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Ferritin in glioblastoma
Heidi Jaksch-Bogensperger1,2,3, Sabine Spiegl-Kreinecker4, Paolo Arosio5, Peter Eckl1, Stefan Golaszewski3, Yvonne Ebner3,
Rahman Al-Schameri6, Peter Strasser7, Serge Weis8 and Nikolaus Bresgen1

Elevated levels of serum ferritin (SF) are observed in several types of cancer; however, little is known on the association between ferritin
and glioma, the most frequent type of human primary brain tumour. Here we report that GBM patients show significantly increased
pre-surgical SF levels (i.e. ferritinaemia) within the SF reference range and a marked ferritin immunoreactivity of resected tumour tissue.
Our findings account for an indirect association between ferritin synthesis in glioma-tissue and altered SF levels, which limits the clinical
value of SF as a tumour marker in glioma. Importantly, we show for the first time that GBM-derived glioma cells release ferritin in vitro,
which exerts an apoptosis-stimulating activity. Albeit the pathophysiologic context of apoptosis induction by a tumour-derived ferritin
remains to be defined, our findings account for a distinct growth-regulatory role of these ferritin species in tumour biology.
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BACKGROUND
Ferritin, a 450-kDa multimeric iron-storage protein, built from 24
heavy (FTH) and light (FTL) chains, is essential to cellular iron
homoeostasis by regulating the intracellularlabileiron pool via its
ferroxidase activity conferred by the FTH chain.1 In the brain, FTH-
rich isoferritins predominate in neurons and oligodendrocytes,
FTL-rich isoferritins in microglial cells and astrocytes in the corpus
striatum.2 Serum ferritin (SF) levels are normally low, but may rise in
diseased states, including cancer, leading to malignancy-associated
ferritinaemia.1,3 Tumour cell-based ferritin release (e.g. neuroblas-
toma) is considered to be causal to rising SF levels, but other sources
(e.g. cells of the tumour-surrounding stroma) have also been
discussed.1 Still, the clinical and pathophysiological significance of
ferritin in cancer is poorly defined, which holds particularly true for
glial tumours. Only three studies have assessed ferritinaemia
in gliomas by routine laboratory diagnostics comprising a total
number of less than 60 patients,4–6 the biological background of
glioma-associated ferritinaemia remaining elusive. Here, we provide
evidence for an upregulated ferritin synthesis in glioma tissue, which
is not directly associated with elevated SF levels. In addition, we
show for the first time that tumour-derived ferritins are capable of
stimulating apoptosis.

METHODS
The study was approved by the local research ethics committee
Salzburg, Austria (415-EP/33/3-2008). Written informed consent

was obtained from all patients. The study was performed in
accordance with the Declaration of Helsinki. Pre-surgical serum
samples and tumour tissue specimens from 18 GBM patients and
16 meningioma (WHO I) patients were investigated. Serum ferritin
(SF) was quantified by employing the Tina-Quant-Ferritin assay
(ROCHE, Germany) on a Hitachi 917 automatic analyser. Immuno-
histochemical analysis of formalin-fixed paraffin-embedded speci-
mens of resected tumour tissue followed standard procedures
by employing anti-human FTL-specific (LSBio LS-B4383) and
FTH-specific (LSBio LS-C105404) antibodies. Determination of
the ferritin-labelling index is outlined in Supplementary Fig. S1.
The apoptosis-inducing activity of ferritin released from a primary
human glioma cell line,7 as well as newborn mouse astrocytes, was
investigated under serum-free conditions using a primary rat
hepatocyte assay defined for assessing ferritin cytotoxicity.8,9

Statistical significance was examined by applying non-parametric
tests (SF quantification using published gender-specific popula-
tion medians3 as reference, immunohistochemical analysis) and
Student’s double-sided t-test for independent samples (apoptosis
induction) using SPSS version 24.

RESULTS
SF levels were significantly (p < 0.005) elevated in GBM and
meningioma patients, in 22.2% (GBM) and 37.5% (meningioma) of
the patients (ExtR cohort) exceeding the 95th percentile of the SF
reference range (Fig. 1a; Supplementary Table 1). In GBM patients
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with SF levels within the reference range (RefR cohort), the ferritin
concentration in serum was still significantly (p < 0.005) higher
compared with a healthy reference population,3 as well as with
the RefR cohort of meningioma patients (Fig. 1a). In good
correspondence with this, resected tumour tissue from both
patients immunoreacted with anti-ferritin antibodies, especially
for the FTL subunit, GBM specimens showing significantly (p <
0.005) higher labelling indices (Fig. 1b; Supplementary Fig. 1).
Interestingly, FTL and FTH-labelling indices were comparable
between GBM specimens of the RefR and ExtR cohorts (Fig. 1c),
which contrasts the significant variation of the corresponding SF
levels (Fig. 1a). In line with this, SF levels and tissue FTL labelling of
the GBM–RefR cohort showed a moderate, not significant
correlation (Supplementary Fig. 2).
Importantly, ferritin was also detectable in culture supernatants

(GBM-CM) collected from a human glioblastoma-derived cell line
(Fig. 2a). The GBM-CM as well as the ferritin purified thereof
exerted a significant (p < 0.05) apoptosis-stimulating activity that
was suppressed by neutralising anti-ferritin antibody Ab rH02
(Fig. 2a, b). In contrast, a ferritin species isolated from newborn
mouse astrocyte cultures failed to stimulate apoptosis (Fig. 2b).
This demonstrates for the first time that glial cells are able to
release a ferritin isoform in vitro, which exerts a distinct apoptosis-
inducing activity.

DISCUSSION
Our findings strongly support the assumption that glial tumours
synthesise and secrete ferritin,4,6 which is causal to GBM-
associated ferritinaemia. Moreover, the enhanced immunoreactiv-
ity of resected GBM tissue for the FTL subunit accounts for the
synthesis of a FTL-type isoform, which corresponds well with the
reported expression of FTL-type isoferritins in cultured
glioblastoma-derived cells,10 and with similar findings in glioblas-
toma stem-like cells.11 Strikingly, we demonstrate for the first time

an apoptosis-stimulating activity of GBM-derived isoferritins. Since
this activity is not seen for the isoferritin released from cultured
newborn astrocytes, it is conceivable that astrocyte transformation
towards a malignant phenotype comes along with the synthesis
and secretion of a different ferritin isoform that exerts a pro-
apoptotic activity. Albeit the pathophysiological significance of
this novel finding is elusive, earlier research has demonstrated
that iron-mediated oxidative stress and lipid peroxidation plays a
pivotal role in ferritin-mediated apoptosis.12 On the other hand,
high cytosolic ferritin levels may confer cytoprotection by
enhanced iron sequestration, and affecting stress-associated
targets such as the GADD45A/JNK pathway.10 Notably, elevated
iron requirements have been demonstrated for glioblastoma
stem-like cells where an increased ferritin expression supposedly
confers stable intracellular iron buffering.11

Interestingly, no significant correlation between tumour ferritin
immunoreactivity and SF levels was found in the investigated
GBM patients. Hence, the tumour-based ferritin release may not
be directly connected with the circulating SF pool in GBM, which
limits the use of serum ferritin as a useful tumour marker for
gliomas. With respect to this, it is noteworthy that the blood–brain
barrier (BBB) can persist in GBM tissue, which hinders the
accessibility of chemotherapeutics to the tumour cells,13 and vice
versa, it may also antagonise the exit of high-molecular-weight
ferritin to the circulation. However, evidence exists that glioma
cells themselves release soluble factors, such as vascular
endothelial growth factor and hepatocyte growth factor, which
promote BBB degradation.14 It is tempting to speculate on a
similar effect conferred by the pro-apoptotic properties of glioma
cell-derived isoferritins contributing to ferritinaemia in advanced
GBM. The markedly high SF levels seen in the ExtR cohort of GBM
patients could hypothetically reflect such a possibility. Similar
contexts, although of less-severe outcome, may also apply to
benign brain tumours, such as meningioma, which, as shown here,
can also be accompanied by increased serum ferritin levels.
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Fig. 1 Ferritin in serum and resected tumour tissue of GBM and meningioma patients. a Based on SF quantification, patients were assigned
to two cohorts: the RefR cohort (open boxes) showing SF levels inside the reference range (i.e. below the 95th percentile) of the TINA-Quant
ferritin assay and the ExtR cohort (black boxes) with SF levels elevated above the 95th percentile. Dotted lines refer to the median reference
levels reported for healthy male and female donors.3 Note that only a minority of GBM patients (ExtR cohort) showed very high SF levels
(462–1355 ng/ml; median= 727 ng/mL), which is in line with existing data, with only 4 of a total of 57 glioma patients investigated so far,
showing extremely high SF levels (Supplemental Table 1). Meningioma patients showed lower SF levels, which is significant (p > 0.05) for the
RefR cohorts, and the highest SF value observed in meningioma patients (766 ng/mL) locates close to the median SF level of GBM–ExtR
patients. b Immunohistochemistry of resected GBM and meningioma tissue evaluated by the labelling index (i.e. the percentage of immune-
positive cells) demonstrates a significantly (p < 0.005) higher immunoreactivity for ferritin in GBM samples. In both types of tumour specimens,
labelling for the FTL subunit was significantly (p < 0.05; p < 0.005) higher compared with FTH. c In GBM tissue, no differences of ferritin
labelling were found between samples obtained from the RefR and ExtR cohort, the highest FTL labelling being observed in RefR cohort
samples: 328 ng/mL (upper dot) and 206 ng/mL (lower dot). *p < 0.05; **p < 0.005 compared with the healthy reference population in (a)
(Wilcoxon sign test for median difference based on gender-specific SF values) or as indicated (Mann–Whitney U exact test for independent
samples for the comparison between the two patient cohorts in (a, c), and Wilcoxon signed-rank test for paired samples in b); +p < 0.05; ++p <
0.005 compared with meningioma patients (Mann–Whitney U exact test for independent samples). The dots in meningioma RefR cohort (a)
and (b) highlight statistical outliers. N refers to the number of investigated patients (a) or tumour specimens (b).
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In conclusion, our findings account for a dual role of altered
ferritin expression in glioma development: protecting the tumour
cells by solid intracellular iron buffering, and upon release, acting
as effector molecule in the tumour microenvironment.
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elsewhere8 (left inset: dot blot of purified ferritin [0.5 µg] immunoreacted with Ab rH02). Treatment of serum-free primary rat hepatocyte
cultures for 48 h with 100 ng/ml of the purified GBM ferritin (GBM, closed bar) also had a significant (p < 0.05) apoptosis-stimulating effect that
was suppressed by anti-FTH Ab rH02 (hatched bar). In contrast, a 48-h exposure of primary rat hepatocytes to 100 ng/mL of a ferritin purified
from newborn mouse astrocyte culture supernatants16 had no effect (NBA). (b right inset: NBA culture supernatants [10 µg of total protein]
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indicated; Student’s double-sided t-test for independent samples.
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