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Persistence of peripheral CD8+ CD28− T cells indicates
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BACKGROUND: The contradictory role of CD8+ CD28− T cells in tumour immunity has been reported, while their biological and
clinical significance in HER2-positive metastatic breast cancer (MBC) is still unknown.
METHODS: HER2-positive MBC patients with no prior therapy in the metastatic setting were retrospectively recruited at two
medical centres. Peripheral CD8+ CD28− T cells (pTCD8+CD28-) were detected at baseline and following therapeutic intervals.
Progression-free survival (PFS) was compared according to pTCD8+CD28− levels. The molecular features of pTCD8+CD28− and its
correlation with tumour immunity were also investigated.
RESULTS: A total of 252 patients were enrolled, and the median follow-up time was 29.6 months. pTCD8+CD28− high at baseline has
prolonged PFS compared to pTCD8+CD28− low (P= 0.001). Patients who maintained pTCD8+CD28− high had a longer PFS than those
who kept pTCD8+CD28− low (P < 0.001). The enhanced pTCD8+CD28− level also indicates a longer PFS compared to pTCD8+CD28− low
(P= 0.025). Here, pTCD8+CD28- was demonstrated as an antigen-experienced effector T cell. Higher IL-2 level (P= 0.034) and lower
TGF-β level (P= 0.016) in the serum and highly infiltrated CD8+ CD28− T cells (P= 0.037) were also connected to
pTCD8+CD28− high.
CONCLUSIONS: High pTCD8+CD28− level is associated with a favourable tumour immunity and a better PFS of HER2-targeting
therapy in MBC patients.

British Journal of Cancer; https://doi.org/10.1038/s41416-024-02610-0

INTRODUCTION
The human immune system plays an important role in the
progression of cancer [1]. The intimate interaction between
lymphocytes and breast cancer development has been reported
[2, 3]. Among various subpopulations of lymphocytes, activated
CD8+ cytotoxic T lymphocytes (CTLs) serve as a potent mechanism
through which the immune system eliminates tumours [4]. The full
activation of CTLs requires two fundamental signals: T-cell receptor
(TCR) signalling and co-stimulatory signalling [5]. During this
process, CD28 is an indispensable molecule needed for initiating
co-stimulatory signalling [6]. CD28-mediated co-stimulatory signal-
ling contributes to T-cell survival, proliferation, cytokine production,
and metabolism [5]. Alongside the maturation of CTLs, CD28
expression is progressively and irreversibly down-regulated [6]. The
CD8+ CD28− T cell (TCD8+CD28-) was first identified as a phenotype
associated with memory/effector cells [7]. TCD8+CD28- also expresses
some natural killer cell-related receptors, which mediate TCR-
independent cytotoxicity, suggesting its innate immune property
[8]. The increased level of TCD8+CD28- has been shown to be related

to normal aging, chronic viral infections, and malignancies [8, 9].
Notably, studies have reported conflicting roles of TCD8+CD28- in
various cancers. The high cytotoxic potential of TCD8+CD28- has been
found in melanoma, head and neck cancer, cervical cancer and
hepatocellular carcinoma [10–13]. On the contrary, the regulatory or
suppressive role of TCD8+CD28− has been identified in lung cancer,
pleural mesothelioma, and glioblastoma [14–16]. There is now a
growing consensus that TCD8+CD28− displays an immunosuppres-
sive function in many other cancers [17]. Currently, only a few
studies have reported on the role of TCD8+CD28− in breast cancer.
Peripheral TCD8+CD28- (pTCD8+CD28-) has been identified as a
prognostic factor for progression-free survival (PFS) in metastatic
breast cancer (MBC) patients who received chemotherapy or
adoptive T-cell therapy [18, 19]. These two studies both suggested
a negative prognostic role of pTCD8+CD28−. However, the aforemen-
tioned studies primarily concentrated on the initial level of
pTCD8+ CD28− and regrettably overlooked the dynamic altera-
tions that occur in response to clinical intervention. Besides, the
regimens, clinical subtypes, and therapeutic lines of these study
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cohorts were not strictly confined. These limitations may undermine
our understanding of themultifaceted nature of pTCD8+CD28−, as our
research revealed a varied prognostic significance of peripheral CTL
according to molecular subtypes of MBC [20]. Given the aforemen-
tioned unresolved issues, we conducted dynamic monitoring of
pTCD8+CD28− in HER2-positive (HER2+ ) MBC patients who under-
went first-line HER2-targeting therapy. Our objective was to shed
light on the biological significance of pTCD8+CD28−. Surprisingly, we
found a favourable prognostic role for pTCD8+CD28- in HER2-positive
MBC, which differs from previous reports.

MATERIALS AND METHODS
Patient enrollment and study design
BC patients were recruited at Peking University Cancer Hospital and Jin
Xiang People’s Hospital between January 2014 and September 2020. The
criteria for BC patient selection are summarised in Supplementary
Table S1. Oestrogen Receptor (ER) and Progesterone Receptor (PgR)
positivity was evaluated by immunohistochemistry (IHC), using anti-
bodies against ER (CONFIRM anti-Oestrogen Receptor (ER)(SP1), Ventana
Medical Systems, Inc., Arizona, USA) and PgR (CONFIRMTM anti-
Progesterone Receptor (PR)(1E2), Ventana Medical Systems, Inc., Arizona,
USA). IHC staining against HER2 (VENTANA anti-HER2/neu (4B5), Roche
Diagnostics, Mannheim, Germany) was scored according to intensity as
0, 1+ , 2+ or 3+ ; sample with scores of 0 ~ 1+ was considered HER2− ,
while sample with a score of 3+ was considered HER2+ . HER2
amplification of 2+ samples were confirmed by FISH. Eligible HER2+
MBC patients were grouped according to the regimen they received.
The peripheral lymphocyte (pL) was detected at baseline and
subsequent follow-up visits until failure of first-line treatment. The flow
diagram of the cohort selection is shown in Fig. 1. All procedures
involving human participants met with the criteria of the Peking
University Cancer Hospital ethical committee (Ethic No. 2016KT47) and
Jin Xiang People’s Hospital ethical committee (Ethic No. 2021092301).

Patients’ follow-up
For each enrolled patient, there is one pre-treatment follow-up and then a
routine post-treatment follow-up every 2 or 3 therapeutic cycles for
imaging-based medical assessments to monitor disease progression. The
primary endpoint of this study was PFS, which was defined as the time
from the start of therapy to disease progression (PD) or the last date of
follow-up. Patients alive without an event as of the PD date were censored

at the last study follow-up date (September 30, 2020). Treatment efficacy
was evaluated by diagnostic imaging per Response Evaluation Criteria in
Solid Tumours (RECIST) 1.1 [21].

Peripheral lymphocyte (pL) subtype and cytokines detection
Peripheral blood (4ml) from each patient was drawn into EDTA antic-
oagulation tubes (Invitrogen, BD). Whole blood (200 μl) was incubated with
primary antibodies and subsequently went through haemolysis. Samples
were then centrifuged and the supernatant was removed. Finally, the
samples were re-suspended twice in PBS and subjected to flow cytometric
analysis. Primary antibodies included CD3-PC5/CD4-FITC/CD8-PE (IM1650),
CD8-FITC (A07756), CD4-FITC (A07750), CD3-FITC/CD (16+ 56)-PE (A07735),
CD19-PC5 (A07771), and CD25-PE (A07774), CD28-PE (IM2071U), CD279
(PD1)-PE (B30634) (all from Beckman Coulter, Inc., CA, USA). Level of pL
subtype was expressed as a percentage of the total lymphocytes. Total
lymphocytes were selected according to physical characteristics, including
volume size and transmissivity. The detection of perforin and granzyme B
was conducted according to the manufacturer’s protocol (Qingdao Raisecare
Biological Technology Co., Ltd). Directly labelled antibodies against
CD3-PerCP (R3901002), CD8-APC (R4601002), CD28 (IM2071U), perforin
(R4601002) and granzyme B (R4701002) were purchased from Qingdao
Raisecare Biological Technology Co., Ltd. Flow cytometry was performed
using Beckman-Coulter FC500 and CXP analysis software (Beckman Coulter,
Inc., CA, USA). Each analysis included 10,000 gated events. The gating
strategies for each peripheral lymphocyte subtype can be found in
Supplementary Fig. S1. The cut-off value of pTCD8+CD28− regarding PFS
was determined using X-tile in the training cohort. An additional 79 healthy
cases of physical examination between 2014 and 2017 were included as a
reference for pL-level analysis.

Tumour-infiltrating lymphocytes (TILs) evaluation
Two experienced pathologists independently performed the TILs evalua-
tion on full whole-slide sections stained with hematoxylin & eosin. These
sections were obtained from needle biopsies of metastatic lesions in
patients with HER2+MBC. TILs were assessed using the guidelines of the
international TIL working group [22]. Briefly, stromal TILs were measured as
a percentage of immune cells in stromal tissue within the tumour that
showed a mononuclear immunological infiltrate. The level of TILs was
analysed as a continuous measurement ranging from 0 to 100%.

Confocal immunofluorescence assay and infiltrated
CD8+ CD28− T cell
For immunofluorescent staining, sections were blocked and incubated
overnight at 4 °C with primary antibodies. The dilution of the primary
antibodies against CD8 (ab237709, Abcam, Cambridge, UK) and CD28
(ab193350, Abcam, Cambridge, UK) was both 1:50. After washing in PBS,
sections were incubated with fluorescence-conjugated secondary anti-
bodies at a dilution of 1:200 (ab6717, Abcam, Cambridge, UK; bs-0296P-
PE-Cy3, Bioss, Beijing, China) for 1 hour at room temperature. Sections
were then washed and counterstained with nuclear dye 4,6-diamino-2-
phenylindole (DAPI). The resulting images were visualised and captured
on a confocal microscope (FV1200, Olympus, Japan). The infiltrated
CD8+ CD28- T cells in tumour tissue were evaluated by two independent
pathologists. Every ten fields per slide were selected to calculate the
percentage of target cells in all nucleated cells within the tumour nests
and tumour stroma. The percentage of infiltrated CD8+ CD28- T cells
ranged from 0 to 100%.

EILSA detection for serum level of IFN-γ, IL-2,TNF-α and TGF-β
The serum samples were collected from patients with empty stomach in
the morning. Blood was collected in EDTA tube at 1600×g for 10 min at
4 °C, 1 h after collection. It was then transferred into tubes and kept at
−80 °C for further use. Human serum IFN-γ, IL-2, TNF-α and TGF-β antigens
were measured using commercially available kits: Human IFN-γ ELISA
(EHC102g, QuantiCyto®, China), Human IL-2 Instant ELISATM (BMS221INST,
Thermo Scientific Inc., US), Human TNF alpha Instant ELISATM

(BMS2231INST, Thermo Scientific Inc., USA) and Human TGF-β1 ELISA
(KGEHC107b, Jiangsu KeyGEN BioTECH Ltd, China) respectively. Assays
were performed according to the manufacturer’s protocol. All samples
were assayed using an automated immunoassay analyzer AIA-system
(TOSOH Corp., Tokyo, Japan).

Pathologically confirmed 
HER2+ BC pts (n = 507)

Patients who are 
undergoing 

Neoadjuvant/adjuvant 
therapy or ≥ 2nd-line 

therapy (n = 179)

Lack of peripheral 
lymphocyte detection at 
baseline and/or disease 

progression (n = 42)

Inflammatory disease or 
viral infection (n = 29)Loss to follow-up 

within 3 months after 
enrollment (n = 5)

Chemo + H
(n = 151)

Chemo + TKIs
(n = 23)

Chemo + H + P
(n = 49)

Chemo
(n = 29)

252 HER2+ MBC pts 

Fig. 1 Flow chart of patient selection and classification according
to the therapeutic regimens. H trastuzumab, P pertuzumab, TKIs
tyrosine kinase inhibitors, pts patients.
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Plasma cfDNA extraction and NGS testing
cfDNA was extracted from plasma samples using QIAamp circulating
nucleic acid kit. In all, 5–20 ng of the extracted cfDNA were prepared for
library construction, including end-repair, dA-tailing, adaptor ligation, and
PCR amplification. The library was hybridised overnight with the panel
probes. Unbound fragments were then washed away. The quantity and
quality of the purified cfDNA were checked using Qubit fluorimeter and
Bioanalyzer 2100. Paired-end sequencing with 2 × 150 bp reads was
performed using the Illumina sequencing platform. cfDNA testing from
plasma was conducted in China (Huidu Shanghai Medical Sciences Ltd.)
using the PredicineCARE assay targeting 152 genes. Detailed information
can be found in Supplementary Fig. S2.

Single-cell preparation and sequencing
The collected pTCD8+CD28- and pTCD8+CD28+ were separately stored in the
sCelLiveTM Tissue Preservation Solution (Singleron Biotechnologies, Nanjing,
China) and then transported to the Singleron lab on ice as soon as possible.
The sample was stained with trypan blue (Sigma, Shanghai, China) and
microscopically evaluated for cell viability. Single-cell suspensions at 1 × 105

cells/mL in PBS (HyClone, Shanghai, China) were prepared and loaded onto
microfluidic devices and scRNA-seq libraries were constructed according to
the GEXSCOPE® protocol using the GEXSCOPE® Single-Cell RNA Library Kit
(Singleron Biotechnologies) and Singleron Matrix® Automated single-cell
processing system (Singleron Biotechnologies). Individual libraries were
diluted to 4 ng/µL and pooled for sequencing. Pools were sequenced on
Illumina novaseq6000 with 150-bp paired-end reads.

Statistical analysis
Clinical data were obtained from the patient electronic medical recording
system. The relationships between pTCD8+CD28- levels, mutation prevalence
and other clinical characteristics were assessed using the Chi-square test or
Fisher exact test, Student t test or Mann–Whitney U test, and Pearson
correlation tests accordingly. The training and validation sets were
allocated to each case using computer-generated randomised numbers.
All analyses were conducted by SPSS 19.0 version software (IBM Inc., NY,
USA). Missing data was excluded from the analysis. The cut-off value of
pTCD8+CD28- level regarding PFS was calculated using the software of X-tile
3.6.1 version reported by Camp RL et al. [23] Kaplan–Meier survival analysis
and the log-rank test were used to compare PFS between different patient
cohorts. The Cox proportional hazard regression model was utilised to
estimate the hazard ratio (HR) and 95% confidence interval (CI) of the
proportion of pTCD8+CD28- in peripheral blood, while adjusting for
confounding factors. All statistical tests were two-sided with a significance
level set at 0.05.

RESULTS
Basic characteristics of the study cohort
A total of 252 HER2+MBC patients were enrolled in this study.
The clinical characteristics of the cohort are presented in Table 1.
In summary, the median follow-up time of the HER2+MBC cohort
was 29.6 months (range: 3.7–95.0 months), and the median age at
diagnosis was 52 years (range: 25–82). At the time of treatment,
primary stage IV breast cancer was observed in 67 patients
(26.6%), while recurrent breast cancer was present in 185 patients
(71.9%). All individuals of the cohort received first-line therapy.
Out of the 252 patients, 151 (60.0%) received chemotherapy plus
trastuzumab, 49 (19.4%) received chemotherapy in combination
with trastuzumab and pertuzumab, 23 (9.1%) received chemother-
apy plus tyrosine kinases inhibitors (TKIs) and 29 (11.5%) received
chemotherapy alone. In those who received TKIs, all had
previously undergone adjuvant and/or neoadjuvant anti-HER2
therapy involving trastuzumab and/or pertuzumab.

The prognostic value of baseline pTCD8+CD28- level
The 252 patients with HER2+MBC were randomly allocated into
two groups: the training set (n= 126) and the validation set
(n= 126). Using X-tile software, we evaluated the prognostic
potential of each pL subtype in terms of first-line PFS within the
training set. Consequently, only the pTCD8+CD28− level demonstrated
a significant association with first-line PFS in HER2+MBC patients

(Supplementary Fig. S3). The optimal cut-off value for pTCD8+CD28-

was determined to be 18.0% (ranging from 16.5 to 19.0%) with a
significant P value of 0.028, as shown in Fig. 2a. This identified cut-off
value was subsequently validated in the independent validation set
(P= 0.033) (Fig. 2b). Apart from pTCD8+CD28- level, other baseline
characteristics that may contribute to first-line PFS were also

Table 1. Clinical characteristics of the study cohort (n= 252).

Clinical characteristics n (%)

Age at diagnosis (range: 25–82, median= 52)

≤45 years 83 (32.9)

>45 years 169 (67.1)

Primary T stage

I 60 (23.8)

II 127 (50.4)

III 24 (9.5)

IV 30 (11.9)

Unknown 11 (4.4)

Primary N stage

0 64 (25.4)

1 59 (23.4)

2 47 (18.7)

3 67 (26.6)

Unknown 15 (5.9)

Primary TNM stage

I 23 (9.1)

II 73 (29.0)

III 76 (30.2)

IV 67 (26.6)

Unknown 13 (5.1)

Primary tumour grade

I 6 (2.4)

II 157 (62.3)

III 74 (29.4)

Unknown 15 (5.9)

Site of metastasis

Liver 93 (36.9)

Lung 97 (38.5)

Brain 12 (4.8)

Bone 93 (36.9)

Lymph node 160 (63.5)

Chest wall 41 (16.3)

Othersa 33 (13.1)

Number of metastatic sitesb

1 90 (35.7)

2–3 132 (52.4)

≥4 30 (11.9)

Disease-free survival (range: 3–283, median= 32)

≤36 months 104 (56.2)

>36 months 81 (43.8)

Regimens of first-line therapy

Chemotherapy plus trastuzumab 151 (60.0)

Chemotherapy plus trastuzumab & pertuzumab 49 (19.4)

Chemotherapy plus TKIsc 23 (9.1)

Chemotherapy alone 29 (11.5)
aOther metastasis including pleural, adrenal, cutaneous, intestinal and soft
tissue metastasis.
bMultiple lesions occurred in the same organ only count once.
cTyrosine kinase inhibitors.
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assessed through univariate analysis. These characteristics included
the primary lymph node stage (P= 0.017), the presence of
uncommon metastatic sites (P= 0.001) and the utilisation of HER2-
targeted therapy (P= 0.034) (Supplementary Table S2). The final Cox
regression model in multivariate analysis was adjusted to include all
variables that showed statistical significance in the aforementioned
univariate analysis. Consistent with expectations, the Cox regression
model confirmed that the baseline pTCD8+CD28− level served as an
independent prognostic factor for first-line PFS among HER2+MBC
patients, and high pTCD8+CD28- level (≥18.0%) was associated with a

prolonged median PFS (mPFS) compared to low level (10.5 vs. 17.4
months, P= 0.002) (Fig. 2c).

The prognostic value of baseline pTCD8+CD28- level in different
therapeutic subgroups
Within the cohort, HER2+MBC patients were stratified into four
subgroups based on their therapeutic regimens. In the subgroup
receiving chemotherapy plus trastuzumab (n= 151), individuals
with of pTCD8+CD28- high exhibited a prolonged mPFS compared
to those with lower levels (10.5 vs. 12.7 months, P= 0.008), which
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aligns with our overall cohort findings (Fig. 2d). However, the
significant difference in mPFS between pTCD8+CD28- high and
pTCD8+CD28- low was not found in the subgroups receiving
chemotherapy in combination with trastuzumab and pertuzumab
(not reached vs. 14.7 months, P= 0.285), chemotherapy plus
tyrosine kinase inhibitor (TKI) subgroup (16.8 vs. 23.2 months,
P= 0.158) and chemotherapy-alone subgroup (9.2 vs. 13.8 months,
P= 0.680) (Fig. 2e–g). Nevertheless, for HER2-targeting-based
therapy (n= 223), the pTCD8+CD28- High at baseline was associated
with prolonged mPFS (11.1 vs. 18.9 months, P= 0.001) (Fig. 2h).

The prognostic value of dynamic pTCD8+CD28− levels
Considering the aforementioned results, we sought to determine
the relationship between the dynamic alteration of pTCD8+CD28-

and first-line PFS. Based on variations in pTCD8+CD28-, patients who
underwent anti-HER2-based therapy were categorised into four
groups: high-level, low-level, reducing and enhancing groups
respectively. The high-level group consistently maintained a high
level of pTCD8+CD28- throughout the entire therapeutic course,
while the low-level group consistently maintained a low level. The
reducing group initially exhibited a high level but subsequently
showed a low level at each follow-up visit, whereas the enhancing
group demonstrated the opposite pattern (Fig. 3a). Consequently,
we included a total of 139 patients who met these criteria in
Kaplan–Meier analysis regarding first-line median PFS. Among
them, the high-level group (n= 71) had the longest mPFS of
15.5 months, while the low-level group (n= 25) had the shortest
first-line mPFS of 7.7 months. Meanwhile, both the reducing
group (n= 6, mPFS= 11.4 months) and the enhancing group
(n= 37, mPFS= 11.1 months) displayed similar mPFS durations.
In summary, we demonstrated that the dynamic changes in
pTCD8+CD28- levels were also associated with first-line PFS in
patients with HER2+MBC who received anti-HER2-based therapy
(P= 0.000427) (Fig. 3b). However, it is important to note that this
prognostic value was observed within a limited sample size
(n= 139); therefore, further validation in an independent cohort is
warranted for future studies.

Association of pTCD8+CD28- level with other clinical
characteristics
In addition to assessing the prognostic value of pTCD8+CD28-, we also
investigated its correlation with other clinical characteristics in the
cohort. The baseline pTCD8+CD28- level exhibited a significant
negative correlation with bone metastasis (coefficient=−0.189,
P= 0.003), lymph node metastasis (coefficient=−0.152, P= 0.016),
and the number of metastatic sites (coefficient=−0.200, P= 0.001)
(Table 2). Furthermore, there was a negative correlation between
changes in pTCD8+CD28- and bone metastasis (coefficient=−0.218,
P= 0.006) (Supplementary Table S3). Notably, both bone and lymph
node are all critical immune-related organs. Compared to health
controls, HER2+MBC patients exhibited a unique positive correla-
tion between pTCD8+CD28- and total T cells (coefficient= 0.134,
P= 0.033) as well as natural killer T cells (coefficient= 0.143,
P= 0.024) (Table 3). These findings, however, require further
validation and should be cautiously interpreted due to the low
coefficients.

The cytotoxic potential of pTCD8+CD28- in HER2-positive MBC
To identify the in vivo cytotoxic potential of pTCD8+CD28−, we
assessed the secretion of cytotoxic effectors, T-cell receptor (TCR)
clonality, and transcriptome of pTCD8+CD28- derived from the
enrolled patients. Initially, significantly higher levels of perforin
(84.29 ± 3.3 vs. 19.14 ± 2.0%, P <0.001) and granzyme B
(76.10 ± 4.2 vs. 16.65 ± 2.4%, P <0.001) were observed in
pTCD8+CD28- in comparison to its precursor cell (pTCD8+CD28+)
(Fig. 4a). Using single-cell RNA sequencing, seven T-cell subtypes
were identified across pTCD8+CD28+ and pTCD8+CD28-, based on
well-known expression patterns of cell markers (Fig. 4b, left). As

Table 2. Association of pTCD8+CD28− with the clinical characteristics.

Clinical characteristics Correlation
coefficient

P value

Age of diagnosis 0.030 0.633

≤45 years (n= 83)

>45 years (n= 169)

Age of sample collection 0.022 0.723

Primary T stage 0.024 0.697

I (n= 59)

II (n= 122)

III (n= 22)

IV (n= 28)

Primary N stage 0.026 0.668

0 (n= 64)

1 (n= 59)

2 (n= 47)

3 (n= 67)

Primary tumoral grade −0.026 0.703

I (n= 5)

II (n= 144)

III (n= 68)

Liver −0.123 0.052

No (n= 159)

Yes (n= 93)

Lung −0.011 0.864

No (n= 155)

Yes (n= 97)

Brain −0.104 0.100

No (n= 240)

Yes (n= 12)

Bone −0.189 0.003

No (n= 159)

Yes (n= 93)

Lymph −0.152 0.016

No (n= 92)

Yes (n= 160)

Chest 0.063 0.320

No (n= 211)

Yes (n= 41)

Uncommon metastatic lesion −0.085 0.177

No (n= 219)

Yes (n= 33)

Visceral metastasis −0.081 0.198

No (n= 89)

Yes (n= 163)

Number of metastatic sites −0.200 0.001

1 (n= 90)

2–3 (n= 132)

≥4 (n= 30)

DFS −0.103 0.156

≤36 months (n= 104)

>36 months (n= 81)

Application of anti-HER2
therapy

0.009 0.892

No (n= 29)

Yes (n= 223) 0.030
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compared to pTCD8+CD28+, the predominant cell subtypes of
pTCD8+CD28- composed of CD8+ effector T cells and CD8+ effector
memory T cells (92.48% vs. 27.92%) (Fig. 4b, right). These two
subtypes exhibited higher cytotoxic scores among others (Fig. 4b,
middle), indicating the cytotoxicity of pTCD8+CD28-. TCR repertoire
analysis further revealed a lower diversity-higher clonality of
pTCD8+CD28- as compared to pTCD8+CD28+, particularly for those
effector T-cell subtypes of pTCD8+CD28- (Fig. 4c, upper). Meanwhile,
in pTCD8+CD28-, we observed the expansion of most shared TCR
clones between pTCD8+CD28+ and pTCD8+CD28- as shown in the
Sankey diagram (Fig. 4c, lower). Collectively, the aforementioned
data demonstrate that pTCD8+CD28- functions as an antigen-
experienced effector T cell in HER2+MBC.

Association of pTCD8+CD28- with the tumour immunity
To ascertain the relationship between pTCD8+CD28- levels and
patients’ tumour immunity, we initially compared the TILs
infiltration in individuals with high and low levels of pTCD8+CD28-.
Considering the variability in TILs infiltration among different
metastatic sites in HER2+MBC (Fig. 5a, left), we separately
analysed the TILs scores as depicted in right panel of Fig. 5a.
Despite observing higher TILs scores among patients with
pTCD8+CD28- high in the lymph and/or lung metastasis group
(19.6 ± 3.9 vs. 16.5 ± 4.0%) and other metastasis sites group
(6.7 ± 4.8 vs. 5.7 ± 1.2%), none of these differences reached
statistical significance (Fig. 5a, right). Confocal immunofluores-
cence analysis revealed a positive quantitative correlation
between pTCD8+CD28- and infiltrated CD8+ CD28- T cells in the
paired tumour lesions (P= 0.037, Fig. 5b, right). We then
compared the serum level of various inflammatory cytokines
between high and low level of pTCD8+CD28-. Patients with
pTCD8+CD28- high exhibited elevated IL-2 levels (386.6 ± 73.7 vs.
206.0 ± 28.5 pg/ml, P= 0.034) and decreased TGF-β levels
(23.7 ± 2.7 vs. 34.2 ± 3.1 ng/ml, P= 0.016) comparing to
pTCD8+CD28- low. However, no statistical differences were observed
for IFN-γ or TNF-α (Fig. 5c). In addition, cfDNA-based sequencing
revealed a higher prevalence of CD274 (PD-L1) deletion in
pTCD8+CD28- high as compared to pTCD8+CD28- low (P= 0.041,
Supplementary Fig. S4).
To further substantiate the association between pTCD8+CD28-

and tumour immunity, we investigated the variations of
pTCD8+CD28- mediated by immunotherapy. Regrettably, immu-
notherapy is not currently employed as a standard regimen for
HER2+MBC patients. Alternatively, we evaluated our hypothesis
in the context of metastatic triple-negative breast cancer (mTNBC)
patients who are eligible for immunotherapy. We enrolled five
mTNBCs patients received combination therapy of anti-PD1 and
multiple antigen-specific cell therapy (MASCT) at different
therapeutic lines. Specifically, patients with PD-L1-positive
tumours underwent a dose-escalation study using intravenous

camrelizumab (3 mg/kg, every 2 weeks), along with intravenous
infusion of T cells and dendritic cells (DCs) every 27–36 days.
Meanwhile, the baseline and subsequent follow-up assessments
until disease progression revealed a decrease in peripheral levels
of CD8+ PD1+ T cells (Fig. 5d, left) and an increase in pTCD8+CD28-

levels (Fig. 5d, middle) across all five patients. In contrast, the
fluctuation in peripheral CD3+ CD8+ T-cell levels did not
demonstrate a consistent pattern, thereby ruling out the
possibility of false-positive amplification of pTCD8+CD28- due to
T-cell infusion (Fig. 5d, right).

DISCUSSION
Despite the dramatic clinical improvements during the past two
decades, resistance to HER2-targeted therapy remains virtually
inevitable [24]. Therefore, there is an urgent need for a robust
predictor of therapeutic efficacy. Numerous studies have reported
biomarkers associated with the effectiveness of anti-HER2 therapy
[25, 26]. Recently, immune-related factors have garnered much
attention among a range of biomarkers. In 2023, Hills RK and his
colleagues reported the prognostic value (but not the predictive
value) of TILs in early breast cancer patients receiving trastuzumab
[27]. In metastatic setting, TILs also exhibit a prognostic value for
OS, as evidenced by a retrospective analysis of the CLEOPATRA
trial [28]. These findings suggest a connection between tumour
immunity and the overall outcome of the patients. The detection
of peripheral lymphocytes offers advantages such as real-time
monitoring, minimal invasiveness, and homogeneity compared to
needle biopsy-based detection. Here, we demonstrated the
prognostic value of pTCD8+CD28- in MBC patients receiving anti-
HER2-based therapy. At baseline, patients with pTCD8+CD28- high
had significantly longer mPFS than those with pTCD8+CD28- low
(Fig. 2a–c). In subgroup analysis, the same result was reproduced
in patients who received trastuzumab plus chemotherapy (Fig. 2d).
Although similar trends were noted in other subgroups, none of
these reached statistical significance (Fig. 2e–g). This may be
partly due to the limited sample size and the insufficient follow-up
time period. Moreover, the dynamic monitoring of pTCD8+CD28-

also showed a prognostic value comparable to the baseline
pTCD8+CD28- level (Fig. 3). It is noteworthy that even among
patients with pTCD8+CD28- low at baseline, those who exhibited an
increased pTCD8+CD28- level upon HER2-targeting therapy also
gained more benefit than those maintain pTCD8+CD28- low (7.7 vs.
11.1 months, P= 0.025) (Fig. 3). Evidence have demonstrated the
anti-tumour effect of trastuzumab induced antibody-dependent
cellular cytotoxicity (ADCC) [29]. Therefore, we hypothesize that
pTCD8+CD28- level may reflect tumour immunity of the patients,
thus aiding in the identification of individuals who are more likely
to benefit from HER2-targeted therapy. Numerous studies have
highlighted the suppressive role of CD8+ CD28- T cells in

Table 3. Correlation of pTCD8+CD28− level with other peripheral lymphocyte subtypes.

Peripheral lymphocyte subtypes HER2+MBCs (n= 252) Health control (n= 79)

Correlation coefficient P value Correlation coefficient P value

CD3+ (total T cell) 0.134 0.033 0.079 0.486

CD3+ CD4+ (T helper cell) −0.274 <0.001 −0.251 0.026

CD3+ CD8+ (cytotoxic T cell) 0.422 <0.001 0.441 <0.001

CD4+ /CD8+ ratio −0.474 <0.001 −0.443 <0.001

CD3-CD16+ CD56+ (natural killer cell) 0.099 0.116 0.134 0.238

CD3+ CD16+ CD56+ (natural killer T cell) 0.143 0.024 0.014 0.904

CD19+ (B cell) −0.199 0.002 −0.196 0.028

CD4+ CD25+ T cell −0.260 <0.001 −0.154 0.175

CD8+ CD28+ (naive antigen-specific T cell) −0.297 <0.001 −0.287 0.010
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regulating tumour immunity, suggesting that the presence of cell
surface markers CD8+ and CD28- signifies a senescent or
exhausted phenotype of T cell [30]. According to our data,
however, high level of pTCD8+CD28- appears to indicate a positive
tumour immunity in HER2+MBC. First, we found an intensive
expression of perforin and granzyme B in pTCD8+CD28-, suggesting
its cytotoxic function (Fig. 4a). In addition, TCR clonality and
transcriptome analysis further revealed that pTCD8+CD28- served as
an antigen-experienced effector T cell in HER2+MBC (Fig. 4b, c).
In peripheral blood, pTCD8+CD28- level showed a positive correla-
tion with total T cells and nature killer T-cell level (Table 3). In
metastatic lesions, we noticed a trend indicating that pTCD8+CD28-

level was positively associated with TILs infiltration, particularly
CD8+ CD28− T-cell infiltration (Fig. 5a, b). The maintenance of
terminally differentiated effector T cells is well-known to be
dependent on IL-2 and can be disrupted by transforming growth
factor-β (TGF-β) [31, 32]. Our findings support this notion, as we
found a significant association between a higher serum level of IL-
2 (P= 0.034) and a lower level of TGF-β (P= 0.016) with
pTCD8+CD28- high (Fig. 5b). These evidence were consistent with
what we found at cellular level. Furthermore, we also observed the
anti-PD1 therapy induced upregulation of pTCD8+CD28- level,
although this result was achieved in TNBC patients (Fig. 5). This
clinical phenomenon further strengthens our hypothesis regard-
ing the close relationship between pTCD8+CD28- and tumour
immunity. Still, our hypothesis needs more detailed investigation
and concrete evidence. Collectively, we demonstrated that a high
level of pTCD8+CD28- is associated with enhanced tumour immunity
in HER2+MBC. This observation provides partial insight into why
patients with an intensive or increasing level of pTCD8+CD28- upon
anti-HER2-based therapy could gain more benefit.
There are several limitations of present study. Firstly, this

retrospective study has a limited number of patients in most
therapeutic subgroups. Perspective studies designed to verify the
predictive value of pTCD8+CD28- for each therapeutic subgroup are
necessary. Secondly, the observed increase in pTCD8+CD28- level
following anti-PD1 therapy in mTNBC patients should also be
validated in HER2+MBC patients. Finally, the comprehensive
mechanisms underlying the prognostic role of pTCD8+CD28- and its
effect on tumour progression remain unclear, necessitating further
exploration.

CONCLUSIONS
Our study has identified the novel prognostic value of pTCD8+CD28-

for anti-HER2-based therapy in MBC patients. Specifically, patients
with pTCD8+CD28- high at baseline exhibited prolonged PFS.
Patients with consistent or enhanced pTCD8+CD28- levels upon
the treatment also indicate a better PFS. In addition, we observed
a positive correlation between pTCD8+CD28- levels and tumour
immunity, which can be enhanced by immunotherapy.
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