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BACKGROUND: Menopausal hormone therapy (MHT), a common treatment to relieve symptoms of menopause, is associated with
a lower risk of colorectal cancer (CRC). To inform CRC risk prediction and MHT risk-benefit assessment, we aimed to evaluate the
joint association of a polygenic risk score (PRS) for CRC and MHT on CRC risk.
METHODS: We used data from 28,486 postmenopausal women (11,519 cases and 16,967 controls) of European descent. A PRS
based on 141 CRC-associated genetic variants was modeled as a categorical variable in quartiles. Multiplicative interaction between
PRS and MHT use was evaluated using logistic regression. Additive interaction was measured using the relative excess risk due to
interaction (RERI). 30-year cumulative risks of CRC for 50-year-old women according to MHT use and PRS were calculated.
RESULTS: The reduction in odds ratios by MHT use was larger in women within the highest quartile of PRS compared to that in
women within the lowest quartile of PRS (p-value= 2.7 × 10−8). At the highest quartile of PRS, the 30-year CRC risk was statistically
significantly lower for women taking any MHT than for women not taking any MHT, 3.7% (3.3%–4.0%) vs 6.1% (5.7%–6.5%)
(difference 2.4%, P-value= 1.83 × 10−14); these differences were also statistically significant but smaller in magnitude in the lowest
PRS quartile, 1.6% (1.4%–1.8%) vs 2.2% (1.9%–2.4%) (difference 0.6%, P-value= 1.01 × 10−3), indicating 4 times greater reduction in
absolute risk associated with any MHT use in the highest compared to the lowest quartile of genetic CRC risk.
CONCLUSIONS: MHT use has a greater impact on the reduction of CRC risk for women at higher genetic risk. These findings have
implications for the development of risk prediction models for CRC and potentially for the consideration of genetic information in
the risk-benefit assessment of MHT use.
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INTRODUCTION
Colorectal cancer (CRC) is a commonly diagnosed malignancy that
ranks third and second in terms of incidence and mortality,
respectively, in the world [1]. Genome-wide association studies (GWAS)
have identified a large number of genetic risk variants for CRC [2–4].
Aggregating genetic risk variants into a polygenic risk score (PRS) yields
a continuous and quantitative measure of the estimated genetic
predisposition to a certain disease at the individual level, which could

be used to evaluate the impact of particular treatments or lifestyle
modifications in individuals with high genetic risk [5].
Menopausal hormone therapy (MHT) is a common and effective

treatment for relieving common symptoms of menopause for
postmenopausal women, with a rapidly growing multibillion USD
global market size [6]. Since the introduction of MHT use in the
1960s, it has been met with very high popularity until the
publication of the Women’s Health Initiative (WHI) in 2002, which
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warned of serious health risks of MHT particularly in relation to
breast cancer and cardiovascular disease, resulting in a dramatic
decline in MHT use [7, 8]. In the following years, the use of MHT
has gradually increased and is expected to further increase as
some clinicians have raised the awareness of benefits of MHT
potentially outweighing risks for some women’s health based on
the women’s individual risk profile [9]. Currently, weighing the
benefits and risks for personalized MHT treatment decisions does
not take into account of genetic risk; however, it is expected that
this would change in the future.
Since the first associations betweenMHT and CRC weremade in the

1980s [10, 11], MHT use has been consistently shown to be associated
with a reduced risk of CRC. A meta-analysis including 20 studies
reported that both ever-use of estrogen-only MHT (RR: 0.79, 95% CI:
0.69–0.91) and ever-use of combined estrogen-progestogen MHT (RR:
0.74, 95% CI: 0.68–0.81) were associated with a reduced CRC risk [12].
Randomized controlled trial data from the Women’s Health Initiative
indicated a lower risk of CRC among women taking estrogen plus
progestin and no difference in CRC risk among users of estrogen-only,
compared to placebo [13, 14].
Most studies of biological mechanisms have suggested that the

protective cellular effect of MHT on CRC is likely to be mediated
through nuclear estrogen receptors (i.e., ERα, ERβ) and progesterone
receptor, which may involve increasing DNA repair, selectively
activating proapoptotic signaling, inhibiting expression of oncogenes,
regulating cell cycle progression, changing the miRNA pool and DNA
methylation [15]. Nevertheless, these underlying etiologic mechanisms
are not fully understood. Further insight into potential biological
pathways could be gained by investigating genetic modifiers of CRC
risk associated with MHT use. Through a genome-wide association
study of gene-environment interaction, we previously identified
genetic variants (GRIN2B, DCBLD1) that modified CRC risk associated
with MHT use, offering new insights into pathways of CRC
carcinogenesis and potential mechanisms involved [16].
CRC is a complex disease resulting from both genetic predisposition

and environmental factors [17]. However, it is not yet known whether
a genetic risk profile modifies the effect of MHT on CRC risk, i.e.,
whether there is an interaction between PRS and MHT. For a disease
trait, interaction can be commonly described in two ways: multi-
plicative and additive. Multiplicative interaction focuses on the
comparison of relative risk of an exposure (e.g. MHT) for one
subgroup compared to another (e.g. high vs. low PRS). Analysis of
multiplicative interaction can be performed directly using logistic
regression and is typically considered the relevant scale for informing
biological etiology. Additive interaction implies the difference in
absolute risk due to exposure between one subgroup and another,
and can improve the ability to identify relevant subgroups who may
benefit the most from public health intervention, which is often
neglected in epidemiologic studies. Finding an additive interaction
can help guide public health campaigns aimed at identifying sub-
populations in whom a specific intervention can lead to the greatest
reduction in numbers of new cases, for example, women with high
genetic susceptibility may have a greater benefit of reducing CRC risk
with MHT use. Given that different information can be gained from
studying different types of interactions, it is recommended to present
both additive and multiplicative interaction in practice [18]. We
therefore aimed to evaluate the joint associations of MHT and a PRS of
141 single nucleotide polymorphisms (SNPs) identified by previous
GWAS with CRC risk and to assess both multiplicative and additive
measures of interaction [2–4, 19–37]. Additionally, absolute risks were
estimated for informing CRC prevention.

METHODS
Study participants
We included studies from North America, Australia, and Europe participat-
ing in the multi-centered Colon Cancer Family Registry (CCFR), the
Colorectal Transdisciplinary Study (CORECT), and the Genetics and

Epidemiology of Colorectal Cancer Consortium (GECCO), all with GWAS
data available, as previously described [4, 38, 39]. Study details and
descriptions can be found in the supplementary section.
Cases were identified as incident invasive colorectal cancer cases and

confirmed by medical records, pathological reports, or death certificate
information. For cohort studies, nested case-control sets were assembled
via risk-set sampling, while population-based controls were used for case-
control studies. Controls were matched with cases on age and enrollment
date, where applicable.
All studies were approved by their respective Institutional Review

Boards, and all study participants provided informed consent.

Exposure assessment
Information on demographics and environmental risk factors was collected
by interview and/or structured questionnaire. We carried out a multi-step
data-harmonization procedure at the GECCO coordinating center (Fred
Hutchinson Cancer Research Center) as described previously [40–42].
Postmenopausal status was defined by using: (I) menopausal status

derived from studies, if available; or (II) self-reported menopausal status, if
study-derived was not available; or (III) age >55, if neither study-derived
nor self-report were available. MHT use was considered using three
variables, i.e., any MHT use, estrogen-only use, and combined estrogen-
progestogen use at or until the reference date (date of diagnosis for cases,
date of interview for controls). Estrogen-only use and combined estrogen-
progestogen use were defined to be mutually exclusive, such that for
example, combined estrogen-progestogen use excludes the use of
estrogen-only or any other MHT at or until the reference time. Non-users
of any MHT at or until the reference time were used as the reference group
for all three MHT variables. For nested case-control studies from cohorts,
the information on MHT use was collected at the enrollment date which
was used as reference date. For case-control studies, the information
collected on MHT use and duration for cases typically referred to use until
diagnosis year or one to two years before diagnosis, depending on the
individual studies; controls in case-control studies were similarly requested
to provide information about MHT use until the time of recruitment/
interview or the past 1–2 years to be consistent with assessment in cases
(Supplementary Table 1).

Genotyping, quality control, and imputation
Details on genotyping, imputation, and quality control have been reported
previously [2]. In brief, genotyped SNPs were excluded on the basis of call
rate (<98%) or evidence of departure from Hardy-Weinberg equilibrium
(HWE) in controls (P < 1 × 10−4). For all studies, all autosomal SNPs were
imputed to the Haplotype Reference Consortium r1.1 (2016) reference
panel via the Michigan Imputation Server [43] and converted into a binary
format for data management and analyses using R package BinaryDosage
[44]. Imputed common SNPs were restricted based on a pooled MAF ≥ 1%
and imputation accuracy (R2 > 0.8). All analyses were restricted to samples
clustering with the Utah residents of Northern and Western European
ancestry from the CEU population in principal component analysis.

Derivation of polygenic risk score
The PRS was built based on 141 risk variants identified in previous GWAS of
CRC risk (Supplementary Table 2) [2–4, 19–37]. The variant-specific weights
were determined by the log-odds ratios estimated from prior studies. PRS
was calculated by summing the product of the weight and the number of
risk alleles for each risk variant across 141 identified genetic risk variants
for all study participants. For the known variants identified by GECCO,
CCFR, and CORECT studies, the estimates adjusted for winner’s curse [45]
(i.e., a statistical effect resulting in the exaggeration of SNP-trait association
estimates in the discovery study compared to their true association) were
used. We employed quartiles of PRS (PRS.Q) as a categorical variable, using
the lowest quartile as the reference group.

Statistical analysis
Statistical analyses were conducted centrally on individual-level data.
Logistic regression models were used to assess the association of PRS and
MHT with CRC risk by odds ratios (ORs) and 95% confidence intervals (CIs)
adjusted for age at the reference time, BMI, study, and the first three
principal components to account for potential population substructure. P-
values for trend in risks associated with quartiles of PRS were estimated by
including the ordinal PRS.Q variable as a continuous variable in the
regression models and testing coefficients using the Wald test.
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Heterogeneity P-values were calculated using Cochran’s Q statistics in
study-specific meta-analyses [46].
We assessed multiplicative interaction effects of PRS and MHT variables

by taking the products of PRS.Q and MHT variables in logistic regression
models and obtained P-values using the likelihood ratio test. We assessed
additive interaction effects by the relative excess risk due to interaction
(RERI), i.e., departure of the joint effect of PRS and MHT variables from the
sum of effect estimates for the two variables, and estimated the variance of
RERI by the Delta method [47].
We also calculated the 30-year cumulative risk (%) of CRC for 50-year-old

women according to MHT use and PRS to estimate the probability of
developing CRC over a 30-year interval from age 50 to 80 years [48].
Specifically, we estimated the age-specific relative risks and attributable
risks by three subgroups (≤60 years, 61–70 years, and >70 years) and
combined these estimates with CRC incidence rates obtained from the
SEER Research Data, 13 Registries, Nov 2019 Sub (1992–2017) [49] for
White women only to obtain the baseline age-specific CRC hazard rates.
We calculated the absolute risk for any given risk profile of MHT use and
PRS, accounting for competing risks from non-CRC mortality rates which
were obtained from the National Center for Health Statistics (https://
seer.cancer.gov/mortality/). The 95% confidence intervals for absolute risk
estimates were calculated based on 100 bootstrap samples.
All analyses were performed using SAS, version 9.4 (SAS Institute Inc,

Cary, NC), and R, version 2.15.3 (R Foundation for Statistical Computing,
Vienna, Austria) software. A two-sided P-value < 0.05 was considered
statistically significant.

RESULTS
Study population
The study sample for analysis comprised 28,486 post-menopausal
women (11,519 cases and 16,967 controls) with genotype data and
information on the use of any MHT, of which 10,027 women (35.2%)
indicated the use of any MHT. A total of 7637 women provided
information on the use of estrogen-only and 6887 women on
combined estrogen-progestogen use. Among these women, 2156
(28.2%) used estrogen-only and 1509 (21.9%) used combined
estrogen-progestogen. Detailed descriptive characteristics of the
cases and controls are shown in Supplementary Table 3.

Association of MHT or PRS with CRC risk
MHT use was associated with a reduced CRC risk in our pooled
analyses. Compared to non-users, the OR for CRC was 0.71 (95% CI:
0.64–0.78, Supplementary Fig. 1) for women using any MHT, 0.65
(95% CI: 0.53–0.79, Supplementary Fig. 2) for women using

estrogen-only, and 0.73 (95% CI: 0.59–0.90, Supplementary Fig. 3)
for women using combined estrogen-progestogen. The risk
reduction of CRC associated with MHT use is consistent in both
cohort and case-control studies (Supplementary Figs. 1–3). The
risk for CRC increased with higher quartiles of PRS compared to
the lowest quartile [ORs, for PRS.Q2: 1.49 (1.43–1.55); PRS.Q3: 1.92
(1.84–2.00); PRS.Q4: 2.87 (2.76–2.99)].

Joint associations of MHT and PRS with CRC risk
There was a pattern of higher CRC risk with higher quartiles of PRS
for both users and non-users of MHT, with a significant linear trend
across quartiles of PRS (No MHT use, P for trend= 0.015; MHT use, P
for trend= 0.002) (Fig. 1). The increased risks of CRC associated with
PRS seemed to be similar in non-users and users of MHT within the
same PRS.Q, e.g., for the highest vs lowest PRS quartile, ORs were
2.82 (2.57, 3.09) in non-users and 2.43 (2.15, 2.76) in users of any
MHT (Table 1). Similar patterns were also observed for the use of
estrogen-only (Table 1, Supplementary Fig. 4) and combined
estrogen-progestogen (Table 1, Supplementary Fig. 5).
The reduction in odds ratio by MHT use was however stronger

in women within the highest quartile of PRS [OR= 0.65
(0.59–0.72)] than that in women within the lowest quartile of
PRS [0.75 (0.66–0.85)]. Similar patterns were found for joint
associations of MHT types (estrogen-only, combined estrogen-
progesterone) and PRS. For all three MHT variables, there was no
significant multiplicative interaction with PRS (all P-values > 0.05).
However, we observed statistically significant additive interactions
consistently across all three MHT variables for the highest quartile
of genetic risk [RERI: −0.74 (−1.00, −0.48), P-value= 2.7 ×10−8 for
any MHT use; RERI: −0.76 (−1.17, −0.34), P-value= 3.8 ×10−4 for
estrogen-only use, and RERI: −0.53 (−1.00, −0.07), P-value= 0.025
for combined estrogen-progestogen use] when compared to the
risk excess reductions due to MHT use in those at the lowest
quartile of PRS (Table 1, Fig. 1, Supplementary Figs. 4 and 5). In
other words, the joint effect of MHT use and high genetic
susceptibility on CRC risk differed significantly from that expected
from the sum of the individual effects.
We have further analyzed the joint association of MHT and PRS

with colorectal cancer risk stratified by tumor anatomical sites
(colon, rectum, proximal colon, and distal colon), and observed to
some extent statistically significant additive interaction between
PRS and all three MHT variables for the different tumor sites
(Supplementary Tables 4–7). The magnitudes of RERI for quartiles

No MHT

Q1

Q2

Q3

Q4
P for trend

Any MHT use

Q1

Q2

Q3

Q4

P for trend

1 (Reference)

1.42 (1.28, 1.56)

1.94 (1.77, 2.14)

2.82 (2.57, 3.09)
0.015

1.45 (1.27, 1.65)

1.87 (1.64, 2.12)

2.43 (2.15, 2.76)

0.002

PRS quartile N of cases/controls OR for CRC OR (95%CI) RERI (95%CI)

-0.08 (-0.25, 0.09)

-0.29 (-0.50, -0.09)

-0.74 (-1.00, -0.48)

P for multiplicative interaction = 0.103 

1114 / 2693

1584 / 2744 

2037 / 2676

2929 / 2680

580 / 1544

832 / 1541

1021 / 1470

1422 / 1614

0.6 1.0 1.4 1.8 2.2 2.6 3.0

1 (Reference)

Fig. 1 Effects of polygenic risk score and menopausal hormone therapy on colorectal cancer risk. PRS.Q the quartiles of polygenic risk
score, OR odds ratio, 95%CI 95% confidence interval, CRC colorectal cancer, MHT menopausal hormone therapy, RERI the relative excess risk
due to interaction. The regression model was adjusted for age, BMI, study center, and the first three principal components.
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of PRS across all three MHT variables were more pronounced for
risk of distal colon (e.g., −0.35 to −1.12 for any MHT use) than
proximal colon (e.g., −0.05 to −0.51 for any MHT use).

Absolute risk estimates for CRC by MHT and PRS
The projected 30-year cumulative risks of CRC for 50-year-old
women who used any MHT were consistently lower than those for
non-users across quartiles of PRS. The difference in 30-year
cumulative risk between users of any MHT and non-users
increased with higher quartiles of PRS, implying a greater risk
reduction effect of MHT for women at higher genetic risk. At the
highest quartile of PRS, the 30-year CRC risk was statistically
significantly lower for women taking any MHT than for women not
taking any MHT, 3.7% (3.3%–4.0%) vs 6.1% (5.7%–6.5%) (difference
2.4%, P-value= 1.83 ×10−14); these differences were also statisti-
cally significant but smaller in magnitude in the lowest PRS
quartile, 1.6% (1.4%–1.8%) vs 2.2% (1.9%–2.4%) (difference 0.6%,
P-value= 1.01 ×10−3) (Table 2, Fig. 2). The reduction in absolute
risk associated with any MHT use was thus 4 times greater in the
highest versus lowest quartile of genetic risk (2.4% vs 0.6%, Fig. 2).
Similar patterns for 30-year cumulative risks of CRC for 50-year-old
women according to quartiles of PRS were also found for
estrogen-only use and combined estrogen-progestogen use,
respectively (Table 2, Supplementary Figs. 6 and 7).
After stratifying by tumor anatomical sites, we further observed

that the reduction in absolute risk associated with MHT use for
women with higher genetic risk compared to the lowest quartile
of PRS was somewhat greater for distal colon cancer (e.g., 0.22%,
0.30%, and 0.76% for any MHT use) than that for proximal colon
cancer (e.g., 0.17%, 0.31%, and 0.62% for any MHT use)
(Supplementary Tables 8–11).

DISCUSSION
Based on a large sample size derived from international colorectal
cancer consortia, we observed statistically significant modification

of MHT associated CRC risk by genetic risk for this disease,
which was evidenced by substantial additive interactions between
PRS and MHT variables on CRC risk. As such, the reduction in 30-
year absolute risk of developing CRC as a result of MHT use was
more apparent among 50-year-old women with higher genetic
risk profiles, showing that the genetically predetermined
increased risk of CRC could be offset to some extent by the use
of MHT.
Several previous studies have reported potential association of

some genetic modifiers and MHT with CRC risk [40, 50–52].
However, to our knowledge, studies have not investigated
associations of aggregated genetic susceptibility with MHT for
CRC risk. Although some previous studies reported the joint
association of PRS and environmental factors, including diet,
lifestyle, and behavior factors, with the risk of CRC [53–61], these
studies did not address potential interactions between PRS and
MHT. Considering the high use, known risks of use, and the big
market value of MHT globally, our study provides new insight on
the association between MHT and CRC risk in people with
different genetic susceptibilities.
Herein, our study found that MHT has a strong impact on

reducing the risk of CRC which may differ by genetic factors, i.e.,
with increasing genetic susceptibility, women using MHT had a
greater reduction in CRC risk compared to non-users. Never-
theless, based on these findings alone we do not simply advocate
the use of MHT as a chemoprevention intervention in those with
high genetic risk for CRC because of its potential adverse
consequences with long-term use of the increased risk of stroke
[7] or breast cancer [8]. Instead, our study points to a potential
future consideration of genetic risk in evaluating the risk-benefit
assessment of MHT use. We do acknowledge that MHT remains
widely used and as such, under the model of personalized
medicine, it may be possible to use the genetic risk for CRC as
input into decisions for or against MHT use when an individual
woman is considering using MHT for other reasons such as
menopausal symptoms or osteoporosis treatment.

Table 2. 30-year cumulative risk estimates (%) of CRC for 50-year-old women by use of all MHT variables and quartiles of PRS.

30-year absolute risk, % (95% CI)

Ca/Co, n PRS.Q1 Ca/Co, n PRS.Q2 Ca/Co, n PRS.Q3 Ca/Co, n PRS.Q4

No MHT 1114/
2693

2.16 (1.94,
2.39)

1584/
2744

3.15 (2.86,
3.43)

2037/
2676

4.13 (3.82,
4.43)

2929/
2680

6.06 (5.66,
6.46)

Any MHT 580/1544 1.59 (1.36,
1.82)

832/1541 2.20 (1.93,
2.47)

1021/
1470

2.83 (2.51,
3.14)

1422/
1614

3.66 (3.29,
4.03)

Diff 0.57 0.95 1.30 2.40

P value 1.01 × 10−3 3.65 × 10−5 3.27 × 10−8 1.83 × 10−14

No MHT 447/628 2.45 (2.10,
2.80)

630/661 3.04 (2.70,
3.38)

776/593 4.23 (3.81,
4.65)

1088/658 5.32 (4.83,
5.81)

E-Only 157/279 1.88 (1.44,
2.32)

199/317 1.99 (1.55,
2.44)

253/285 2.95 (2.28,
3.62)

322/344 3.13 (2.45,
3.80)

Diff 0.57 1.05 1.28 2.19

P value 7.93 × 10−2 2.85 × 10−4 6.39 × 10−3 7.26 × 10−6

No MHT 438/618 2.34 (2.03,
2.64)

622/649 2.82 (2.45,
3.18)

760/583 4.06 (3.60,
4.53)

1064/644 4.97 (4.54,
5.40)

E+ P 100/188 1.89 (0.97,
2.81)

155/207 2.22 (1.26,
3.17)

187/193 2.76 (2.00,
3.52)

256/223 4.11 (2.73,
5.49)

Diff 0.45 0.60 1.30 0.86

P value 0.44 0.35 4.56 × 10−3 0.32

CRC colorectal cancer, Ca/Co number of cases patients and controls individuals, PRS.Q the quartiles of polygenic risk score, 95% CI 95% confidence interval, MHT
menopausal hormone therapy, E-only estrogen-only therapy, E+ P combined estrogen-progestogen therapy, Diff the estimated difference of absolute risks
between MHT users and non-users, P an alpha level of 0.05 (two-sided) was considered to be statistically significant for comparing the absolute risks of MHT
users to those of non-users.
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We additionally found some differences in the joint associations
of MHT and PRS with CRC risk according to anatomical site of the
tumor. When additionally considering women’s PRS, MHT use
appeared to have a slightly stronger protective effect across PRS
on cancer occurring in the distal colon compared to the proximal
colon, and correspondingly slightly stronger protective benefits
with increasing PRS in terms of absolute risks. Prior studies
indicated that MHT was associated with a stronger reduced cancer
risk for the distal colon rather than the proximal colon, without
consideration of PRS [62, 63]. The underlying mechanism remains
uncertain but may be related to tumor heterogeneity in
carcinogenic processes in different sites of the large bowel with
different embryonic origins, somatic mutation profile, and
microbiomes [64–68]. Further studies are needed to validate the
observed tumor site differences and to determine the reasons why
the association between MHT and CRC risk is attenuated for the
proximal colon.
We investigated the association of PRS and MHT with CRC risk in

postmenopausal women by using the largest number of 141
GWAS-identified genetic variants of CRC risk, resulting in a more
comprehensive genetic score than any previous study, and with
the largest sample size to date. We performed the assessment of
both multiplicative and additive interaction, which may provide
insight into the mechanisms of disease [18]. It is worth noting that
for the gene-environment interaction studies focusing on single
SNPs, there is little or no difference between additive and
multiplicative interaction due to weak SNP effect size, as
commonly observed [69]. However, when PRS is used to capture
overall genetic susceptibility, the difference between multiplica-
tive interaction and additive interaction (RERI) may be substantial.
In our study, we found statistically significant additive interactions
but not significant multiplicative interactions for MHT use. This
observation indicates the importance of assessing interaction on
both additive and multiplicative scales, where an additive
interaction from a public health perspective is a desirable scale
for risk stratification because it identifies sub-populations in whom
a specific intervention can prevent the largest number of cancer
occurrences; taking both genetic and MHT factors into account
could be meaningful for making improved predictions for CRC risk
as suggested by the results of our study [70].
To our knowledge, this is the first study to report on the joint

association and interaction of CRC-related PRS and MHT variables
with CRC risk, as well as with tumor site-specific risk, using both
multiplicative and additive interaction. Our study also has several
potential limitations. First, MHT information in some studies was
self-reported; therefore, it may lead to recall bias (in the
retrospective studies) or misclassification (in the prospective
studies). However, previous studies have found a high validity

for self-reported MHT use when compared with population-based
prescription databases [71] and a high concordance between self-
reported MHT use and physicians’ reports [72]. Second, because
some studies asked only about current MHT use at the reference
time rather than ever-use of MHT until the reference time,
the status of MHT use might be misclassified, which would be
likely to result in an underestimation of the strength of
association. Third, the SNPs used for PRS as well as the study
samples are population specific for postmenopausal women of
European ancestries, thus generalization of results to populations
of other racial and ethnic groups needs to be further evaluated.
In conclusion, the joint associations of genetic risk as measured

by the PRS and the use of MHT with CRC risk show departures
from the additive model. MHT use has a stronger impact on the
risk reduction of CRC for women at higher genetic risk. These
findings will inform the development of risk-prediction models for
CRC in the future. They may lead to the consideration of genetic
information as an additional factor in the risk-benefit assessment
regarding MHT use in both the public health and clinical practice
settings.
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