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CRISPR/Cas9 genome-wide loss-of-function screening
identifies druggable cellular factors involved in sunitinib
resistance in renal cell carcinoma
Peter Makhov 1, Ji A. Sohn2, Ilya G. Serebriiskii1,3, Rushaniya Fazliyeva4, Vladimir Khazak5, Yanis Boumber6, Robert G. Uzzo7 and
Vladimir M. Kolenko4

BACKGROUND: Multi-targeted tyrosine kinase inhibitors (TKIs) are the standard of care for patients with advanced clear cell renal
cell carcinoma (ccRCC). However, a significant number of ccRCC patients are primarily refractory to targeted therapeutics, showing
neither disease stabilisation nor clinical benefits.
METHODS:We used CRISPR/Cas9-based high-throughput loss of function (LOF) screening to identify cellular factors involved in the
resistance to sunitinib. Next, we validated druggable molecular factors that are synthetically lethal with sunitinib treatment using
cell and animal models of ccRCC.
RESULTS: Our screening identified farnesyltransferase among the top hits contributing to sunitinib resistance in ccRCC. Combined
treatment with farnesyltransferase inhibitor lonafarnib potently augmented the anti-tumour efficacy of sunitinib both in vitro and
in vivo.
CONCLUSION: CRISPR/Cas9 LOF screening presents a promising approach to identify and target cellular factors involved in the
resistance to anti-cancer therapeutics.

British Journal of Cancer (2020) 123:1749–1756; https://doi.org/10.1038/s41416-020-01087-x

BACKGROUND
Renal cell carcinoma (RCC) is the most common type of kidney
cancer with rising incidence.1 It is categorised into various
subtypes, with clear cell RCC (ccRCC) representing ~85% of all
RCC tumours.2 Papillary RCC and chromophobe RCC represent the
most common remaining histologic subtypes with an incidence of
7–14% and 6–11%, respectively.2 Current targeted molecular
strategies, including multitargeted tyrosine kinase inhibitors (TKIs),
have resulted in a doubling of progression-free survival and
significant gains in overall survival, thereby notably changing the
treatment paradigm of advanced kidney cancer.3,4 Yet, about one-
quarter of the ccRCC patients are primarily refractory to treatment
with TKIs.5 Furthermore, most patients that respond initially will
typically progress within 12 months of starting therapy.6

The ability of sunitinib to inhibit angiogenesis is well-
established. However, we and others have demonstrated that, at
concentrations found in human tumour specimens,7 sunitinib may
also manifest a direct suppressive effect on tumour cells of various
origins.8–11 Studies by Hillman et al. indicate that sunitinib exerts a
direct cytotoxic effect on RCC cells at doses >0.5 μM.12 Concen-
trations of sunitinib in human tumour specimens can reach 9.5+
2.4 μmol/L, whereas plasma concentrations were found to be
significantly lower, 0.3+ 0.1 μmol/L.11 These findings suggest that

sunitinib may selectively accumulate in tumour tissue at high
concentrations and exert direct cytotoxic effect on tumour cells.
Furthermore, some clinical studies suggest that the high response
rate may result from a direct effect of TKIs on malignant cells.13

Protein farnesylation, catalysed by protein farnesyltransferase
(FTase), plays important roles in the membrane association and
protein–protein interaction of a number of eukaryotic proteins.14

FTase is located in the cell cytosol, and it is one of the three
enzymes in the prenyltransferase group that catalyses most
isoprenylation reactions. FTase adds a 15-carbon isoprenoid lipid
(the farnesyl group) to proteins bearing a CAAX motif.15 Preclinical
studies in the 1990s demonstrated that FTase inhibitors (FTIs)
could successfully kill cancer cells both in vitro and in vivo with
very little toxicity, thus generating much excitement toward the
development of FTIs-based anti-cancer therapeutic regimens.16

Unfortunately, in most clinical trials, FTIs as monotherapy have not
been as successful as expected.16–19 However, a combination of
FTIs with cytotoxic agents improved the responses of patients
with locally advanced breast cancer and some other advanced
solid tumours.16,20–22

Synthetic lethality screens hold great promise for the develop-
ment of novel therapeutic interventions. We have applied CRISPR/
Cas9-based high-throughput loss-of-function (LOF) screening to
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identify genes involved in the resistance to sunitinib, a standard
front-line therapeutic agent for the treatment of advanced ccRCC.
Our search identified FTase and its downstream effectors among
the top hits. Treatment of the sunitinib-resistant 786-O and
PNX0010 ccRCC cells9,23 with FTI lonafarnib potently augmented
the in vitro anti-tumour efficacy of sunitinib. Moreover,
combined treatment with lonafarnib circumvented resistance to
sunitinib in the PNX0010 xenograft tumour model. Therefore,
concomitant treatment with lonafarnib and sunitinib may
represent a rational therapeutic strategy for ccRCC patients with
sunitinib-resistant tumours.

METHODS
Cells and culture conditions
The 786-O human RCC cell line was obtained from ATCC. PNX0010
ccRCC cell line, which was described previously,10,24 was
established from a fresh tumour specimen obtained intraopera-
tively from an RCC patient, undergoing nephron-sparing surgery
at Fox Chase Cancer Center. This cell population is clinically
correlated to an aggressive variant of ccRCC. PNX0010 cells are
VHL-negative and express SETD2, BAP1 and PBRM1 proteins
(Supplementary Fig. S1). Initial stocks were cryopreserved, and at
every 6-month interval a fresh aliquot of frozen cells was used for
the experiments. No authentication was done by the authors. Cells
were cultured in RPMI 1640 (Bio-Whittaker) supplemented with
10% FCS (Hyclone), gentamicin (50 mg/l), sodium pyruvate (1 mM)
and non-essential amino acids (0.1 mM) under conditions
indicated in the figure legends.

Antibodies and reagents
Sunitinib (#13159) and lonafarnib (#11746) were obtained from
Cayman Chemical Company (Ann Arbor, MI). Anti-FNTB
(#ab109625) antibody was obtained from Abcam (Cambridge,
UK). Anti-β-actin (#3700), SETD2 (23486) and anti-PBRM1 (91894)
antibodies were obtained from Cell Signaling Technology,
(Danvers, MA). Anti-BAP1(sc-28383) antibody was obtained from
Santa Cruz (Dallas, TX).

Generation of sgRNA library
The custom oligonucleotide array (Supplementary Table 1) was
synthesised by Custom Array Inc. Overlapping PCR was performed
to incorporate NdeI and XbaI sites to the custom array for
subsequent Gibson Assembly (NEB, Ipswich, MA). The PCR
products were then cloned into pLX-sgRNA linearised with NdeI
and XbaI. pLX-sgRNA was a kind gift from Eric Lander & David
Sabatini (Addgene plasmid #50662).25 The Gibson library reaction
was transformed into XL10-Ultra competent cells. To maintain the
complexity of the library, at least 20-fold coverage in library
representation was recovered in the transformation and cultured
in NYZM+ broth for 7 h or until OD600 reached 0.8. Subsequently,
deep sequencing (Illumina) was performed to validate the library
complexity of the input plasmid and lentivirus pool.

CRISPR/Cas9-based genome-wide LOF screening
The RNA-guided CRISPR-associated nuclease Cas9 provides an
effective means of introducing targeted LOF mutations at specific
sites in the genome.26 For lentiviral production, we used 293T cells
transfected with pCW-Cas9 encoding FLAG-tagged Cas9 nuclease
driven by doxycycline-inducible promoter and carrying puromycin
resistance marker. 786-O ccRCC cells9,27 were infected with Cas9
expressing lentivirus at high multiplicity of infection (MOI) and the
stable clones were selected using puromycin. Cas9 induction in
the individual clones was assessed by immunoblotting for Cas9
protein. A clone with superior Cas9 induction rate was selected
and the cells were subjected to the infection with human CRISPR
sgRNA library (containing blasticidin resistance marker) targeting
18,000 genes with 90,000 individual sgRNAs (5 sgRNA per gene) at

low MOI < 1. The infected cells were selected using blasticidin and
frozen for future manipulations. Deep sequencing on an Illumina
Nextseq was used to monitor library composition. Trimmed
sequences were aligned to libraries using Bowtie, with zero
mismatches tolerated. All alignments from multi-mapped reads
were used. Enrichment of individual hairpins was calculated as a
median-normalised log-ratio of the fraction of counts. We
assigned a four-fold reduction in sgRNAs abundance as significant.
A previously established gold standard of 217 genes expected to
have growth phenotypes in all cell types (essential) and 947 genes
expected to have growth phenotypes in no cell type (nones-
sential) was used to estimate true positive and false-positive rates.
We calculated the number of sgRNAs with significant abundance
decrease for all essential and non-essential genes present in our
library. False-negative rate was calculated as the ratio of the
number of essential genes, for which no decrease in abundance
was detected during induction, to the total number of essential
genes present in our library. False-positive rate was calculated as
the ratio of the number of non-essential genes with a significant
decrease in abundance during induction, to the total number of
non- essential genes present in our library. We have used the cut-
off (no less than 4 sgRNA with no less than 4-fold reduction in
abundance) to stratify the candidate list and identify genes
contributing to sunitinib resistance.

Western blot analysis
Cell lysates preparation and western blot analysis were performed
as described previously.28

Cell viability and drug interaction analysis
Cell viability was analysed by CellTiter Blue cell viability assay
(#G8081) (Promega) as described previously.10 Effective doses
(EDs) were calculated using XLfit, a Microsoft Excel add-in. The
synergistic interaction between sunitinib and lonafarnib was
evaluated by the combination index (CI) using CalcuSyn 2.0 soft-
ware.29 CI < 0.1 very strong synergism; 0.1–0.3 strong synergism;
0.3–0.7 synergism; 0.7–0.9 moderate to slight synergism; 0.9–1.1
nearly additive; 1.1–1.45 slight to moderate antagonism; 1.45–3.3
antagonism; >3.3 strong to very strong antagonism.

Analysis of apoptosis
DNA fragmentation was detected using APO-BRDU kit (#AU1001)
(The Phoenix Flow Systems, Inc., San Diego, CA).

Lysosomal Sunitinib sequestration analysis
786-O cells were plated into 96-well plate (3 × 103 cells per well).
Next day, cells were pre-incubated with Lonafarnib (10 μM) for 8 h.
Sunitinib (10 μM) were then added to wells with, or without
lonafarnib and incubation continued for next 24 h. Image
acquisition was performed on an ImageXpress micro automated
imaging system (Molecular Devices, Sunnyvale, CA) driven by
MetaXpress software. Nine image fields per well were acquired,
using three channels to capture matching signal from Hoechst-
stained nuclei (DAPI channel, ex 377/50, em 447/60), and vesicles
in both fluorescein (for sunitinib) and TRITC (for LysoTracker Red)
wavelengths (ex 472/30 em 520/35; ex 525/40, em 585/40
respectively). Epifluorescence images were acquired with a 20x
objective (ELWD Plan Fluor, NA 0.45, WD 7.4), using laser auto-
focus with a z-offset. Images were analysed using ‘Multiwave-
length Scoring’ MetaXpress module for measurement of para-
meters within each fluorescent channel. Data generated from
these analyses were displayed within Acuity Xpress (Molecular
Devices).

siRNA transfection
786-O and PNX0010 cells were transfected with pooled siRNA mix
(Cat# SI00031717 and SI00031731) targeting Protein Farnesyl-
transferase subunit β (FNTB), or non-silencing siRNA (Cat#
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0001027281) (Qiagen, Frederick, MD) using Lipofectamine RNAi-
MAX Transfection Reagent (Thermo Fisher Scientific Inc., Waltham,
MA) according to the manufacturer’s instructions. In all, 48 h post-
transfection the efficacy of knockdown was validated by Western
blotting analysis using specific antibodies.

Generation of cell lines with deleted CAAX-motifs of Rheb, Rab7a
and Rab51
Mutant 786-O cells were generated using pLenti-CRISPRv2
lentiviral vectors expressing sgRNAs targeting C-end of Rheb,
Rab7a and Rab25. Targeting sequences are as follows: 5′- ggagg
cagaaaaaatggacg (Rheb); 5′- ggacaagaatgaccgggcca (Rab7a) and
5′-gcccaggctggacaggagcc (Rab25). Lentiviral production and
infection of 786-O cells were performed as described above. After
the selection with puromycin (1 μg/ml), cells were grown at least
for 10–14 days and genomic DNA was isolated using Quick-DNA
Miniprep kit (Zymo-Research, Irvine, CA) The amplicons spanning
the sgRNAs targeting sites were generated by PCR using Ex Taq
DNA polymerase, hot-start version (Takara Bio USA, Inc., Mountain
View, CA) and specific primers (Supplementary Table S1). The
efficacy of knockouts was validated by direct sequencing of
amplicons (Supplementary Fig. S2).

Assessment of in vivo tumour growth
For in vivo studies, 1 × 106 of PNX0010 cells were inoculated s.c. in
the flank region of 6-week-old male C.B17/Icr-scid mice (all animal
procedures were done in accordance with institutional guidelines
on animal care and with appropriate institutional certification;
IACUC protocol #13–16). Animals were fed an autoclaved 2018SX
diet (Harlan Teklad, Madison, WI) and water ad libitum. Two weeks
after the injection of tumour cells, animals were randomly
assigned to the control or experimental groups. The sample size
n= 5 mice/group was selected because the effects of concomitant
treatment with sunitinib and linafarnib were evaluated in vivo for
the first time in the present study. The mice were treated orally
three times per week with: (i) 10% 2-hydroxypropyl-β-cyclodextrin
in PBS (vehicle); (ii) sunitinib (40 mg/kg); (iii) lonafarnib (40 mg/kg);
(iv) sunitinib (40 mg/kg) and lonafarnib (40 mg/kg) combined.
Tumour volumes were calculated using the formula: (volume=
0.52 × (width)2 × length) as described previously.23 The mice were
euthanised using slow introduction of CO2 into the chamber. The
flow rate for CO2 was set to 10–30% displacement of the chamber
volume/min.

Statistical analysis
Statistical analysis was performed using a two-sided Student’s
t-test. A p-value of <0.05 was considered statistically significant.

RESULTS
CRISPR/Cas9-based genome-wide LOF screening to identify
cellular factors contributing to sunitinib resistance in ccRCC
To identify cellular factors involved in sunitinib resistance, we
infected 786-O ccRCC cells with human CRISPR sgRNA library as
described in Methods. A brief overview of this strategy is depicted
in Fig. 1. Next, we have characterised our library-transformed 786-
O cell line and optimised the hit selection parameters using a
previously established gold standard set of essential and non-
essential genes.30 It is expected that after the induction, most of
cells harbouring the essential genes knockout should be
eliminated, while the non-essential genes should be largely
retained. A set of 216 essential genes and 771 nonessential genes
present in our library was used to estimate true positive and false-
positive rates. By targeting the false-positive rate to be below 1%,
we have established the cut-off of no less than 4 sgRNA per gene,
with no less than 4-fold reduction in abundance as the threshold
for significance (Table 1). Using these stringent criteria, we were
able to recover only ~12% of true positives, but this stratification

allowed us to optimise the subsequent validation by concentrat-
ing on the most reliable candidates first.
Next, 786-O cells were incubated with sunitinib at 10 μM for

12 days (about six passages). This concentration represents the
intratumoural concentration of sunitinib in human tumour speci-
mens (9.5 ± 2.4 μmol/L).11 We anticipated that during this time the
cells with those knockout genes, which contribute to the
resistance to sunitinib would be eliminated from the population.
Next, we identified underrepresented sgRNAs and their

Cas9-exporessing
cells 

Lentiviral infection for
Cas9 expression 

Puromycin 
selection 

Blasticidin 
selection 

Untreated

Cas9 induction
by doxycycline

Sunitinib

No Cas9 
induction 

Cells with 
knockout 
genes 

Infection with lentiviral
90K LOF libary
at low MOI < 1

Chromosomal DNA purification and Deep sequencing of sgRNAs 
 Identify sgRNAs underrepresented in the surviving cell population

Fig. 1 Chart depicting CRISPR/Cas9-based LOF screening strategy to
identify molecular targets synthetically lethal with sunitinib
treatment.

Table 1. The cutoff criteria for evaluation of true positive and false-
positive rates.

Cutoff (number of sgRNAs with
4-fold reduction)

Total >1 >2 >3 >4

Essential genes 216 138 67 25 5

Non-essential genes 771 105 15 2 0

False-negative rate: 36.1% 69.0% 88.4% 97.7%

False-positive rate: 13.6% 1.9% 0.3% 0.0%
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corresponding gene targets in the surviving cell population. The
primers corresponding to sequences flanking the guide in the
lentiviral vector included 8-bp bar codes for Illumina-based
sequencing. Thus, each sgRNA served as an individual DNA
barcode that was used to count the number of cells carrying
guides by sequencing. Our search identified a number of genes
potentially involved in sunitinib resistance in ccRCC (Supplemen-
tary Table S2).23

Identification and validation of druggable molecular factors that
are synthetically lethal with sunitinib treatment
Based on the highest rank of identified hits, we have chosen to
focus on the genes, which have not been previously reported to
be involved in sunitinib resistance. Our screen identified
farnesyltransferase among the top hits. Farnesyltransferase acts
as a hetero-dimer comprising from α and β subunits (encoding by
genes FNTA and FNTB). To validate whether farnesyltransferase
plays a significant role in sunitinib resistance, we performed siRNA
mediated depletion of β subunit of this enzyme in 786-O and
PNX0010 cells (Fig. 2a). After 24 h, siRNA transfected cells were
treated with 10 μM of sunitinib for the next 48 h. As demonstrated
in Fig. 2b, the knockdown of farnesyltransferase has dramatically
sensitised ccRCC cells to sunitinib-mediated apoptosis.
The search through clinicaltrials.gov identified several pharma-

cological agents inhibiting farnesyltransferase function, including
lonafarnib.31,32 Viability of 786-O and PNX0010 cell subjected to
treatment with lonafarnib and sunitinib was examined using

CellTiter Blue viability assay. The effective doses (EDs) of both
drugs were assessed using XLfit (Fig. 3a). Next, 786-O and
PNX0010 cell were treated with various dosing regimens of
lonafarnib and sunitinib to examine a synergistic anti-tumour
effect for the combination of these agents. The data analysis using
CalcuSyn 2.0 software revealed a high level of synergistic
interaction between lonafarnib and sunitinib (Fig. 3b, c).
Concomitant treatment with lonafarnib and sunitinib at higher
doses resulted in profound DNA fragmentation in 786-O and
PNX0010 cells (Fig. 3d).
Lysosomal sequestration of sunitinib limits its intracellular anti-

tumour activity.11 To further define the mechanism of lonafarnib-
mediated sensitisation of tumour cells to sunitinib, we examined
whether the lysosomal sequestration of sunitinib can be disrupted
by lonafarnib. Sunitinib is a fluorescent compound. Therefore, its
intracellular uptake and localisation can easily be monitored. As
demonstrated in Fig. 4a, b, treatment with lonafarnib significantly
reduced a number of sunitinib-containing lysosomes. Importantly,
the total cellular accumulation of sunitinib was not affected by
lonafarnib (Fig. 4c).
Our recent studies demonstrate that co-administration of

mTORC1 inhibitors overcomes sunitinib resistance in renal and
prostate cancer cells both in vitro and in vivo.9 mTORC1 is
activated through the direct binding of Rheb,33 a GTPase up-
regulated in transformed cells.34 The farnesylation of Rheb is
required for its lysosomal membrane localisation and activation of
mTORC1 signalling.35,36 FTIs suppress Rheb farnesylation and
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consequently inhibit mTOR signalling.37 To address the individual
contributions of post-translational prenylation of Rab7a, Rab25
and Rheb proteins, we generated 786-O cells expressing
prenylation-incompetent Rab7a, Rab25 and Rheb proteins using
CRISPR/Cas9 mediated truncation of C-terminal fragments of

those genes containing CAAX motifs. A panel of generated 786-O
cellular sub-lines was then treated with sunitinib. As demonstrated
in Fig. 5, cells expressing prenylation-incompetent Rheb protein
have shown a robust level of apoptosis after sunitinib treatment.
These data suggest the critical role of mTORC1 inhibition in FTI-
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mediated sensitisation of ccRCC cells to sunitinib. 786-O cells
expressing prenylation-incompetent Rab7a protein showed
reduced level of apoptotic cell death. Expression prenylation-
incompetent Rab25 protein had mild pro-apoptotic effect on
786-O cells treated with sunitinib (Fig. 5).
In light of our encouraging in vitro data, we next examined the

anti-tumour effect of sunitinib in combination with lonafarnib
using mice bearing PNXC0010 ccRCC xenograft tumours. As
demonstrated in Fig. 6, monotherapy with either sunitinib or
lonafarnib showed a moderate decrease in the growth of
PNXC0010 xenograft tumours. However, combination treatment
with sunitinib or lonafarnib resulted in vastly more impressive
inhibition of tumour growth among the experimental groups.
These results suggest a readily available clinical strategy to
circumvent resistance to sunitinib in ccRCC tumours.

DISCUSSION
CRISPR-based LOF screening represents the state-of-art tools to
identify synthetically lethal combinations for targeted cancer
therapy. Our present study using CRISPR/Cas9-based genome-
wide screen revealed a critical role of FTase as a cellular factor
contributing to the resistance of ccRCC cells to sunitinib. The
substrate specificity of FTase is determined by the amino
acid residues of the CAAX site, in particular the amino acid
residue X.38 Proteins containing X as methionine or serine exhibit
greater affinity for FTase. These are N-Ras proteins containing Cys-
Val-Val-Met, K-Ras4a with Cys-Ile-Ile-Met, K-Ras4b with Cys-Val-Ile-
Met, and H-Ras with Cys-Val-Leu-Ser.39 Indeed, FTIs were first
devised to inhibit Ras, however, alternative prenylation of K- and
N-Ras hinders these drugs’ ability to affect Ras oncogenes.40

Furthermore, clinical effects of FTIs do not appear to be
linked to Ras mutations or inhibition of Ras effectors.41 Also, our

Fig. 3 The synergistic effect of combined treatment with sunitinib and lonafarnib on the viability of 786-O and PNX0010 cells. a Effective
doses (EDs) responses of 786-O and PNX0010 cells to sunitinib and lonafarnib. Cells were treated with either sunitinib or lonafarnib for 72 h.
Cell viability was examined by CellTiter Blue assay. EDs (μM) were calculated using XLfit. b Combination drug-response curves for the sunitinib
plus lonafarnib treatment. 786-O and PNX0010 cells were treated with various combinations of sunitinib and lonafarnib for 72 h. Cell viability
was examined by CellTiter Blue assay. c The combination index (CI) for the sunitinib plus lonafarnib treatment. The CI was calculated using
CalcuSyn 2.0 software as described in Materials and Methods. CI > 1.3: antagonism; CI 1.1–1.3: moderate antagonism; CI 0.9–1.1: additive
effect; CI 0.8–0.9: slight synergism; CI 0.6–0.8: moderate synergism; CI 0.4–0.6: synergism; CI 0.2–0.4: strong synergism. d 786-O and PNX0010
cells were treated with sunitinib with or without lonafarnib (both at 10 μM) for 24 h. Apoptosis was examined using APO-BRDU kit followed by
flow cytometry analysis. Data are presented as the mean ± S.D.
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CRISPR/Cas9-based genome-wide screening did not identify Ras
and its effectors as central components mediating sunitinib
resistance in ccRCC cells. It is therefore likely that other substrates
of FTase contribute to the anti-tumour effects of FTase targeted
therapeutic agents.
Treatment with TORC1 inhibitors sensitises renal and prostate

cancer cells to sunitinib both in vitro and in vivo.9 mTORC1 is
activated through the direct binding of Rheb,33 a GTPase up-
regulated in transformed cells.34 The farnesylation of Rheb is
required for its lysosomal membrane localisation and activation of
mTORC1 signalling.35,36 FTIs suppress Rheb farnesylation and
consequently inhibit mTOR signalling.37 Critically, studies by Meier
et al. demonstrate that lonafarnib does not inhibit phosphoryla-
tion of ERK or AKT but affects phosphorylation of p70S6K, a
downstream target of mTOR signalling.42 Therefore, FTIs may
potentiate the anti-tumour efficacy of sunitinib, at least in part,
through two potential mechanisms: (1) suppression of Rheb-
dependent mTORC1 activation, and (2) dysregulation of lysosomal
sequestration of TKIs. Lysosomal sequestration occurs when a
hydrophobic weak base compound enters the lysosome, is
protonated in the acid environment, and is unable to cross the
membrane. Lysosomal sequestration has been documented for
several TKIs including sunitinib, erlotinib, and pazopanib.11,43

Interestingly, lysosomal sequestration of sorafenib was observed
in hepatocellular carcinoma but not in renal cancer cells.43,44

Given that sorafenib does not belong to the same class of
hydrophobic weak bases as sunitinib, its lysosomal sequestration
could occur via ABC transporter P-glycoprotein (P-gp)-dependent
mechanism.45 Studies by Colombo et al. demonstrated that
treatment with verapamil, a P-gp inhibitor, enhanced the anti-
tumour activity of sorafenib and sunitinib, supporting the role of
P-gp in TKIs resistance.44 Lysosomal sequestration of hydrophobic
weak base therapeutics triggers lysosomal biogenesis.46 Enhanced
lysosomal biogenesis results in augmented lysosomal drug
sequestration and multi-drug cross-resistance. Thus, pharmacolo-
gical inhibition of FTase may reinstate sensitivity to various TKIs
through a common mechanism, i.e. dysregulation of lysosomal
drug sequestration via inhibition of TKI-mediated lysosomal
biogenesis. Indeed, our findings presented in Fig. 4a, b indicate
that treatment with lonafarnib impairs lysosomal biogenesis and
thus reduces the amount of sunitinib sequestrated in the
lysosomal compartment without affecting the total cellular
accumulation of sunitinib.
A number of clinical studies investigating the anti-tumour

potential of FTIs led to disappointing results, before it was realised
that a biochemical redundancy mechanism allows K-Ras activation
by geranylgeranylation (catalysed by GGTase I), which takes over
the task of Ras prenylation, when FTase is inhibited.47–49 Such
redundancy may explain the suboptimal clinical efficacy of FTIs
(e.g. tipifarnib) for the treatment of pancreatic (90% K-Ras
mutations) and lung and colon carcinomas (∼30% K-Ras muta-
tions).47,50 Nevertheless, several Phase 2 trials are currently
recruiting patients to study the efficacy of tipifarnib against
tumours of various origins (NCT03719690, NCT02383927,
NCT03496766, NCT02807272 and NCT02535650).
In summary, our current study presents a promising strategy to

identify and validate druggable factors involved in the resistance
to targeted therapeutics. Our findings suggest a critical role of
FTase-dependent cellular factors in the regulation of sunitinib
resistance in ccRCC cells. Future studies are required to precisely
elucidate mechanisms underlying synergistic interaction between
sunitinib and FTIs.
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