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BACKGROUND: The patients with dual oesophageal squamous cell carcinoma (ESCC) and hypopharyngeal cancer (HPC) have poor
prognosis; their underlying genetic pathogenesis is unclear. We hypothesise that development of synchronous ESCC/HPC depends
on multicentricity or independent origin, rather than multifocality due to local or lateral spreading.
METHOD: Multiple region whole-exome sequencing (M-WES) and clonality analysis were used to assess clonal relationship and
spatial inter- or intra-tumour heterogeneity (ITH) in 62 tumour regions from eight dual ESCC/HPC and ten ESCC patients.
RESULTS: All synchronous ESCC/HPC patients had COSMIC 16 mutation signatures, compared to only 40% ESCC in the current study
(p= 0.013) and public data set (n= 165, p= 0.003). This alcohol consumption-related mutation signature 16, commonly involved in
multiple alcohol-related cancers, was significantly associated with drinking and alcohol metabolism-related ADH1B rs1229984. The
mutational landscape and copy number profiles were completely distinct between the two primary tumours; clonality analysis further
suggested the two primary tumours shared no or only one clone accompanying independent subclone evolution. M-WES strategy
demonstrated higher sensitivity and accuracy for detection of mutational prevalence and the late branch mutations among different
regions in the ESCC tumours, compared to traditional sequencing analysis based on single biopsy strategy. Patients with high ITH
assessed by cancer cell fraction analysis after M-WES were significantly associated with both relapse and survival.
CONCLUSIONS: Our hypothesis-generating M-WES ITH assessment data have implications for prognostication. Collectively, our
findings support multicentric independent clonal evolution, the field cancerisation theory, and suggest novel insights implicating an
aetiologic role of alcohol metabolism in dual ESCC/HPC carcinogenesis.

British Journal of Cancer (2022) 127:2166–2174; https://doi.org/10.1038/s41416-022-01995-0

INTRODUCTION
Oesophageal cancer (EC) is a deadly cancer worldwide [1].
Oesophageal squamous cell carcinoma (ESCC) is the prevalent
histological subtype endemic in Asia, Africa, and Europe [1]. The
occurrence of multiple primary cancers occurs in 8.3–12.6% of
ESCC patients [2–7]. The treatment and prognosis of patients with
dual ESCC/head and neck cancer (HNC) are primarily based on
ESCC stage, which is usually advanced at diagnosis, contributing
to its dismal five-year survival and management challenges [3].
Current treatment strategies, including chemoradiation therapy
(CRT) and surgery, are often ineffective due to intra-tumoural
heterogeneity (ITH) derived from the complex subclonal tumour
evolution. The multiple primary HNCs and aerodigestive tract
cancers may be driven by “field cancerization” [8]. This concept

proposes an aetiologic role of epithelium exposure to common
carcinogens associated with alcohol and tobacco consumption,
leading to multifocal lesions. To date no comprehensive genomic
studies have examined the genetic pathogenesis of multifocal
tumours with regards to the ITH and mutational signatures in
patients with dual synchronous ESCC/hypopharyngeal cancer
(ESCC/HPC) [9, 10]. It is unclear whether synchronous tumours
share similar genomic features arising from clonal expansion or if
they independently evolve. To understand its underlying aetiol-
ogy, we applied multiple region-sampling whole-exome sequen-
cing (M-WES) strategy and compared the mutation signatures
associated with primary ESCC and synchronous ESCC/HPC. WES
analysis demonstrated the quantification of ITH and existence of
more than two subclones could be a universal potentially useful
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survival biomarker across twelve cancer types, but this is unknown
for ESCC [11]. We aimed to utilise M-WES analysis to evaluate if
degree of ITH carries prognostic information.

METHODS
During 2018–2019, ten ESCC and five synchronous ESCC/HPC patients were
recruited from Queen Mary Hospital (QMH), University of Hong Kong.
Another three synchronous ESCC/HPC patients were recruited from 2020 at
Shanghai Chest Hospital (SCH). Diagnosis of synchronous ESCC/HPC was
based on the criteria of clear separation of tumours by histological
examination and normal mucosa and the exclusion of the second tumour
due to metastasis of the primary tumour [12]. A total of 60 tumour tissues, 6
matched normal tissues from oesophagus and hypopharynx and 15
matched fresh bloods from 10 ESCC and 8 ESCC/HPC patients with patient’s
informed consent were obtained for M-WES analysis. The study was
approved by the Ethics Committee of Shanghai Jiaotong University and
Institutional Review Board of the University of Hong Kong/Hospital Authority
Hong Kong West Cluster (HKU/HA HKW IRB number UW 17–187) and was
performed according to the principles of the Declaration of Helsinki. All
patients were treatment-naive, directly undergoing surgery. M-WES was
utilised to understand spatial ITH by obtaining 4–6 ESCC regions from
distant regions of each tumour specimen after upfront surgery of 10 Hong
Kong ESCC patients. For dual cancer patients, at least one specimen from
each primary site was collected, except there was no available HP tumour for
HK5 (Table S1). Figure S1 shows good-quality sequencing data with mean
target coverage for 81 samples from 18 patients.

Whole-exome sequencing and bioinformatics analysis
WES libraries were prepared with KAPA HTP Library Preparation and
SeqCap EZ Exome+UTR Kits (Roche). WES and bioinformatics analysis were
performed, as previously described, and detailed in the supplementary
methods [13, 14]. The multi-regional sample identities were confirmed
using Identity-by-descent (IBD) analysis by PLINK v1.9. A mutational
heatmap with the ComplexHeatmap R package showing the protein-
altering mutations or mutated genes across regions was drawn for each
ESCC patient [15]. Subclonal compositions of multi-regional samples were
analysed using the SuperFreq R package considering somatic single
nucleotide variants (SNVs) and CNVs [16]. Bamfiles containing the pre-
filtered variants including both germline variants and somatic mutations
were input into SuperFreq to generate patient river plots. Copy number
variation (CNV) gains and losses were above 1 or below −1 after log 2
transformation. Cancer cell fractions (CCFs) were computed for each
somatic mutation based on sample purity (predicted by ABSOLUTE v1.2)
and local copy-number [17]. Sanger sequencing demonstrated an accuracy
of 98.2% (110/112) for selected mutations (Table S2).

Mutation signature analysis
Lists of exonic mutations were uploaded to the web-based tool, Mutational
Signatures V3.2 (http://cancer.sanger.ac.uk/signatures/) for mutation sig-
nature calling. Reports of somatic mutation prevalence, mutational profiles,
COSMIC signature contributions, comparison with cancer signatures,
reconstructed mutational profiles, and principal component analysis were
downloaded. Mutational signature calling was performed for 165 ESCC
patients from previous publications with two data sets from Sequence
Read Archive (accession number SRP033394) and European
Genome–phenome Archive (accession number EGAS00001000932).
Another in-house WES data set included our previous study [13].

Statistical analysis
The differences between mutation signature occurrence and association of
survival and relapse with ITH were examined with Fisher’s exact test. Pearson
correlation coefficient was calculated for the correlation between mutation
signature 16 and drinking, males, smoking, and dual primary cases. A
p < 0.05 (2-sided) was considered statistically significant. Analyses were
performed with SPSS v26 (SPSS Inc., IBM Corporation, Armonk, NY, USA).

RESULTS AND DISCUSSION
Synchronous ESCC/HPC and ESCC patients’ clinical parameters
Detailed clinical information of 18 synchronous ESCC/HPC and ESCC
patients for unbiased M-WES analysis is summarised in Table 1. All

ESCC/HPC and 70% ESCC patients are males; age ranges of ESCC/
HPC (49–84, average= 62.9) and ESCC (48–85, average= 62.6)
patients are similar. Five (62.5%) ESCC/HPC and one (10%) ESCC
patient died, after a median 23.5 months follow-up.

Multi-region sampling captures intra-tumour heterogeneity of
SNVs and CNVs of synchronous ESCC/HPC patients
The mean coverage of aligned reads was 52.6×, 72.4× and 88.8×
for 15 bloods or 6 matched normal and 60 tumour samples from
18 patients, respectively (Fig. S1). The total numbers of exonic
non-silent mutations (including frameshift and non-frameshift
indels, stop gain, stop loss, and nonsynonymous) of 18 patients
are summarised in Table S3. Similar somatic mutation prevalence
was observed among patients with only primary ESCC and with
dual cancers, with an average of 4.35 somatic exonic mutations/
Mb (range 0.52–11.58) (Fig. S2). TP53 remained the most
frequently mutated gene in dual cancer (71.4%, 5/7) and ESCC
(70%, 7/10) patients. Surprisingly, both the mutational landscape
(Figs. 1c and S3A) and CNV patterns across chromosomes (Fig. 2)
of oesophageal and hypopharyngeal tumours of synchronous
ESCC/HPC patients are distinct. Two primary tumours from four
dual cancer patients (4/7, 57.1%) shared no common exonic non-
silent mutations, while a few mutations were shared in three
patients (Table S4). The ESCC/HPC tumours showed high inter-
tumour heterogeneity in terms of CNVs at ten genes frequently
occurring in ESCC (Fig. S4). For the common CCND1 amplification
at 11q13, high intra-tumour heterogeneity existed in three dual
primary patients, HK3, HK4 and SH2, which was only amplified in
either the ESCC or HP tumours, but not present in both. CCND1
amplification was present in both the ESCC and HP tumours in
HK1, HK2, SH1 and SH3 although the three ESCC (EA, EB, and EC)
and two HP tumours (HA and HC) of HK1, as well as the ESCC and
HP tumours of SH1 were amplified to different levels. Further
analysis of CNVs between the ESCC and HP tumours of the same
patients identified 73 regions differentially amplified or deleted
CNVs between the ESCC and HP tumours of the same patient
(p < 0.01, fdr <0.15) (Table S5). These included cancer relevant
genes involved in actin cytoskeleton remodelling, integrin
activation, EMT-Wnt signalling pathway, and metastasis or with
potential prognostic role such as SPEN on chromosome 1,
PLEKHG4B, and CCT5 on chromosome 5, LRP5 on chromosome
11, RFPL1, SLC5A1, and SHANK3 on chromosome 22 [18–22]. Our
WES findings substantiate earlier reports of discordant patterns of
inter-tumour allelic losses inferred by microsatellite typing or SNP
profiling in multiple ESCC and HNCs patients [9, 10]. The clonality
analysis tracking multiple clones from different tumour regions in
the same individual further confirmed that no (HK1, HK4, SH1,
SH3) or only one clone (HK2, HK3, SH2) was shared between the
primary sites, consistent with the GATK-called mutations (Figs. 1d
and S3B). Clonality analysis easily differentiates the ESCC/HPC dual
cancers from ESCC patients with clonal relationships (Fig. 1). More
detailed analyses with respect to the change of dominant
subclones (defined as clonality>0.5) and somatic mutations
revealed that, in general, the dominant subclones were mutually
exclusive between ESCC and HP tumours from dual-cancer
patients (Table S6). Among the multiple regions of ESCC, one
dominant subclone was shared in at least two ESCC regions in
HK5, two dominant subclones were shared in at least two regions
in HK8. At least three or four dominant subclones were shared in
at least two regions in the remaining 9 ESCC patients without dual
cancer. Three (3/7, 42.9%) dual cancer patients had single shared
clones containing both CNVs and mutations mostly occurring at
intronic, promoter and untranslated regions (Table S7), suggesting
the possibility of a minority of tumour cells migrating along the
aerodigestive tract. To the best of our knowledge, this is the first
WES study reporting the completely distinct genetic landscape,
CNV profile and subclones between two patient’s tumours of
synchronous dual cancers. The mechanism underlying unique
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origins of dual cancers is supported by WES mutation landscape
and CNV profiling. Their entirely different mutational landscapes
and CNV patterns suggest the multicentricity of HPC and ESCC
tumours was not clonally related and arose independently. Future
studies with larger sample cohorts are warranted, as we cannot
rule out the possibility that the differences of copy number
variation pattern and genetic mutation profile may result from the
small size of the cohort in the study.

Alcohol consumption-related mutational signature 16 is
dominant in synchronous cancer patients
The mutagenic processes from defective DNA repair, replication
and genotoxins exposure of various carcinogens in cancer
genomes during tumourigenesis are reflected by the mutational
signatures [23, 24]. The M-WES studies in 36 regions from ten

primary ESCC identified seven frequently occurring signatures (1,
2, 6, 7, 10, 13, 16) from 30 COSMIC mutational signatures, similar to
those observed from 165 single-region ESCC WES public data
(Fig. 3) and are concordant to earlier studies [25–27]. All patients
showed ITH by M-WES in the mutational signatures (1, 2, 6, 7, 13,
and 16) detected in at least one-third of all regions (12/36).
Significantly, mutation signature 16, which is prevalent in ESCC
synchronous cases (100%, 8/8), has a significantly lower frequency
in ESCC patients in the current study (40%, 4/10, p= 0.013) and in
the publicly available data set (40%, 66/165, p= 0.003) (Fig. 3). Our
current study is the first to report such a high prevalence of
COSMIC mutation signature 16 in dual ESCC/HPC patients
compared to the current study and literature reported frequency
ranging from 16–40% in ESCC [26]. Mutation signature 16
correlates with drinking, males, smoking, dual primary cases
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cohorts and the WES public data set with 165 ESCC patients.

Table 2. Dual primary cancers, COSMIC mutational signature 16 and ITH association with relapse and overall survival.

Smoking Drinking Relapse Overall survival

Yes No pa Yes No pa Yes No pa Dead Alive pa

Dual primary

Yes 8 0 0.004 7 1 0.314 5 3 0.145 5 3 0.043

No 3 7 6 4 2 8 1 9

Total
11 7 13 5 7 11 6 12

COSMIC 16 mutational signature

Yes 10 3 0.047 12 1 0.008 7 6 0.101 6 7 0.114

No 1 4 1 4 0 5 0 5

Total
11 7 13 5 7 11 6 12

ITHb

Yes 1 2 1.000 3 0 0.205 3 0 0.005 2 0 0.045

No 4 5 4 5 0 9 1 9

Total
5 7 7 5 3 9 2 10

Bolded p values= statistically significant, <0.05.
aFisher Exact test, 2-tailed.
bITH defined by CCF analysis.
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(Pearson correlation 0.723, p= 0.001, 0.721, p= 0.001, 0.523,
p= 0.026, and 0.555, p= 0.017, respectively). By Fisher’s exact
test, mutation signature 16 associated significantly with drinking
(p= 0.008), smoking (p= 0.047), male gender (p= 0.012) and a
trend with relapse (p= 0.101) and overall survival (p= 0.114)
(Table 2). The distinct occurrence of drinking-associated mutation
signature 16 between ESCC-related dual cancers bridges the gap
between field cancerization and alcohol exposure. Past epidemio-
logical studies reported that alcohol consumption is a risk factor of
multiple dysplasia lesions in the oesophagus, head and neck, and
development of multiple primaries in the upper-GI tract [28]. The
alcohol consumption-associated mutational signature 16 was
previously identified as one of the common mutational signatures
in several alcohol-related cancers including liver cancer, head and
neck cancer, and ESCC, highlighting the aetiologic risk factor role
of alcohol consumption in tumourigenesis [26, 29, 30]. In the
current study, the presence of mutation signature 16 occurs in all
dual ESCC/HPC patients and correlates to drinking history. We
further verified the relationship between COSMIC signature 16 and
alcohol-related SNP ADH1B rs1229984 (T>C) in the public ESCC
cohort and further confirmed that this signature was associated
with the patients carrying the C allele of rs1229984, especially
those patients with homozygous CC (CC vs. TT, 44.4% vs. 26.5%,
p= 0.047, Chi-Square test). Consistently, dual synchronous ESCC/
HPC patients were more likely to carry genotype CC compared to
other ESCC patients with marginal significance (dual cancer vs.
ESCC, 50.0% vs. 23.0%, p= 0.0998, Fisher’s exact test). East Asian
individuals carrying the TT/TC genotypes of the alcohol
metabolism-related functional SNP ADH1B rs1229984 were more

likely to experience drinking discomfort, as the T allele causes
rapid accumulation of acetaldehyde after alcohol intake. Our
association findings of rs1229984 with COSMIC signature 16 were
in line with earlier observation of individual carriers with the CC
genotype of ADH1B rs1229984 having a significantly higher risk of
multiple alcohol-related cancers of the larynx, pharynx, oesopha-
gus, and pancreas [31]. Thus, our study provides new evidence
implicating the aetiologic role of alcohol consumption in dual
ESCC/HPC tumourigenesis. The molecular pathogenesis of HNC is
classified into nonkeratinized HPV-related and keratinised HPV-
unrelated forms associated with elderly males, smoking and
drinking [32]. HPV-16/18 DNAs were undetectable by PCR-based
consensus primer analysis (Fig. S6) [33], suggesting dual primary
cancer patients in our cohort belong to the HPV-unrelated
subgroup, which was further supported by their high frequency
p53 mutations (Table S4) and p16 deletions (Fig. S4). Given the
limited clinical sample capacity due to the rarity of dual cancers in
ESCC patients, findings in the current study are considered
hypothesis-generating and the novel insights between alcohol
consumption in dual ESCC/HPC tumourigenesis merit further
validation with larger sample cohorts. Despite the limited number
of cases analysed, our findings are clinically relevant. The power of
our study was 97.52% with the detection of COSMIC 16 mutational
signature in 100% of the 8 HP/ESCC cases and 40% of the 165
ESCC from public data set and the type I error rate of 0.05. Given
that mutational signature 16 is significantly more prevalent in
ESCC-related dual cancers than ESCC patients, the likelihood of
developing multiple primaries may be assessed in part with this
potential molecular parameter.
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Fig. 4 Intra-tumour heterogeneity reflected by M-WES SNV and clonality analysis. Clonal status of putative driver mutations defined by
previous large-scale ESCC genomic studies [26, 48–51] and frequently mutated genes in different regions across patients by a heatmap.
Tumour suppressor mutations predominately occurred early in the evolutionary process as trunk mutations (TP53, KMT2D, NOTCH1, FBXW7,
CDKN2A, etc.), while most other driver gene mutations occurred as both trunk and branch mutations, including oncogenes (PIK3CA, NFE2L2)
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M-WES sensitively tracks ITH by multiple sampling
M-WES analysis of 12 patients in multiple ESCC regions identified
1981 non-silent mutations in 1749 genes in 44 regions (Table S3).
The median number of exonic mutations detected was 117 (non-
silent= 88), similar to previous reports [24, 27]. Researchers
attempted to investigate inter- and intra-tumour heterogeneity
by multi-regional sampling underlying the phylogenetic branched
evolution model, providing evidence that such spatial and
temporal ITH occurs in various cancers including ESCC
[27, 34–39]. Our findings of ESCC ITH recapitulate similar
observations of high ITH in two earlier studies [25, 27]. The
presence of mutations in all regions from an ESCC patient is
defined as early “trunk”; otherwise, it is defined as late branch
mutations during clonal evolution. The phylogenetic trees
constructed based on the somatic mutations in all ten primary
ESCC patients to track evolutionary patterns, indicated extensive
spatial ITH variation of the somatic non-silent mutations (Fig. S5).
The generalisation that driver tumour suppressors occurred early
as trunk mutations did not apply to two patients with poor
prognosis; two branch missense mutations at TP53 in HK5 and
KMT2D in HK13 were detected (Fig. 4a). The within-patient
mutation rates of ESCC putative driver genes are higher than
within-regions (Table S8). The strategy of M-WES analysis with
multiple region sampling resulted in more sensitive detection of
late branch mutations such as KMT2A, EP300, and EP400. ITH may
impede precision medicine by affecting strategies on biopsy
sampling and treatment decision through more in-depth char-
acterisation of actionable drug targets [40, 41]. this study also
identified an additional 28 frequently mutated genes, including 5
trunk and 23 branch mutations in 16.7–25% of 12 patients,
suggesting the current single biopsy sequencing analysis will
underestimate mutational prevalence and miss late branch
mutations occurring in tumour evolution. Two of the five newly

identified trunk early mutations previously not reported in ESCC,
RBMXL2 and TRIP12, occur in 25% (3/12) patients. RBMXL encodes
an RNA-binding protein complex with heterogeneous nuclear RNA
(hnRNA) involved in pre-mRNA processing and regulating splicing
with unknown functions [42]. TRIP12 (thyroid hormone receptor
interactor 12) encodes an E3 ubiquitin-protein ligase regulating
degradation of the critical ESCC tumour suppressors including
FBXW7 and the p19ARF/ARF/TP53 axis [43, 44]. Future M-WES
studies are needed to evaluate whether any of these are potential
ESCC driver mutations.

High ITH associated with poor survival
Various degrees of heterogeneity observed in 12 patients are
summarised by numbers and distribution frequencies of non-
silent trunk and branch mutations (Fig. 4b and Table S9). The
heterogeneity frequency was calculated by dividing total non-
silent branch mutations by patient-specific mutations. The median
ITH of 12 patients with multiple ESCC regions was 37%, ranging
from 15.9–100%, concordant with an earlier Japanese study with
13 patients with higher mean coverage depth of 150X [27]. The
highest heterogeneity rate of 100 and 90% were observed in two
patients, HK5 and HK13, followed by two other patients (HK6 and
HK10) with 71 and 78%, while the majority of the remaining
patients had <40% heterogeneity. Patients HK5 and HK13 had the
highest number of branch (>300) and private (~250) mutations,
compared to <100 branch and 70 private mutations observed in
other patients (Fig. 4a, b). The clonal status of putative ESCC driver
genes within each region is displayed as CCFs (Fig. 5), calculated
after integration of CNVs, VAF and tumour cell purity [45, 46]. HK5,
HK6, and HK13 showed the highest proportion of subclonal status
among putative ESCC driver genes of 85% (11/13), 57% (4/7), 67%
(10/15), respectively, concordant with results when only consider-
ing somatic non-silent mutations (Fig. 4a, b). For the eight dual
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primary cancer patients, both the recurrence and survival rates
were 62.5% (5/8). For the ten ESCC patients, the recurrence and
survival rates were 20% (2/10) and 10% (1/10), respectively. After a
median follow-up of 25.5 months for twelve patients with multiple
ESCC regions receiving surgery, two patients with the highest
degree of ITH died. In addition to overall survival, the dual primary
cancer patient, HK5, and two primary ESCC patients, HK6 and
HK13, experienced the highest degree of heterogeneity based on
the evidence from clonal status of putative driver mutations and
frequently mutated genes in non-silent mutation heatmaps and
CCF (Figs. 4a, b and 5) in this ESCC cohort of patients with relapse.
HK5, HK6 and HK13 had the highest proportion of subclonal driver
mutations associated with poorer overall survival (p= 0.045) and
disease relapse (p= 0.005) (Table 2). To the best of our knowledge,
earlier M-WES ESCC studies did not address the prognostic role of
high tumoural ITH. The evidence presented here supports the
hypothesis for the potential clinical usefulness of utilisation of
high ITH as a prognostic indicator, but further larger cohort studies
are needed to validate our findings.

CONCLUSIONS
ESCC patients are at high risk to develop multiple primary cancers
in the upper aerodigestive tract, especially at the hypopharynx
and larynx [3, 47]. Our key findings of the alcohol exposure-related
mutational signature present in all eight dual ESCC/HPC patients
provide aetiologic insight implicating alcohol consumption being
involved in dual ESCC/HPC carcinogenesis, as previously postu-
lated by the field cancerization theory. Future verification studies
are needed to substantiate this novel observation about alcohol-
related mutational signature COSMIC 16 and analysis of dual
synchronous ESCC/HPC cancers related to alcohol exposure.
Current data from both clonality analysis and distinctive genomic
profiles suggest multicentricity independent origin of clonal
evolution rather than the clonal expansion of common neoplastic
clones giving rise to dual primary ESCC/HPC. Our data indicate
that M-WES assessment of ITH is needed to improve prognostica-
tion and lays the groundwork required to unravel the underlying
genetic pathogenesis for the identification of novel therapeutic
options and biomarkers for early screening, prediction and
prognostication of treatment outcomes to improve survival for
this deadly cancer.
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