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INTRODUCTION
Hutter et al.1 first reported that a bone marrow transplant using
stem cells derived from a donor with homozygous CCR5 delta32
gene mutation remained HIV-positive but virus-free (below the
limits of detection) after halting antiretroviral therapy. Since this
observation in 2009, mutation of the CCR5 gene has become an
important target in the prevention and treatment of HIV infection.
The CRISPR-Cas9 system, which has been called the biggest
biotech discovery in the history of molecular biology, can be used
for precise genome engineering with the aim of treating genetic
disorders. Currently, the application of gene-editing tools, such as
CRISPR-Cas9, for genetic engineering of embryos for use in
assisted reproduction is prohibited in much of Europe, the United
States, and China.2,3 However, at the Second International Summit
on Human Genome Editing in Hong Kong (http://www.
nationalacademies.org/), Jiankui He claimed that his team had
used CRISPR-Cas9 systems to successfully edit the CCR5 gene in
twin baby girls, Lulu and Nana. In Lulu, one copy of exon 3 in the
CCR5 gene has an inserted base, with the other copy missing four
bases. In Nana, a 15-nucleotide deletion (delta15) within one copy
of CCR5 was described, with the other copy of the CCR5 gene
remaining intact.
The CCR5 gene is located at chromosome region 3p21.314 and

comprises three exons, two introns and two promoters.5 The C-C
chemokine receptor 5 (CCR5) protein encoded by the CCR5 gene
consists of 352 amino acids6 and is composed of a conserved, N-
terminal seven trans-membrane domain and a C-terminal tail.7

This structure is important for the binding of HIV glycoprotein
receptors to host cells and HIV co-receptor CD4 activity.8 Samson
et al. found that the second extracellular loop of CCR5 is
specifically affected by delta32 mutations in exon 3, which result
in the absence of the final three trans-membrane domains in
addition to regions involved in G-protein interaction and signal
transduction. In CD4+ cells, this mutation inhibits CCR5 protein
expression on the cell surface, thereby preventing HIV envelope
fusion.9 Moreover, the presence of the mutant delta32 protein in
the endoplasmic reticulum inhibits transport of the wild-type
CCR5 protein to the cell surface via a trans-dominant mechan-
ism.10 Because most strains of HIV use CCR5 to enter host cells, the
deletion of both copies of the CCR5 gene (not one copy) protects
against HIV infection.11,12 Thus, Nana would still be susceptible to
HIV infection. Although He demonstrated that Lulu was homo-
zygous for the disrupted CCR5 gene, this child may also be
genetically mosaic, which means that Lulu may carry some edited

cells and some unedited cells. Furthermore, although He claimed
an absence of dangerous off-target mutations in both twins based
on single cell sequencing studies, these results were not peer-
reviewed and confirmed by an independent team. Therefore,
Lulu’s genetic status should be continually monitored throughout
her life, and it is possible that she may encounter unpredictable
disorders in the future.

Role of CCR5 deficiency in diseases
Individuals who are naturally homozygous for the delta32
mutation, which abolishes CCR5 expression, are generally healthy
and at no apparent disadvantage.8 However, apart from the
protective effects against HIV infection, the impacts of this
mutation, positive or negative, on other diseases are open to
debate.13 To date, several studies have indicated that CCR5
delta32 mutations provide significant resistance to smallpox,14 in
addition to enhancing certain forms of memory15 but also render
individuals more vulnerable to influenza16 and the West Nile
virus.17 In mice, CCR5 deficiency exacerbates stroke-related brain
injury.18 CCR5 is thought to mediate pro-inflammatory effects in
the pathogenesis of rheumatoid arthritis (RA).19 However,
Fleishaker et al.20 reported that a CCR5 antagonist (maraviroc),
which has been approved for use in HIV patients, was ineffective
in treating patients with RA who had not responded to
methotrexate (MTX). Moreover, a double-blind, placebo-
controlled trial in 2015 found that maraviroc was associated with
reduced bone loss at the hip and lumbar spine of HIV-infected
patients.21 Other studies demonstrated direct roles of CCR5 in
osteoclastogenesis and osteoclast-osteoblast communication.22,23

These clinical and basic investigations highlight the skeletal effects
associated with the functional loss of CCR5.24

CCR5 deficiency in osteoclast differentiation and function
Previous epidemiological studies have suggested that disrupted
CCR5 is associated not only with a lower frequency of HIV
transmission but also with a reduced incidence and severity of
bone-destructive diseases.25,26 These studies demonstrate that
CCR5 is a pivotal factor in bone development and regulation.21

Compared with wild-type alveolar bone, CCR-deficiency was
shown to be associated with an increased number of tartrate-
resistant acid phosphatase (TRAP)-positive osteoclasts with
upregulated osteoclastic markers in a model of orthodontic tooth
movement.27 In 2017, antibody-mediated CCR5 blockade was
shown to have a detrimental effect on human osteoclast function.
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Moreover, CCR5-deficient mice were found to be resistant to bone
loss induced by receptor activator of nuclear factor kappa-B ligand
(RANKL) via a mechanism that is independent of inflammatory and
immunomodulatory pathways.28 These CCR5-deficient mice also
presented increased numbers of osteoclast precursors and
osteoclasts exhibiting disorganized cellular adhesion and a
reduced bone resorptive ability, which was also accompanied by
downregulated RANKL-induced phosphorylation of the proto-
oncogene tyrosine-protein kinase Src (SRC) and protein-tyrosine
kinase 2-β (PTK2B). Such integrin-mediated signaling complexes
regulate the actin cytoskeleton reorganization required for cell
polarization and adhesion by activation of Rho family GTPases,
such as transforming protein RhoA (RHOA) and ras-related protein
Rac1 (RAC1).28 These findings demonstrate that CCR5 is required
for the focal adhesion-mediated signaling involved in cellular
locomotion, podosome-related sealing zone organization, and
bone resorptive activity, thereby elucidating the essential role of
CCR5 in bone-destructive conditions through the functional
regulation of mature osteoclasts. In contrast, the latest reports in
2018 demonstrated that CCR5 expression was rapidly reduced by
RANKL treatment during osteoclastogenesis but was recovered by
the administration of IFN-γ. RANKL-induced CCR5 downregulation
is mediated by mitogen-activated protein kinase (MAPK) in
osteoclast precursors and promotes osteoclastogenesis.29 The
master transcription factor of the MAPK pathway, nuclear factor of
activated T-cells, cytoplasmic 1 (NFATc1), possibly regulates the
transcription of CCR5 by binding to the CCR5 promoter.30

However, CCR5 blockade may not completely impact osteoclast
differentiation due to other chemokine receptors that are similarly
upregulated by IFN-γ31 and downregulated by RANKL treatment.32

CCR5 deficiency in immune cells and bone regulation
CCR5 is expressed on various immune cells including T-cells,
macrophages and natural killer (NK) cells.33 Numerus studies have
demonstrated high levels of integration of the skeletal and
immune systems.34 In addition to its role in chemotaxis,
CCR5 signaling has been implicated in T cell differentiation and
enhances adaptive immune responses. For instance, CCR5
enhances T lymphocyte co-stimulation and CD4+ T cell cytokine
release. Activated T-cells produce RANKL and induce bone loss.35

CD4+ T-cells inhibit osteoclastogenesis by expressing GM-CSF
and IFN-γ36. In contrast, under IL-15 stimulation, CD4+ T-cells also
express TNF-α to promote osteoclastogenesis.37 IL-7 produced by
T-cells also promotes osteoclast formation by upregulating T cell-
derived cytokines, such as TNF-α38. T helper 17 (Th17) cells
stimulate osteoblast differentiation through the secretion of their
main pro-inflammatory cytokines, IL-17A and IL-17F.39 Therefore,
CCR5 deficiency in T-cells might reduce the secretion of cytokines
involved in the regulation of osteoclast and osteoblast differentia-
tion. In a mouse renal allograft model, CCR5 deficiency resulted in
accumulation of alternatively activated macrophages.40 This
activation of macrophages in the absence of CCR5 was demon-
strated by normal expression of inducible nitric oxide synthase
(iNOS) and production of the cytokine IFN-γ40. Macrophages could
regulate RANKL-induced osteoclastogenesis by stimulation of pro-
inflammatory cytokines such as TNF-α, IL-1, and IL-641-45. However,
IFN-γ inhibits osteoclastogenesis through the subsequent rapid
degradation of TRAF6.46 Thus, macrophages promote or suppress
osteoclast activity through the secretion of TNF-α, IL-1, IL-6, and
IFN-γ. Macrophages also support osteoblast differentiation and
proliferation through the release of cytokines including BMP-2,
BMP-4, and TGF-β1.47,48 Notably, CCR5-deficient mice exhibited a
significant decrease in the number of CD3+ NK cells. With a
normal apoptosis rate, the potential proliferation of NK cells
derived from CCR5-deficient mice was reduced.49 Moreover, those
NK cells showed significantly reduced adherence to target cells
including osteoclasts or osteoblasts, in addition to lower killing
efficiency.50 Other results indicated that the development and

trafficking of NK cells are regulated by prolonged inhibition of
CCR5 signaling.49 Bone marrow stromal cells (BMSCs) are bound
and killed by IL-2 activated NK cells.51 Meanwhile, the NK cells
release IFN-γ and TNF-α, which regulate osteoclast differentiation.
Furthermore, NK cells also promote apoptosis of osteoblasts and
osteoclasts through IL-15 stimulation.52,53 A reduced number and
function of NK cells could affect the life span of osteoclasts and
osteoblasts (Fig. 1).

DISCUSSION AND CONCERNS
Bone growth and development are involved in bone modeling,
which occurs predominantly in the prepubertal period, and bone
remodeling, which occurs throughout life after sexual maturity.
Bone modeling defines skeletal growth and development and, in
this context, is responsible for reshaping the bone during growth,
with bone formation predominating over resorption. This process
is essential for bone health and requires osteoclasts and
osteoblasts to function independently in distinct sites.54 In
contrast, during bone remodeling, osteoclasts and osteoblasts
work sequentially in the same location.55 This process is
characterized by activation, resorption, reversal and formation
phases. In the activation phase, osteoclasts are recruited, whereas
osteoclasts resorb bone in the resorption phase. In the reversal
phase, osteoclasts undergo apoptosis and osteoblasts are
recruited, and in the formation phase, osteoblasts generate new
organic bone matrix, which is subsequently mineralized.56

Osteoclasts, which are derived from hematopoietic stem cells
(HSCs), are unique in their ability to resorb bone matrices and are
currently thought to have precursors in common with macro-
phages.57 Other than its effects on immune cells, CCR5 deficiency
primarily influences osteoclast function; thus, being homozygous
for the disrupted CCR5 gene, Lulu may be affected by risks to her
bone development.
The specific architecture of the cytoskeleton of osteoclasts

allows polarization and adhesion of their unique resorptive
machinery to the bone surface, where an isolated resorptive
microenvironment is sealed by an actin ring and integrin-based
podosomes, known as the sealing zone.58 The sealing zone is a
highly dynamic structure, undergoing cycles of assembly and
disassembly.58 Loss of CCR5 function causes abrogated actin ring
formation59 of mature osteoclasts due to the rearrangement of
podosomes, which is also accompanied by the dissociation of
focal adhesions.28 Integrins are heterodimeric cell surface
receptors that mediate cell–cell and cell–matrix interac-
tions.60CCR5 deficiency seems to interfere with the organization
and function of integrin-associated adhesion and migration of
both osteoclasts and immune cells. The coordinated regulation of
these cells is critical for maintaining physiological bone modeling
and remodeling, ensuring proper bone development and health.
The dispensable physiological role of CCR5 is highlighted by the

apparent health and lack of abnormalities in delta32-homozygous
individuals. However, it can be speculated that these individuals
have adapted to this deficiency by the evolution of alternative
receptors or structures required for immune and other functions
since the ancestral acquisition of this mutation thousands of years
ago. Thus, artificially inducing a null CCR5 phenotype in the baby
Lulu may have unforeseen consequences. The potential risks to
bone development in CCR5-edited babies are hard to predict, and
only time will reveal the long-term effects of CCR5 deficiency on
the affected individual.
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Fig. 1 The potential molecular mechanisms for vulnerability of a homozygous CCR5-deficient individual to bone disorders. The CCR5 gene is
located at chromosome region 3p21.31. In Lulu, one copy of exon 3 in the CCR5 gene has an inserted base, with the other copy missing four
bases. In Nana, a 15-nucleotide deletion (delta15) within one copy of CCR5 was described, with the other copy of the CCR5 gene remaining
intact. Thus, Lulu may be a homozygous CCR5-deficient baby. Although the number of osteoclast precursors and osteoclasts were upregulated
in CCR5-deficiency models, their cellular adhesion and bone resorptive ability were downregulated. Red characters indicate upregulated cell
number or biological function, whereas green characters indicate downregulated cell number or biological function. Solid black arrows
represent the promotion of cellular processes, and solid T bars represent the inhibition of cellular processes. CCR5: C-C chemokine receptor
type 5; RANKL: Receptor activator of nuclear factor kappa-Β ligand; NFATc1: Nuclear factor of activated T-cells, cytoplasmic 1; PTK2B: Protein-
tyrosine kinase 2-β; RAC1: Ras-related protein Rac1; RHOA: Transforming protein RhoA; MAPK: Mitogen-activated protein kinase; GM-CSF:
Granulocyte-macrophage colony-stimulating factor; BMP-2: Bone morphogenetic protein 2; BMP-4: Bone morphogenetic protein 4; BMSCs:
Bone marrow stromal cells. Original elements used in this diagram are from Servier Medical Art (http://smart.servier.com/)
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