification. Hazard ratios are not reported due to lack of events in
the reference group (low-risk). g Kaplan–Meier survival curves indicating prognostic assessment of PSILC in an independent lobular cancer
dataset (KCL), assessing metastasis-free survival using the two risk group classification. Survival analysis was adjusted for age, T-stage, and
nodal status.
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of these candidate synthetic lethal genes which would require
focussed interrogation by drug screening assays in future studies.

DISCUSSION
Invasive lobular breast cancer is recognised as a distinctive
histological subtype of breast cancer [1, 39]. However, systematic

discovery and independent validation of biomarkers specific for
this disease remains limited [9]. Here, we assessed prognostic and
predictive value of dysregulated pathways in ILC through meta-
analysis of seven gene expression studies. While several pathways
were prognostic, Cell-cell communication, Innate immune system
and Smooth muscle contraction pathways were independent
predictors of response to chemotherapy in the predicted high-risk
group. Patients with a higher risk score, estimated using these
pathways, showed significantly better overall survival when
prescribed chemotherapy compared to chemotherapy naïve
patients, thereby highlighting the potential benefit of treatment
escalation for predicted high-risk patients.
In a multivariable setting where a machine learning approach

was employed to create a multi-pathway predictor “PSILC”, we
showed the strong prognostic potential of pathways altered in
ILCs for both overall survival and metastasis-free survival.
Although it is recognised that ILCs have distinctive metastatic
patterns compared to IBC-NST [2, 6], it remains unclear which
tumours would eventually metastasise. Focussing on this unmet
need, we RNA sequenced an independent clinical cohort that
largely comprised of highly aggressive grade 3 pleomorphic
lobular cancers [41, 42], where PSILC was able to accurately
estimate the risk of 10-year metastasis with baseline mRNA
profiles. This result, although with limitations in statistical power,
highlights the utility of PSILC as a tool to identify patients where
current treatment options are unlikely to succeed, especially in the
long-term, which remains a clinical challenge in the management
of ILCs compared to IBC-NST [6].
A number of studies have identified gene expression-based

molecular subtypes of ILCs. However, independent validation of
the prognostic capacity of these subtypes remains limited
[5, 9, 23]. LobSig [9], a supervised signature of ILCs was validated
in one independent study (RATHER consortium [23]). The RATHER
consortium and TCGA [5] took a gene expression-based clustering
approach to identify two and three subtypes, respectively, with a
substantial overlap in the underlying biology of the two
classification schemes. While RATHER subtypes were reproducible
in TCGA [5] and Metabric [37] studies, these subtypes were not
associated with clinical outcome. The TCGA three risk group
classifier-identified subtypes [5] (Reactive-like, Immune-related
and Proliferative), were also reproducible in TCGA and Metabric
studies and showed significantly poor outcome for the Prolif-
erative subtype compared to the Reactive-like in the Metabric
study. Here, we systematically evaluate a panel of breast cancer
biomarkers where classifiers were available, including three
clinically approved tests across six ILC validation studies. While
PSILC showed highest prognostic ability, PAM50-ROR [22] was also
a strong predictor of outcome, which is consistent with successful
testing of PAM50-ROR in a population based ILC cohort [55].
Importantly, none of the three clinical tests evaluated in this study
(PAM50-ROR, Oncotype DX and MammaPrint) were developed to
capture ILC-specific biology or to predict late recurrences, which is
a crucial end-point for ILCs [6]. Specifically, Oncotype DX and
MammaPrint were developed for ER+ breast cancers. Therefore,
PSILC addresses a critical need to develop new tests that delineate
the biology of ILCs in order to successfully convert prognostic
groups into drug discovery and treatment strategies aimed at this
histological subtype of breast cancer. As seen here, across the
above-mentioned biomarkers, genes showed limited inter-
biomarker overlap, highlighting a potential impact on the
selection of candidate targets suitable for designing treatment
strategies for prognostic groups.
A key limitation to identifying an accurate and robust

biomarker is a lack of adequately powered studies. For instance,
ILCs constitute up to 15% of breast cancers, and therefore even
the largest available breast cancer cohorts with matched
genomic data [5, 27, 37] are underpowered for the detection
and validation of new biomarkers. This limitation is further

Table 1. Clinical and pathological characteristics of KCL cohort.

Number (n)

ILC tumour samples 48

Pleomorphic 45

Classic 3

Average patient age (years) 59.5

Disease relapse status

No Relapse 25

Relapse 23

<3 years of primary diagnosis 9

3–6 years after primary diagnosis 6

>6 years after primary diagnosis 7

Onset unknown 1

Tumour size

≤20mm 12

>20mm, ≤50mm 27

>50mm 9

Number of involved lymph nodes

0 19

1–3 15

4–9 10

≥10 4

Sites of metastases

Bone 13

Liver and peritoneum 2

Abdomen 2

Pleura 2

Skin 2

Lung 1

Brain 1

Soft tissue 1

Brachial Plexopathy 1

Unknown 4

Tumour grade

III 48

Oestrogen (ER) status

ER+ve 37

ER-ve 7

Unknown 4

Progesterone (PR) status

PR+ve 30

PR-ve 11

Unknown 7

HER2 status

HER2+ve 7

HER2-ve 37

Unknown 4
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exacerbated by the fact that these cancers frequently have late
recurrences [6] which necessitate long-term follow-up studies.
Here, although we make use of all available studies with survival
data (Supplementary Table 1), these limitations are likely to
impact our results. To minimise this impact, we have performed
the discovery of signatures using the Metabric study [37] which
has the longest median follow-up (>10 years for ILC samples) of
all available clinico-genomic studies of breast cancer, and further
perform validation in a new in-house cohort (KCL, n= 48) with a

median follow-up of 17.75 years. Furthermore, our results are
likely sensitive to differences in treatment decisions within the
eight cohorts studied here. Therefore, prospective studies with
appropriate statistical power and long-term follow-up survival
data would be necessary, not only to test the clinical suitability
of the prognostic signatures derived here, but also for the
development of new signatures to match the specific genetic
background of ILC sub-populations, such as ~13% of ILCs that
harbour PTEN loss [5].
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While accurate prognostication remains a key clinical question, it
is also crucial to match prognostic subgroups with the right drug to
deliver precision medicine. Here we propose a novel workflow
illustrating how this can be achieved by applying the multivariable
prognostic biomarker “PSILC” to breast cancer ILC/ILC-like cell lines.
For these cell lines, we delineate 16 context-specific (selective in
high PSILC score) candidate synthetic lethal interactions. Some of
these genes are annotated as key essential genes in pan-cancer cell

line studies [54], which needs to be acknowledged, as essential
genes are often not considered as valid synthetic lethal targets.
However, we have considered essentiality in a breast cancer specific
manner and more importantly contextualised it alongside selectiv-
ity [56], as successfully demonstrated in the case of ATR inhibitors in
previous studies [57, 58]. Despite the success of cell lines and
organoid models in cancer research, reliable models of lobular
cancers of the breast remain limited [3] with most models
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designated as ILC-like. The selection of thesemodels is often guided
by the inactivation of E-cadherin and/or alpha-catenin, and low
mRNA abundance of E-cadherin. Although this approach offers a
panel of candidate cell lines potentially representative of patient
biology, accurate in vitro and pre-clinical models recapitulating
primary ILCs are critically needed [3]. Such models would be
necessary to identify a precise biomarker-defined population
suitable for prospective pre-clinical and early clinical work.

DATA AVAILABILITY
All analyses presented here are based on published data, as cited in “Methods”
section. Raw RNA-Seq data for the KCL cohort are available via SRA (https://
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