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A key genomic subtype associated with lymphovascular
invasion in invasive breast cancer
Sasagu Kurozumi1,2, Chitra Joseph 1, Sultan Sonbul1, Sami Alsaeed1, Yousif Kariri1, Abrar Aljohani1, Sara Raafat1, Mansour Alsaleem1,
Angela Ogden1, Simon J Johnston1, Mohammed A Aleskandarany1,3, Takaaki Fujii2, Ken Shirabe2, Carlos Caldas4, Ibraheem Ashankyty5,
Leslie Dalton6, Ian O Ellis1, Christine Desmedt7, Andrew R Green1, Nigel P Mongan8,9 and Emad A Rakha1,3

BACKGROUND: Lymphovascular invasion (LVI) is associated with the development of metastasis in invasive breast cancer (BC).
However, the complex molecular mechanisms of LVI, which overlap with other oncogenic pathways, remain unclear. This study,
using available large transcriptomic datasets, aims to identify genes associated with LVI in early-stage BC patients.
METHODS: Gene expression data from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) cohort
(n= 1565) was used as a discovery dataset, and The Cancer Genome Atlas (TCGA; n= 854) cohort was used as a validation
dataset. Key genes were identified on the basis of differential mRNA expression with respect to LVI status as characterised by
histological review. The relationships among LVI-associated genomic subtype, clinicopathological features and patient
outcomes were explored.
RESULTS: A 99-gene set was identified that demonstrated significantly different expression between LVI-positive and LVI-
negative cases. Clustering analysis with this gene set further divided cases into two molecular subtypes (subtypes 1 and 2),
which were significantly associated with pathology-determined LVI status in both cohorts. The 10-year overall survival of
subtype 2 was significantly worse than that of subtype 1.
CONCLUSION: This study demonstrates that LVI in BC is associated with a specific transcriptomic profile with potential
prognostic value.
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BACKGROUND
Outcomes for early-stage breast cancer (BC) patients have
improved over recent decades as a result of better diagnostic
accuracy, targeted drug therapies, in addition to improvements
in early diagnosis.1 However, the ten-year mortality rates of BC
patients remain ~20% which is attributable to the development
of metastasis.2 Several histopathological features have been
studied as prognostic factors in BC, including tumour size,
lymph node status and histological grade,3–5 which are strongly
associated with outcome. Lymphovascular invasion (LVI) is an
early event in the development of metastasis and is a potent
prognostic factor.6 Although the molecular profiles associated
with tumour differentiation in terms of histological type and
grade and development of lymph node metastasis have been
well characterised,7–9 the molecular mechanisms of LVI and
associated genes that may represent therapeutic targets or
biomarkers remain to be identified. The main challenge in
determining the molecular profiles associated with LVI status in
BC stems from the lack of LVI status in the available large-scale

molecular studies in addition to the inherent subjectivity of
morphological assessment of LVI status.
The Molecular Taxonomy of Breast Cancer International

Consortium (METABRIC)10 and The Cancer Genome Atlas
(TCGA)11 cohorts are currently the largest genomic and
transcriptomic datasets of early-stage BC patients with clinical
follow-up. In this study, using these large transcriptomic datasets
combined with thorough histological assessment of LVI, we
applied bioinformatic analysis to evaluate the genes associated
with LVI and assessed the prognostic value of genomic subtype
based on LVI status.

METHODS
The METABRIC cohort
In the METABRIC study,10 mRNA was extracted from primary
tumours of female patients, and mRNA expression was
evaluated using the Illumina TotalPrep RNA Amplification Kit
and Illumina Human HT-12 v3 Expression BeadChips (Ambion,
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Warrington, UK). LVI status of 1565 patients within the
METABRIC cohort, which were histologically assessed using
haematoxylin and eosin (H&E) stained slides. For the Notting-
ham subset included in METABRIC (n= 285/1565), LVI status was
additionally assessed by immunohistochemistry (IHC) utilising
CD31, CD34 and D2-40,12 and the final LVI status was confirmed
using a combination of multiple H&E tumour sections and IHC.
Considering the different methods of LVI assessment, cases were
divided into two groups: (1) the Nottingham cases and (2) the
remaining METABRIC cases (n= 1280). Gene transcript expres-
sion levels between LVI-positive and LVI-negative cases were
compared for each group, as described in the ‘Bioinformatics
analysis’ section.

The TCGA cohort
The data from the TCGA11 cohort of female BC patients (n= 854)
was extracted from the Genomic Data Commons Data Portal and
cBioPortal website.13,14 Briefly, the datasets of mRNA expression
from RNASeqV2 were accessed along with de-identified clinical
information for several clinicopathological factors and outcomes.
Digital H&E-stained slides from the TCGA_BRCA cohort were
accessed via the cBioPortal website, and LVI status was quantified
by an expert breast pathologist (LD).

Bioinformatics analysis
Analysis of mRNA expression data from METABRIC has
been previously described.10 Differentially expressed genes
(DEGs) between LVI-positive and LVI-negative cases were
identified using the weighted average difference (WAD)
method, and the DEGs were selected according to the WAD
ranking.15,16 Lists of the top 350 genes associated with LVI for
the WAD assay in both (1) the Nottingham cases in the
METABRIC cohort (n= 285) and (2) other METABRIC cases (n=
1280) are shown in Supplementary Tables 1 and 2. Overlapping
DEGs between the two groups were included in the gene set
associated with LVI.
The Cluster 3.0 package was used for clustering and heat map

construction.17 Clustering analysis was performed using METABRIC
data as the discovery set and validated using TCGA data as the
validation set. TCGA mRNA data were log2-transformed prior to
clustering analysis.
For pathway analysis, the WEB-based GEne SeT AnaLysis Toolkit

(WebGestalt) was used to calculate significantly enriched gene
ontologies and pathways associated with these genes.18,19 The
false discovery rate was controlled using the Benjamini–Hochberg
procedure in WebGestalt, with an adjusted-p < 0.01 considered
statistically significant.

Statistical analysis
Statistical analyses were conducted using IBM SPSS Statistics for
Windows, version 24.0 (IBM Corp., Armonk, NY, USA). The chi-
squared test was used to assess differences among several
clinicopathological factors, including LVI status, tumour size,
lymph node status, histological grade, oestrogen receptor (ER),
progesterone receptor (PR), human epidermal growth factor 2
(HER2) and molecular subtypes, as stratified by the LVI-associated
genomic subtype.
Kaplan–Meier survival curves of 10-year overall survival (OS)

were plotted for the METABRIC and TCGA cohorts. The 10-year
OS in this study was defined as the day of death within 10 years
or the day of completing follow-up from the day of surgery. In
univariate and multivariate analyses, 95% confidence intervals
(CIs) were assessed using the Cox proportional hazards
regression model to determine the associations between
clinicopathological factors (LVI status, tumour size, lymph node
status, histological grade, ER, PR and HER2), including the LVI-
associated genomic subtype and prognosis.

RESULTS
Clinicopathological and prognostic significance of LVI status
In the METABRIC cohort, 635/1,565 (41%) were LVI-positive and
930 (59%) were LVI-negative. The LVI-positivity rate was 41.1%
(117/285) in the Nottingham cases and 40.5% (518/1,280) in the
remaining METABRIC cases. In the TCGA cohort, 295/854 (35%)
patients were LVI-positive and 559 (65%) were LVI-negative. In
both cohorts, LVI positivity was significantly associated with large
tumour size (METABRIC: p < 0.0001; TCGA: p= 0.00055), positive
nodal status (METABRIC and TCGA: both p < 0.0001) and high
histological grade (METABRIC and TCGA: both p < 0.0001; Supple-
mentary Table 3).
The survival of LVI-positive BC patients was significantly worse

compared with LVI-negative patients in the METABRIC (hazard
ratio [HR] 1.70, 95% CI 1.45–2.01, p < 0.0001; Fig. 1a) and TCGA
cohorts (HR 2.2, 95% CI 1.46–3.38, p= 0.00019; Fig. 1b). Univariate
and multivariate analyses of both METABRIC and TCGA datasets
are summarised in Supplementary Table 4. Univariate analysis
using the Cox proportional hazards regression model identified
LVI-positive status, large tumour size (METABRIC: HR 1.82, 95% CI
1.49–2.21, p < 0.0001; TCGA: HR 1.81, 95% CI 1.08–3.04, p= 0.025),
positive nodal status (METABRIC: HR 2.06, 95% CI 1.74–2.44, p <
0.0001; TCGA: HR 1.85, 95% CI 1.20–2.85, p= 0.0056), negative ER
status (METABRIC: HR 1.66, 95% CI 1.38–1.99, p < 0.0001; TCGA: HR
1.89, 95% CI 1.19–2.98, p= 0.0065) and negative PR status
(METABRIC: HR 1.67, 95% CI 1.42–1.98, p < 0.0001; TCGA: HR
1.68, 95% CI 1.08–2.61, p= 0.020) as poor prognostic factors in
both cohorts. In addition, significant prognostic factors included
high histological grade (HR 1.63, 95% CI 1.37–1.93, p < 0.0001) and
positive HER2 status (HR 1.92, 95% CI 1.54–2.38, p < 0.0001) in the
METABRIC cohort. LVI positivity was an independent poor
prognostic factor in multivariate analysis (METABRIC: HR 1.29,
95% CI 1.07–1.56, p= 0.0073; TCGA: HR 2.19, 95% CI 1.32–3.62,
p= 0.0023; Supplementary Table 4).

Genes associated with LVI
The overlapping DEGs between (1) the Nottingham cases in
the METABRIC cohort (n= 285) and (2) remaining METABRIC cases
(n= 1280) included 42 significantly overexpressed and 57 down-
regulated genes (Table 1, Supplementary Tables 5 and 6).
The 99 genes in the LVI-related set were significantly associated

with gene ontologies, including ‘GO: 0005615 Extracellular space’,
‘GO: 0072562 Blood microparticle’ and ‘GO: 0031012 Extracellular
matrix’ (Table 2). All significant pathways existed in the category
‘Cellular component’ of gene ontology (Supplementary Fig. 1).
Hierarchical clustering was used to further analyse these 99

genes based on similarity in expression (Fig. 2a). Clustering in the
discovery (METABRIC) cohort classified cases into two subtypes,
namely, subtypes 1 (n= 738 cases; 45%) and 2 (n= 827; 55%)
(Fig. 2b). The dendrogram of METABRIC cases, in which the pattern
of the branches indicates the relationship for each case, is shown
in Supplementary Fig. 2.
To validate these results, hierarchical clustering was conducted

on the TCGA cohort using the same 99 genes. The dendrogram
classifying these 854 cases is shown in Supplementary Fig. 3, again
showing the cases split into two groups: subtypes 1 and 2, with
263 (31%) and 591 (69%) cases, respectively (Fig. 2c).
In both cohorts, LVI positivity was significantly more prevalent

in subtype 2 tumours than those of subtype 1 (METABRIC and
TCGA: p < 0.0001; Table 3).

Clinicopathological and prognostic significance of the LVI-related
gene sets
In the METABRIC and TCGA cohorts, subtype 2 was significantly
associated with large tumour size (both p < 0.0001), high histolo-
gical grade (both p < 0.0001), ER negativity (both p < 0.0001), PR
negativity (both p < 0.0001) and HER2 positivity (both p < 0.0001;
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Table 3). Interestingly, 69% of luminal B, 95% HER2-enriched
and 90% basal-like BC were classified as subtype 2 in the METABRIC
cohort.
Patients with LVI-related subtype 2 had a significantly worse

prognosis compared with those presenting with subtype 1
tumours in both cohorts (METABRIC: HR 1.78, 95% CI 1.50–2.12,
p < 0.0001; TCGA: HR 2.32, 95% CI 1.35–3.99, p= 0.0023; Fig. 1c,
d). In multivariate survival analysis, the LVI-related genomic
subtype was an independent poor prognostic factor in both
cohorts (METABRIC: HR 1.32, 95% CI 1.07–1.63, p= 0.0098; TCGA:
HR 2.76, 95% CI 1.19–6.38, p= 0.018; Fig. 3 and Supplementary
Table 7).

DISCUSSION
In this study, we identified a 99-gene set significantly associated
with LVI status in the METABRIC dataset. We validated
this finding using the TCGA dataset. LVI is a biomarker for
aggressive BC and is considered predictive for metastasis.20 In
other cancer types, gene sets associated with vascular invasion
have been previously described, for example in hepatocellular

carcinoma21 and endometrial cancer.22 Mannelqvist et al.23

suggested that an 18-gene set associated with vascular invasion
in endometrial cancer22 was consistently associated with
hormone receptor negativity, HER2 positivity, basal-like pheno-
type, reduced patient survival in BC patients. In line with these
findings, the present study found that 69% of luminal B, 95%
HER2-enriched and 90% basal-like BCs were subtype 2 in the
METABRIC cohort. Subtype 2 was significantly associated
with LVI positivity. However, of the 18 genes identified in
Mannelqvist et al., only different isoforms of matrix metallo-
peptidase (MMP) and serpin family E member (SERPINE) were
present in our 99-gene set.
The underlying molecular mechanisms driving LVI in BC, which

are potential therapeutic targets, have yet to be identified. The 99
genes in the LVI-related gene signature from this study are
significantly associated with extracellular pathways. In previous
work, Klahan et al.24 suggested their gene set associated with LVI
was related to extracellular matrix components using microarray
data from 108 BC patients. Epithelial–mesenchymal transition
(EMT)-implicated genes in prostate cancer have also been
associated with pathways relating to the extracellular space.25

1.0
a b

c d

0.8

O
ve

ra
ll 

su
rv

iv
al

 (
pr

ob
ab

ili
ty

)

0.6

0.4

0.2

0.0
0 20 40 60

Month

80

Hazard ratio: 1.70
95% Cl: 1.45–2.01
p < 0.0001

Subtype 1 vs. subtype 2
Hazard ratio: 1.78, 95% Cl: 1.50–2.12, p < 0.0001

Subtype 1 vs. subtype 2
Hazard ratio: 2.32, 95% Cl: 1.35–3.99, p = 0.0023

Hazard ratio: 2.22
95% Cl: 1.46–3.38
p = 0.00019

100 120

1.0

0.8

O
ve

ra
ll 

su
rv

iv
al

 (
pr

ob
ab

ili
ty

)

0.6

0.4

0.2

0.0
0 20 40 60

Month

80 100 120

1.0

0.8
O

ve
ra

ll 
su

rv
iv

al
 (

pr
ob

ab
ili

ty
)

0.6

0.4

0.2

0.0
0 20 40 60

Month

80 100 120

1.0

0.8

O
ve

ra
ll 

su
rv

iv
al

 (
pr

ob
ab

ili
ty

)

0.6

0.4

0.2

0.0
0 20 40 60

Month

80 100 120

LVI-positive
(288 events/627 cases)

Subtype 1
(206 events/726 cases)

Subtype 2
(363 events/819 cases)

Subtype 1
(16 events/263 cases)

Subtype 2
(72 events/590 cases)

LVI-negative
(281 events/918 cases)

LVI-positive
(48 events/294 cases)

LVI-negative
(40 events/559 cases)

Fig. 1 Cumulative survival of BC patients stratified by LVI status. a Ten-year overall survival in the METABRIC cases was significantly worse
in the LVI-positive group than in the LVI-negative group. b In TCGA cases, significant differences were noted in patient overall survival in the
LVI-positive and LVI-negative groups. Cumulative survival of breast cancer patients stratified by LVI-related genomic subtypes. c Ten-year
overall survival in breast cancer patients with LVI-related genomic subtypes. Subtype 2 was significantly worse compared with subtype 1 in
the METABRIC cohort. d Classification of LVI-related genomic subtype was a significant prognostic factor in the TCGA cohort

A key genomic subtype associated with lymphovascular invasion in invasive. . .
S Kurozumi et al.

1131



The extracellular matrix comprises a network of structural proteins,
and reorganisation of this matrix is required for cancer to
progress.26 The EMT is thought to play an important role in the
process of metastasis to distant sites, and certain EMT markers are
related to LVI status in BC.12 In the 99 gene LVI signature set, there
are several genes associated with extracellular pathways that are
implicated in BC prognosis. For example, heat shock protein 27
(HSPB1), is associated with BC aggressiveness and metastasis.27

HSPB1 expression is upregulated in the early phase of cell
differentiation, which implies that HSPB1 may play an important
role in controlling the growth and migration of cancer stem-like
cells.28 Another example is apolipoprotein C1 (APOC1), which is
considered as a prognostic biomarker for triple-negative BC.29

APOC1 is thought to regulate the inflammatory response in cancer
tissues,30 which may be closely related to the elimination of
proliferating cancer cells.31 Upregulation of MMPs is also related to
cancer cell proliferation, invasion and epithelial-to-mesenchymal
transformation and is indicative of a poor prognosis for BC
patients.32 As an example, MMP-11, which belongs to the MMP
family, promotes BC development by inhibiting apoptosis as well
as enhancing the migration and invasion of BC cells.33 Additional
functional studies of these genes are necessary to explore the
association of aberrant gene function and proteins related to
LVI in BC.
Comparison of the METABRIC and TCGA cohorts was a

limiting factor in this study, in terms of the different methods
used to quantify and statistically analyse gene expression and in
the approaches to LVI evaluation. We previously developed a
method for the accurate detection of LVI using immunostaining
for CD34 or D2-40.12 In the Nottingham cases, we evaluated LVI
status using strict criteria based on both morphology and
immunohistochemistry. However, for the TCGA BRCA cohort, we
evaluated LVI status using H&E-stained slides alone from the
cBioPortal database. Although LVI evaluation using only one
H&E slide is feasible, it may be difficult to clearly identify LVI
negativity.34 In present study, the LVI-positivity rates were

Table 1. List of 99 genes significantly associated with lymphovascular
invasion

Upregulated genes Downregulated genes

APOC1 KRT7 UCP2 ACTG2 FCGBP S100A4

APOE KRT8 YWHAZ ANG FGD3 SELENOM

CALML5 LAPTM4B ANXA1 FOS SERPINA3

CCNB2 LRRC26 C1S FST SERPINE2

CDCA5 LY6E CDC42EP4 GAS1 SGCE

COX6C MMP11 CEBPD GSTP1 SLC40A1

DNAJA4 MX1 CFB HBA2 SLC44A1

EEF1A2 NME1 CFD HBB SRPX

ELF3 NOP56 CLIC6 HLA-DQA1 STC2

ERBB2 PGAP3 CXCL12 IL17RB SUSD3

GNAS PITX1 CXCL14 MAOA TNS3

HMGA1 PTTG1 CYBRD1 MFAP4 TPM2

HMGB3 S100P CYP4X1 MGP TXNIP

HSPB1 SCD DCN MT1E UBD

IDH2 SLC52A2 DKK3 NDP VIM

IFI27 SLC9A3R1 DPYSL2 NINJ1 VTCN1

ISG15 SPDEF DUSP1 PDGFRL ZBTB20

KRT18 TM7SF2 EEF1B2 PLGRKT

KRT18P55 UBE2C FBLN1 PYCARD

KRT19 UBE2S FCER1A RPL3
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closely similar between the Nottingham cases, the remaining
METABRIC cases and TCGA_BRCA cases using the different LVI-
evaluations. Although our results might suggest the adequacy
of LVI evaluation with only one H&E-stained slide, further
analysis with the larger cohorts to assess the LVI status using
both H&E and IHC slides is necessary to report accurately on LVI
status.
Microarrays were used to evaluate mRNA expression in the

METABRIC analysis. In contrast, RNA-seq using NGS was used in
the TCGA analysis. Microarray platforms have been used and
validated for nearly two decades, and this approach has been
widely used for evaluating multi-gene expression. Conversely, the
unbiased genome-wide RNA-seq method allows for the analysis of
all annotated transcripts in addition to the identification of novel
transcripts, splice junctions and noncoding RNAs. These techno-
logical and methodological differences may underpin the known
challenges of relating microarray and RNA sequencing data

between studies.35,36 For example, the different approaches can
have different lower limits of detection or may encompass
different genomic regions. Thus, we cannot assume that the
methods are interchangeable, and doing so would require
rigorous cross-assay comparisons.37 Although there is statistical
agreement across the different cohorts in the present study,
further analysis using identical technologies (microarray and/or
NGS assays) may provide clearer validation of the LVI gene
signature.
In conclusion, we have confirmed the suitability and prog-

nostic significance of our LVI-evaluation approach using the
METABRIC and TCGA cohorts. We have determined genomic
subtype associated with LVI status and patient outcome in BC,
therefore, providing an experimental tool which may serve to
unravel the complex gene networks associated with LVI with
potential clinical relevance. Consistency between clinical
cohorts stratified by LVI-gene signature may be further
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improved by using the same definitions and evaluation methods
for LVI status.
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