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Series Editors’ Note

When we do a clinical trial in which we randomize for one
variable, say adding pretransplant anti-thymocyte globulin
(ATG), and we see a benefit, say less graft-versus-host
disease (GvHD), most people assume receiving ATG
caused the benefit. This reasoning, termed causal inference,
is common but wrong. Reasons why is described in the
accompanying typescript. What we observe is an associa-
tion or correlation between ATG and less GvHD, not
necessarily the cause. This incorrect reasoning is referred to
as the association-causation fallacy. A good example is the
correlation between US per capita cheese consumption and
deaths by strangulation from bedsheets with a Pearson
correlation coefficient of 0.95 (see below). This and other
problems of human cognition can be found in Thinking,
Fast and Slow by Daniel Kahneman.
How can we reconcile this discordance between the goal of
the clinical trialist who wants to know why GvHD is
decreased and the rigor of the statistician? In the following
typescript Zheng and colleagues describe the difference
between causality and association. They describe statistical
methods by which we can plausibly infer causality to results
of a randomized clinical trial. We hope this typescript and
others will prompt a dialogue between readers and statisti-
cians interested in analyses of data from clinical trials of

haematopoietic cell transplants. We welcome comments at
#BMTStats.

Introduction

Correct interpretation of statistical data requires caution in
implying causality [1–3], a caution contrasting with the pur-
pose of most clinical trials whose major objective is the
opposite, to assign causality. A typical example showing that
association does not imply causation is given in Fig 1. How
can we reconcile these opposing considerations? In this brief
review we provide basic definitions of causal inference and
discuss why treatment effect, a common clinical trial endpoint
after an intervention, should not be interpreted as implying
causation. We provide a concise guide on how to conduct
statistical analyses to obtain results where causal interpreta-
tion may be reasonable. We also introduce classical causal
methods for randomized trials and discuss methods to use
covariate information to improve efficiency and methods to
deal with non-compliance. Lastly, we introduce recent
advanced research in causal inference of survival effects
including methods for time-varying treatment experiments
and high-dimensional covariate information.

Causal inference

We begin with some basic concepts in causal inference
illustrating why it is wrong to draw conclusions regarding
causality using treatment effect from simple group compar-
isons. Under the stable unit treatment value assumption
(SUTVA) causal effects (or causal estimand1) are defined
based on the comparison of certain functionals of the dis-
tribution of potential outcomes after two different actions
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(treatment or control) made on the same object or group of
objects (for example, subjects in a clinical trial) [4, 5]. In the
survival setting we are interested in quantities such as the
potential survival function, cumulative hazard function (for
example, cumulative incidence of relapse), restricted mean
survival time (RMST) [6] and/or residual life-time [6–11].
Because treatment effect is obtained by comparing two
groups it does not convey causal information. Obviously, one
can never observe both potential outcomes since only one
action such as treatment or placebo can be taken in each
subject. This exclusivity is called the fundamental problem of
causal inference [1, 12]. To identify causal effects considering
the unavoidably missing data requires assumptions regarding
the assignment mechanism of treatment and control. These
different assumptions require methods other than treatment
effect if one wants to accurately estimate causality. We
expand on this point below.

Workflow for causal inference analyses

To obtain causal interpretation, we need to define the causal
estimand through potential outcome framework (introduced
in section 'Causal inference') and figure out a way to find an
estimator (a functional of observed data) to identify this
causal estimand. The choice of the estimator depends on the
type of data we have: (1) whether there is covariate infor-
mation and whether the covariate is balanced (2) whether
there is non-compliance issue; and (3) whether the treatment
is at one time-point or time-varying treatment. If we have
one time-point treatment and the data is from a perfect
randomized trial with no non-compliance, the methods from
section 'Randomization methods' can be used to to make
causal conclusions. However, if we also have co-variate
information available and some of the co-variates are
unbalanced, we can consider methods from section
'Improving efficiency with co-variate balance and adjust-
ment to gain efficiency'. Next, we need to consider if there
is non-compliance in the trial. If so, it may be necessary to

use methods we discuss in section 'Non-compliance'. When
there is time-varying treatment or high-dimensional cov-
ariates methods we discuss in section 'Advanced topics'
should be used.

Randomization methods

Therapy-assignment conforming to individualistic, prob-
abilistic and un-confounded assumptions is defined as a
classic randomized experiment [12]. If one further assumes
a constant effect we can use the Fisher exact P-value
method under random censoring [13]. However, if we are
only interested in the average causal effect (ACE) we do not
need the strong constant effect assumption implied in the
Fisher exact P-value and can use the Neyman approach by
subtracting the average of treated group with the average of
untreated group [12, 14]. Inverse probability of censoring
weighting can be used to deal with censoring [15]. We also
need to consider that in a classic randomized trial the
Neyman approach provides a consistent estimator for ACE
and coincides with the simple group comparison. However,
this approach ignores potentially important covariate data.
We discuss how we can improve on this next.

Improving efficiency with covariate balance
and adjustment

Analysis of a randomized clinical trial with covariate
information (for example, age, sex etc.) can be improved by
regression adjustment and model-based imputation methods
[12]. A key point in using these methods is when there are
interaction terms they must be added to get an unbiased
estimator for the super population ACE. If the model form is
non-collapsible (for example, a Cox model), proper inte-
gration over covariate distribution is needed to compute the
correct ACE [8, 16]. When sample size is small and numbers
of covariates large (often so in haematopoietic cell transplant
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trials), propensity score (the probability of a unit to be
assigned treatment given all covariates) can be used to
reduce finite sample bias and increase efficiency [17]. Sev-
eral propensity score-based methods are available including
propensity score matching for sub-classification [18–22],
propensity score adjustment [23], trimming based on pro-
pensity score [24] and variants combining several techniques
[15]. In practice, the propensity score is unknown and is
commonly fitted from a logistic regression model. To deal
with issues from potential model misspecification, the mul-
tiple robust estimator [15] can be used to analyze the data at
the price of potential loss of efficiency.

Non-compliance

Non-compliance is common in clinical trials and makes
implying causal inference even more difficult. A common
practice is to analyze treatment effect by intent-to-treat
ignoring compliance such that randomization assumptions
still operate. In this way methods in sections 'Workflow for
causal inference analyses' and 'Randomization methods' are
all valid to estimate the ACE of the intent-to-treat effect.
This approach is obviously different from the ACE of the
real treatment because it includes subjects not receiving the
assigned treatment but analyzed as if they had. A less valid
approach to estimating treatment effect is to analyze only
data from subjects assigned to and receiving the therapy.
However, this approach violates the randomization
assumptions. Consequently, methods we describe in sec-
tions 'Workflow for causal inference analyses' and 'Rando-
mization methods' cannot lead to an unbiased estimator for
ACE.
A proposed solution to this problem is the principal strati-
fication method [25]. Subjects are classified into four latent
groups based on their potential compliance state under
different treatment assignments: (1) complier; (2) always
taker; (3) never taker; and (4) defier. A subject’s group
attribute can only be partially identified directly from his
observed compliance state (for example, a subject who
complied to the treatment is either a complier or an always
taker). Treatment efficacy is usually considered as the ACE
in the complier group, identifiable based on different com-
bination of assumptions such as exclusion criteria, mono-
tonicity and/or parametric model assumption [26–28]. Or
we can obtain a bound for the causal effect with weaker
assumptions [29–31]. Another way to handle non-
compliance is to consider compliance state as a mediator
and use an instrumental variable approach to handle
potential un-measured confounders between compliance
and outcome [32–36]. Another way is to assume sequential
ignorability. Under this assumption the true treatment action

(whether the subject received the therapy or not) can be
analyzed as conditionally randomized and therefore pro-
pensity score methods or methods specifically designed for
non-compliance issue [37–40] can be used to estimate
causality followed by a sensitivity analyses [41–45] to
evaluate robustness of the estimator under assumption
violation.

Advanced topics

There is considerable recent research in how to estimate
causal inference in survival data analyses. One important
direction is how to deal with the time-varying treatment
studies. These are studies where the treatment is not a one-
time binary choice (for example, a transplant versus che-
motherapy) [46] but assigned over time and possibly
adjusted based on prior outcomes (for example, giving
azacitidine to subjects with a positive posttransplant mea-
surable residual disease [MRD]-test). Cox models using
time-dependent covariates face the problem of confounding
such as prior therapy treatment and cannot therefore imply
causality. The marginal structural model [47–49] and the
nested structural mean model [50, 51] should be considered
for these types of data. Another important direction is how
to take advantage of rapidly-increasing availability of cov-
ariate data from clinical trials to increase efficiency of ACE
estimations. High-dimensional methods using novel
machine learning techniques have been developed for this
purpose [52–54].

Conclusion

In the brief review, we provided the concept of the potential
outcome framework and described the complex challenge of
inferring causality in survival analyses of randomized
clinical trials. We discuss limitations of estimating causality
under these conditions and suggest potential statistical
techniques to help estimate causality with greater accuracy.
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